1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integral
11 // constant values and operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ADT_APINT_H
16 #define LLVM_ADT_APINT_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 #include <climits>
23 #include <cstring>
24 #include <string>
25
26 namespace llvm {
27 class Deserializer;
28 class FoldingSetNodeID;
29 class Serializer;
30 class StringRef;
31 class hash_code;
32 class raw_ostream;
33
34 template<typename T>
35 class SmallVectorImpl;
36
37 // An unsigned host type used as a single part of a multi-part
38 // bignum.
39 typedef uint64_t integerPart;
40
41 const unsigned int host_char_bit = 8;
42 const unsigned int integerPartWidth = host_char_bit *
43 static_cast<unsigned int>(sizeof(integerPart));
44
45 //===----------------------------------------------------------------------===//
46 // APInt Class
47 //===----------------------------------------------------------------------===//
48
49 /// APInt - This class represents arbitrary precision constant integral values.
50 /// It is a functional replacement for common case unsigned integer type like
51 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
52 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
53 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
54 /// and methods to manipulate integer values of any bit-width. It supports both
55 /// the typical integer arithmetic and comparison operations as well as bitwise
56 /// manipulation.
57 ///
58 /// The class has several invariants worth noting:
59 /// * All bit, byte, and word positions are zero-based.
60 /// * Once the bit width is set, it doesn't change except by the Truncate,
61 /// SignExtend, or ZeroExtend operations.
62 /// * All binary operators must be on APInt instances of the same bit width.
63 /// Attempting to use these operators on instances with different bit
64 /// widths will yield an assertion.
65 /// * The value is stored canonically as an unsigned value. For operations
66 /// where it makes a difference, there are both signed and unsigned variants
67 /// of the operation. For example, sdiv and udiv. However, because the bit
68 /// widths must be the same, operations such as Mul and Add produce the same
69 /// results regardless of whether the values are interpreted as signed or
70 /// not.
71 /// * In general, the class tries to follow the style of computation that LLVM
72 /// uses in its IR. This simplifies its use for LLVM.
73 ///
74 /// @brief Class for arbitrary precision integers.
75 class APInt {
76 unsigned BitWidth; ///< The number of bits in this APInt.
77
78 /// This union is used to store the integer value. When the
79 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80 union {
81 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
82 uint64_t *pVal; ///< Used to store the >64 bits integer value.
83 };
84
85 /// This enum is used to hold the constants we needed for APInt.
86 enum {
87 /// Bits in a word
88 APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
89 CHAR_BIT,
90 /// Byte size of a word
91 APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92 };
93
94 /// This constructor is used only internally for speed of construction of
95 /// temporaries. It is unsafe for general use so it is not public.
96 /// @brief Fast internal constructor
APInt(uint64_t * val,unsigned bits)97 APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
98
99 /// @returns true if the number of bits <= 64, false otherwise.
100 /// @brief Determine if this APInt just has one word to store value.
isSingleWord()101 bool isSingleWord() const {
102 return BitWidth <= APINT_BITS_PER_WORD;
103 }
104
105 /// @returns the word position for the specified bit position.
106 /// @brief Determine which word a bit is in.
whichWord(unsigned bitPosition)107 static unsigned whichWord(unsigned bitPosition) {
108 return bitPosition / APINT_BITS_PER_WORD;
109 }
110
111 /// @returns the bit position in a word for the specified bit position
112 /// in the APInt.
113 /// @brief Determine which bit in a word a bit is in.
whichBit(unsigned bitPosition)114 static unsigned whichBit(unsigned bitPosition) {
115 return bitPosition % APINT_BITS_PER_WORD;
116 }
117
118 /// This method generates and returns a uint64_t (word) mask for a single
119 /// bit at a specific bit position. This is used to mask the bit in the
120 /// corresponding word.
121 /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
122 /// @brief Get a single bit mask.
maskBit(unsigned bitPosition)123 static uint64_t maskBit(unsigned bitPosition) {
124 return 1ULL << whichBit(bitPosition);
125 }
126
127 /// This method is used internally to clear the to "N" bits in the high order
128 /// word that are not used by the APInt. This is needed after the most
129 /// significant word is assigned a value to ensure that those bits are
130 /// zero'd out.
131 /// @brief Clear unused high order bits
clearUnusedBits()132 APInt& clearUnusedBits() {
133 // Compute how many bits are used in the final word
134 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
135 if (wordBits == 0)
136 // If all bits are used, we want to leave the value alone. This also
137 // avoids the undefined behavior of >> when the shift is the same size as
138 // the word size (64).
139 return *this;
140
141 // Mask out the high bits.
142 uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
143 if (isSingleWord())
144 VAL &= mask;
145 else
146 pVal[getNumWords() - 1] &= mask;
147 return *this;
148 }
149
150 /// @returns the corresponding word for the specified bit position.
151 /// @brief Get the word corresponding to a bit position
getWord(unsigned bitPosition)152 uint64_t getWord(unsigned bitPosition) const {
153 return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
154 }
155
156 /// Converts a string into a number. The string must be non-empty
157 /// and well-formed as a number of the given base. The bit-width
158 /// must be sufficient to hold the result.
159 ///
160 /// This is used by the constructors that take string arguments.
161 ///
162 /// StringRef::getAsInteger is superficially similar but (1) does
163 /// not assume that the string is well-formed and (2) grows the
164 /// result to hold the input.
165 ///
166 /// @param radix 2, 8, 10, 16, or 36
167 /// @brief Convert a char array into an APInt
168 void fromString(unsigned numBits, StringRef str, uint8_t radix);
169
170 /// This is used by the toString method to divide by the radix. It simply
171 /// provides a more convenient form of divide for internal use since KnuthDiv
172 /// has specific constraints on its inputs. If those constraints are not met
173 /// then it provides a simpler form of divide.
174 /// @brief An internal division function for dividing APInts.
175 static void divide(const APInt LHS, unsigned lhsWords,
176 const APInt &RHS, unsigned rhsWords,
177 APInt *Quotient, APInt *Remainder);
178
179 /// out-of-line slow case for inline constructor
180 void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
181
182 /// shared code between two array constructors
183 void initFromArray(ArrayRef<uint64_t> array);
184
185 /// out-of-line slow case for inline copy constructor
186 void initSlowCase(const APInt& that);
187
188 /// out-of-line slow case for shl
189 APInt shlSlowCase(unsigned shiftAmt) const;
190
191 /// out-of-line slow case for operator&
192 APInt AndSlowCase(const APInt& RHS) const;
193
194 /// out-of-line slow case for operator|
195 APInt OrSlowCase(const APInt& RHS) const;
196
197 /// out-of-line slow case for operator^
198 APInt XorSlowCase(const APInt& RHS) const;
199
200 /// out-of-line slow case for operator=
201 APInt& AssignSlowCase(const APInt& RHS);
202
203 /// out-of-line slow case for operator==
204 bool EqualSlowCase(const APInt& RHS) const;
205
206 /// out-of-line slow case for operator==
207 bool EqualSlowCase(uint64_t Val) const;
208
209 /// out-of-line slow case for countLeadingZeros
210 unsigned countLeadingZerosSlowCase() const;
211
212 /// out-of-line slow case for countTrailingOnes
213 unsigned countTrailingOnesSlowCase() const;
214
215 /// out-of-line slow case for countPopulation
216 unsigned countPopulationSlowCase() const;
217
218 public:
219 /// @name Constructors
220 /// @{
221 /// If isSigned is true then val is treated as if it were a signed value
222 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
223 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
224 /// the range of val are zero filled).
225 /// @param numBits the bit width of the constructed APInt
226 /// @param val the initial value of the APInt
227 /// @param isSigned how to treat signedness of val
228 /// @brief Create a new APInt of numBits width, initialized as val.
229 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)230 : BitWidth(numBits), VAL(0) {
231 assert(BitWidth && "bitwidth too small");
232 if (isSingleWord())
233 VAL = val;
234 else
235 initSlowCase(numBits, val, isSigned);
236 clearUnusedBits();
237 }
238
239 /// Note that bigVal.size() can be smaller or larger than the corresponding
240 /// bit width but any extraneous bits will be dropped.
241 /// @param numBits the bit width of the constructed APInt
242 /// @param bigVal a sequence of words to form the initial value of the APInt
243 /// @brief Construct an APInt of numBits width, initialized as bigVal[].
244 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
245 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
246 /// deprecated because this constructor is prone to ambiguity with the
247 /// APInt(unsigned, uint64_t, bool) constructor.
248 ///
249 /// If this overload is ever deleted, care should be taken to prevent calls
250 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
251 /// constructor.
252 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
253
254 /// This constructor interprets the string \p str in the given radix. The
255 /// interpretation stops when the first character that is not suitable for the
256 /// radix is encountered, or the end of the string. Acceptable radix values
257 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
258 /// string to require more bits than numBits.
259 ///
260 /// @param numBits the bit width of the constructed APInt
261 /// @param str the string to be interpreted
262 /// @param radix the radix to use for the conversion
263 /// @brief Construct an APInt from a string representation.
264 APInt(unsigned numBits, StringRef str, uint8_t radix);
265
266 /// Simply makes *this a copy of that.
267 /// @brief Copy Constructor.
APInt(const APInt & that)268 APInt(const APInt& that)
269 : BitWidth(that.BitWidth), VAL(0) {
270 assert(BitWidth && "bitwidth too small");
271 if (isSingleWord())
272 VAL = that.VAL;
273 else
274 initSlowCase(that);
275 }
276
277 #if LLVM_HAS_RVALUE_REFERENCES
278 /// @brief Move Constructor.
APInt(APInt && that)279 APInt(APInt&& that) : BitWidth(that.BitWidth), VAL(that.VAL) {
280 that.BitWidth = 0;
281 }
282 #endif
283
284 /// @brief Destructor.
~APInt()285 ~APInt() {
286 if (!isSingleWord())
287 delete [] pVal;
288 }
289
290 /// Default constructor that creates an uninitialized APInt. This is useful
291 /// for object deserialization (pair this with the static method Read).
APInt()292 explicit APInt() : BitWidth(1) {}
293
294 /// Profile - Used to insert APInt objects, or objects that contain APInt
295 /// objects, into FoldingSets.
296 void Profile(FoldingSetNodeID& id) const;
297
298 /// @}
299 /// @name Value Tests
300 /// @{
301 /// This tests the high bit of this APInt to determine if it is set.
302 /// @returns true if this APInt is negative, false otherwise
303 /// @brief Determine sign of this APInt.
isNegative()304 bool isNegative() const {
305 return (*this)[BitWidth - 1];
306 }
307
308 /// This tests the high bit of the APInt to determine if it is unset.
309 /// @brief Determine if this APInt Value is non-negative (>= 0)
isNonNegative()310 bool isNonNegative() const {
311 return !isNegative();
312 }
313
314 /// This tests if the value of this APInt is positive (> 0). Note
315 /// that 0 is not a positive value.
316 /// @returns true if this APInt is positive.
317 /// @brief Determine if this APInt Value is positive.
isStrictlyPositive()318 bool isStrictlyPositive() const {
319 return isNonNegative() && !!*this;
320 }
321
322 /// This checks to see if the value has all bits of the APInt are set or not.
323 /// @brief Determine if all bits are set
isAllOnesValue()324 bool isAllOnesValue() const {
325 return countPopulation() == BitWidth;
326 }
327
328 /// This checks to see if the value of this APInt is the maximum unsigned
329 /// value for the APInt's bit width.
330 /// @brief Determine if this is the largest unsigned value.
isMaxValue()331 bool isMaxValue() const {
332 return countPopulation() == BitWidth;
333 }
334
335 /// This checks to see if the value of this APInt is the maximum signed
336 /// value for the APInt's bit width.
337 /// @brief Determine if this is the largest signed value.
isMaxSignedValue()338 bool isMaxSignedValue() const {
339 return BitWidth == 1 ? VAL == 0 :
340 !isNegative() && countPopulation() == BitWidth - 1;
341 }
342
343 /// This checks to see if the value of this APInt is the minimum unsigned
344 /// value for the APInt's bit width.
345 /// @brief Determine if this is the smallest unsigned value.
isMinValue()346 bool isMinValue() const {
347 return !*this;
348 }
349
350 /// This checks to see if the value of this APInt is the minimum signed
351 /// value for the APInt's bit width.
352 /// @brief Determine if this is the smallest signed value.
isMinSignedValue()353 bool isMinSignedValue() const {
354 return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
355 }
356
357 /// @brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)358 bool isIntN(unsigned N) const {
359 assert(N && "N == 0 ???");
360 return getActiveBits() <= N;
361 }
362
363 /// @brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)364 bool isSignedIntN(unsigned N) const {
365 assert(N && "N == 0 ???");
366 return getMinSignedBits() <= N;
367 }
368
369 /// @returns true if the argument APInt value is a power of two > 0.
isPowerOf2()370 bool isPowerOf2() const {
371 if (isSingleWord())
372 return isPowerOf2_64(VAL);
373 return countPopulationSlowCase() == 1;
374 }
375
376 /// isSignBit - Return true if this is the value returned by getSignBit.
isSignBit()377 bool isSignBit() const { return isMinSignedValue(); }
378
379 /// This converts the APInt to a boolean value as a test against zero.
380 /// @brief Boolean conversion function.
getBoolValue()381 bool getBoolValue() const {
382 return !!*this;
383 }
384
385 /// getLimitedValue - If this value is smaller than the specified limit,
386 /// return it, otherwise return the limit value. This causes the value
387 /// to saturate to the limit.
388 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
389 return (getActiveBits() > 64 || getZExtValue() > Limit) ?
390 Limit : getZExtValue();
391 }
392
393 /// @}
394 /// @name Value Generators
395 /// @{
396 /// @brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)397 static APInt getMaxValue(unsigned numBits) {
398 return getAllOnesValue(numBits);
399 }
400
401 /// @brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)402 static APInt getSignedMaxValue(unsigned numBits) {
403 APInt API = getAllOnesValue(numBits);
404 API.clearBit(numBits - 1);
405 return API;
406 }
407
408 /// @brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)409 static APInt getMinValue(unsigned numBits) {
410 return APInt(numBits, 0);
411 }
412
413 /// @brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)414 static APInt getSignedMinValue(unsigned numBits) {
415 APInt API(numBits, 0);
416 API.setBit(numBits - 1);
417 return API;
418 }
419
420 /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
421 /// it helps code readability when we want to get a SignBit.
422 /// @brief Get the SignBit for a specific bit width.
getSignBit(unsigned BitWidth)423 static APInt getSignBit(unsigned BitWidth) {
424 return getSignedMinValue(BitWidth);
425 }
426
427 /// @returns the all-ones value for an APInt of the specified bit-width.
428 /// @brief Get the all-ones value.
getAllOnesValue(unsigned numBits)429 static APInt getAllOnesValue(unsigned numBits) {
430 return APInt(numBits, UINT64_MAX, true);
431 }
432
433 /// @returns the '0' value for an APInt of the specified bit-width.
434 /// @brief Get the '0' value.
getNullValue(unsigned numBits)435 static APInt getNullValue(unsigned numBits) {
436 return APInt(numBits, 0);
437 }
438
439 /// Get an APInt with the same BitWidth as this APInt, just zero mask
440 /// the low bits and right shift to the least significant bit.
441 /// @returns the high "numBits" bits of this APInt.
442 APInt getHiBits(unsigned numBits) const;
443
444 /// Get an APInt with the same BitWidth as this APInt, just zero mask
445 /// the high bits.
446 /// @returns the low "numBits" bits of this APInt.
447 APInt getLoBits(unsigned numBits) const;
448
449 /// getOneBitSet - Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)450 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
451 APInt Res(numBits, 0);
452 Res.setBit(BitNo);
453 return Res;
454 }
455
456 /// Constructs an APInt value that has a contiguous range of bits set. The
457 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
458 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
459 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
460 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
461 /// @param numBits the intended bit width of the result
462 /// @param loBit the index of the lowest bit set.
463 /// @param hiBit the index of the highest bit set.
464 /// @returns An APInt value with the requested bits set.
465 /// @brief Get a value with a block of bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)466 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
467 assert(hiBit <= numBits && "hiBit out of range");
468 assert(loBit < numBits && "loBit out of range");
469 if (hiBit < loBit)
470 return getLowBitsSet(numBits, hiBit) |
471 getHighBitsSet(numBits, numBits-loBit);
472 return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
473 }
474
475 /// Constructs an APInt value that has the top hiBitsSet bits set.
476 /// @param numBits the bitwidth of the result
477 /// @param hiBitsSet the number of high-order bits set in the result.
478 /// @brief Get a value with high bits set
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)479 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
480 assert(hiBitsSet <= numBits && "Too many bits to set!");
481 // Handle a degenerate case, to avoid shifting by word size
482 if (hiBitsSet == 0)
483 return APInt(numBits, 0);
484 unsigned shiftAmt = numBits - hiBitsSet;
485 // For small values, return quickly
486 if (numBits <= APINT_BITS_PER_WORD)
487 return APInt(numBits, ~0ULL << shiftAmt);
488 return getAllOnesValue(numBits).shl(shiftAmt);
489 }
490
491 /// Constructs an APInt value that has the bottom loBitsSet bits set.
492 /// @param numBits the bitwidth of the result
493 /// @param loBitsSet the number of low-order bits set in the result.
494 /// @brief Get a value with low bits set
getLowBitsSet(unsigned numBits,unsigned loBitsSet)495 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
496 assert(loBitsSet <= numBits && "Too many bits to set!");
497 // Handle a degenerate case, to avoid shifting by word size
498 if (loBitsSet == 0)
499 return APInt(numBits, 0);
500 if (loBitsSet == APINT_BITS_PER_WORD)
501 return APInt(numBits, UINT64_MAX);
502 // For small values, return quickly.
503 if (loBitsSet <= APINT_BITS_PER_WORD)
504 return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
505 return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
506 }
507
508 /// \brief Return a value containing V broadcasted over NewLen bits.
getSplat(unsigned NewLen,const APInt & V)509 static APInt getSplat(unsigned NewLen, const APInt &V) {
510 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
511
512 APInt Val = V.zextOrSelf(NewLen);
513 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
514 Val |= Val << I;
515
516 return Val;
517 }
518
519 /// \brief Determine if two APInts have the same value, after zero-extending
520 /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)521 static bool isSameValue(const APInt &I1, const APInt &I2) {
522 if (I1.getBitWidth() == I2.getBitWidth())
523 return I1 == I2;
524
525 if (I1.getBitWidth() > I2.getBitWidth())
526 return I1 == I2.zext(I1.getBitWidth());
527
528 return I1.zext(I2.getBitWidth()) == I2;
529 }
530
531 /// \brief Overload to compute a hash_code for an APInt value.
532 friend hash_code hash_value(const APInt &Arg);
533
534 /// This function returns a pointer to the internal storage of the APInt.
535 /// This is useful for writing out the APInt in binary form without any
536 /// conversions.
getRawData()537 const uint64_t* getRawData() const {
538 if (isSingleWord())
539 return &VAL;
540 return &pVal[0];
541 }
542
543 /// @}
544 /// @name Unary Operators
545 /// @{
546 /// @returns a new APInt value representing *this incremented by one
547 /// @brief Postfix increment operator.
548 const APInt operator++(int) {
549 APInt API(*this);
550 ++(*this);
551 return API;
552 }
553
554 /// @returns *this incremented by one
555 /// @brief Prefix increment operator.
556 APInt& operator++();
557
558 /// @returns a new APInt representing *this decremented by one.
559 /// @brief Postfix decrement operator.
560 const APInt operator--(int) {
561 APInt API(*this);
562 --(*this);
563 return API;
564 }
565
566 /// @returns *this decremented by one.
567 /// @brief Prefix decrement operator.
568 APInt& operator--();
569
570 /// Performs a bitwise complement operation on this APInt.
571 /// @returns an APInt that is the bitwise complement of *this
572 /// @brief Unary bitwise complement operator.
573 APInt operator~() const {
574 APInt Result(*this);
575 Result.flipAllBits();
576 return Result;
577 }
578
579 /// Negates *this using two's complement logic.
580 /// @returns An APInt value representing the negation of *this.
581 /// @brief Unary negation operator
582 APInt operator-() const {
583 return APInt(BitWidth, 0) - (*this);
584 }
585
586 /// Performs logical negation operation on this APInt.
587 /// @returns true if *this is zero, false otherwise.
588 /// @brief Logical negation operator.
589 bool operator!() const {
590 if (isSingleWord())
591 return !VAL;
592
593 for (unsigned i = 0; i != getNumWords(); ++i)
594 if (pVal[i])
595 return false;
596 return true;
597 }
598
599 /// @}
600 /// @name Assignment Operators
601 /// @{
602 /// @returns *this after assignment of RHS.
603 /// @brief Copy assignment operator.
604 APInt& operator=(const APInt& RHS) {
605 // If the bitwidths are the same, we can avoid mucking with memory
606 if (isSingleWord() && RHS.isSingleWord()) {
607 VAL = RHS.VAL;
608 BitWidth = RHS.BitWidth;
609 return clearUnusedBits();
610 }
611
612 return AssignSlowCase(RHS);
613 }
614
615 #if LLVM_HAS_RVALUE_REFERENCES
616 /// @brief Move assignment operator.
617 APInt& operator=(APInt&& that) {
618 if (!isSingleWord())
619 delete [] pVal;
620
621 BitWidth = that.BitWidth;
622 VAL = that.VAL;
623
624 that.BitWidth = 0;
625
626 return *this;
627 }
628 #endif
629
630 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
631 /// the bit width, the excess bits are truncated. If the bit width is larger
632 /// than 64, the value is zero filled in the unspecified high order bits.
633 /// @returns *this after assignment of RHS value.
634 /// @brief Assignment operator.
635 APInt& operator=(uint64_t RHS);
636
637 /// Performs a bitwise AND operation on this APInt and RHS. The result is
638 /// assigned to *this.
639 /// @returns *this after ANDing with RHS.
640 /// @brief Bitwise AND assignment operator.
641 APInt& operator&=(const APInt& RHS);
642
643 /// Performs a bitwise OR operation on this APInt and RHS. The result is
644 /// assigned *this;
645 /// @returns *this after ORing with RHS.
646 /// @brief Bitwise OR assignment operator.
647 APInt& operator|=(const APInt& RHS);
648
649 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
650 /// logically zero-extended or truncated to match the bit-width of
651 /// the LHS.
652 ///
653 /// @brief Bitwise OR assignment operator.
654 APInt& operator|=(uint64_t RHS) {
655 if (isSingleWord()) {
656 VAL |= RHS;
657 clearUnusedBits();
658 } else {
659 pVal[0] |= RHS;
660 }
661 return *this;
662 }
663
664 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
665 /// assigned to *this.
666 /// @returns *this after XORing with RHS.
667 /// @brief Bitwise XOR assignment operator.
668 APInt& operator^=(const APInt& RHS);
669
670 /// Multiplies this APInt by RHS and assigns the result to *this.
671 /// @returns *this
672 /// @brief Multiplication assignment operator.
673 APInt& operator*=(const APInt& RHS);
674
675 /// Adds RHS to *this and assigns the result to *this.
676 /// @returns *this
677 /// @brief Addition assignment operator.
678 APInt& operator+=(const APInt& RHS);
679
680 /// Subtracts RHS from *this and assigns the result to *this.
681 /// @returns *this
682 /// @brief Subtraction assignment operator.
683 APInt& operator-=(const APInt& RHS);
684
685 /// Shifts *this left by shiftAmt and assigns the result to *this.
686 /// @returns *this after shifting left by shiftAmt
687 /// @brief Left-shift assignment function.
688 APInt& operator<<=(unsigned shiftAmt) {
689 *this = shl(shiftAmt);
690 return *this;
691 }
692
693 /// @}
694 /// @name Binary Operators
695 /// @{
696 /// Performs a bitwise AND operation on *this and RHS.
697 /// @returns An APInt value representing the bitwise AND of *this and RHS.
698 /// @brief Bitwise AND operator.
699 APInt operator&(const APInt& RHS) const {
700 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
701 if (isSingleWord())
702 return APInt(getBitWidth(), VAL & RHS.VAL);
703 return AndSlowCase(RHS);
704 }
And(const APInt & RHS)705 APInt And(const APInt& RHS) const {
706 return this->operator&(RHS);
707 }
708
709 /// Performs a bitwise OR operation on *this and RHS.
710 /// @returns An APInt value representing the bitwise OR of *this and RHS.
711 /// @brief Bitwise OR operator.
712 APInt operator|(const APInt& RHS) const {
713 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
714 if (isSingleWord())
715 return APInt(getBitWidth(), VAL | RHS.VAL);
716 return OrSlowCase(RHS);
717 }
Or(const APInt & RHS)718 APInt Or(const APInt& RHS) const {
719 return this->operator|(RHS);
720 }
721
722 /// Performs a bitwise XOR operation on *this and RHS.
723 /// @returns An APInt value representing the bitwise XOR of *this and RHS.
724 /// @brief Bitwise XOR operator.
725 APInt operator^(const APInt& RHS) const {
726 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
727 if (isSingleWord())
728 return APInt(BitWidth, VAL ^ RHS.VAL);
729 return XorSlowCase(RHS);
730 }
Xor(const APInt & RHS)731 APInt Xor(const APInt& RHS) const {
732 return this->operator^(RHS);
733 }
734
735 /// Multiplies this APInt by RHS and returns the result.
736 /// @brief Multiplication operator.
737 APInt operator*(const APInt& RHS) const;
738
739 /// Adds RHS to this APInt and returns the result.
740 /// @brief Addition operator.
741 APInt operator+(const APInt& RHS) const;
742 APInt operator+(uint64_t RHS) const {
743 return (*this) + APInt(BitWidth, RHS);
744 }
745
746 /// Subtracts RHS from this APInt and returns the result.
747 /// @brief Subtraction operator.
748 APInt operator-(const APInt& RHS) const;
749 APInt operator-(uint64_t RHS) const {
750 return (*this) - APInt(BitWidth, RHS);
751 }
752
753 APInt operator<<(unsigned Bits) const {
754 return shl(Bits);
755 }
756
757 APInt operator<<(const APInt &Bits) const {
758 return shl(Bits);
759 }
760
761 /// Arithmetic right-shift this APInt by shiftAmt.
762 /// @brief Arithmetic right-shift function.
763 APInt ashr(unsigned shiftAmt) const;
764
765 /// Logical right-shift this APInt by shiftAmt.
766 /// @brief Logical right-shift function.
767 APInt lshr(unsigned shiftAmt) const;
768
769 /// Left-shift this APInt by shiftAmt.
770 /// @brief Left-shift function.
shl(unsigned shiftAmt)771 APInt shl(unsigned shiftAmt) const {
772 assert(shiftAmt <= BitWidth && "Invalid shift amount");
773 if (isSingleWord()) {
774 if (shiftAmt >= BitWidth)
775 return APInt(BitWidth, 0); // avoid undefined shift results
776 return APInt(BitWidth, VAL << shiftAmt);
777 }
778 return shlSlowCase(shiftAmt);
779 }
780
781 /// @brief Rotate left by rotateAmt.
782 APInt rotl(unsigned rotateAmt) const;
783
784 /// @brief Rotate right by rotateAmt.
785 APInt rotr(unsigned rotateAmt) const;
786
787 /// Arithmetic right-shift this APInt by shiftAmt.
788 /// @brief Arithmetic right-shift function.
789 APInt ashr(const APInt &shiftAmt) const;
790
791 /// Logical right-shift this APInt by shiftAmt.
792 /// @brief Logical right-shift function.
793 APInt lshr(const APInt &shiftAmt) const;
794
795 /// Left-shift this APInt by shiftAmt.
796 /// @brief Left-shift function.
797 APInt shl(const APInt &shiftAmt) const;
798
799 /// @brief Rotate left by rotateAmt.
800 APInt rotl(const APInt &rotateAmt) const;
801
802 /// @brief Rotate right by rotateAmt.
803 APInt rotr(const APInt &rotateAmt) const;
804
805 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
806 /// RHS are treated as unsigned quantities for purposes of this division.
807 /// @returns a new APInt value containing the division result
808 /// @brief Unsigned division operation.
809 APInt udiv(const APInt &RHS) const;
810
811 /// Signed divide this APInt by APInt RHS.
812 /// @brief Signed division function for APInt.
813 APInt sdiv(const APInt &RHS) const;
814
815 /// Perform an unsigned remainder operation on this APInt with RHS being the
816 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
817 /// of this operation. Note that this is a true remainder operation and not
818 /// a modulo operation because the sign follows the sign of the dividend
819 /// which is *this.
820 /// @returns a new APInt value containing the remainder result
821 /// @brief Unsigned remainder operation.
822 APInt urem(const APInt &RHS) const;
823
824 /// Signed remainder operation on APInt.
825 /// @brief Function for signed remainder operation.
826 APInt srem(const APInt &RHS) const;
827
828 /// Sometimes it is convenient to divide two APInt values and obtain both the
829 /// quotient and remainder. This function does both operations in the same
830 /// computation making it a little more efficient. The pair of input arguments
831 /// may overlap with the pair of output arguments. It is safe to call
832 /// udivrem(X, Y, X, Y), for example.
833 /// @brief Dual division/remainder interface.
834 static void udivrem(const APInt &LHS, const APInt &RHS,
835 APInt &Quotient, APInt &Remainder);
836
837 static void sdivrem(const APInt &LHS, const APInt &RHS,
838 APInt &Quotient, APInt &Remainder);
839
840
841 // Operations that return overflow indicators.
842 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
843 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
844 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
845 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
846 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
847 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
848 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
849 APInt sshl_ov(unsigned Amt, bool &Overflow) const;
850
851 /// @returns the bit value at bitPosition
852 /// @brief Array-indexing support.
853 bool operator[](unsigned bitPosition) const {
854 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
855 return (maskBit(bitPosition) &
856 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
857 }
858
859 /// @}
860 /// @name Comparison Operators
861 /// @{
862 /// Compares this APInt with RHS for the validity of the equality
863 /// relationship.
864 /// @brief Equality operator.
865 bool operator==(const APInt& RHS) const {
866 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
867 if (isSingleWord())
868 return VAL == RHS.VAL;
869 return EqualSlowCase(RHS);
870 }
871
872 /// Compares this APInt with a uint64_t for the validity of the equality
873 /// relationship.
874 /// @returns true if *this == Val
875 /// @brief Equality operator.
876 bool operator==(uint64_t Val) const {
877 if (isSingleWord())
878 return VAL == Val;
879 return EqualSlowCase(Val);
880 }
881
882 /// Compares this APInt with RHS for the validity of the equality
883 /// relationship.
884 /// @returns true if *this == Val
885 /// @brief Equality comparison.
eq(const APInt & RHS)886 bool eq(const APInt &RHS) const {
887 return (*this) == RHS;
888 }
889
890 /// Compares this APInt with RHS for the validity of the inequality
891 /// relationship.
892 /// @returns true if *this != Val
893 /// @brief Inequality operator.
894 bool operator!=(const APInt& RHS) const {
895 return !((*this) == RHS);
896 }
897
898 /// Compares this APInt with a uint64_t for the validity of the inequality
899 /// relationship.
900 /// @returns true if *this != Val
901 /// @brief Inequality operator.
902 bool operator!=(uint64_t Val) const {
903 return !((*this) == Val);
904 }
905
906 /// Compares this APInt with RHS for the validity of the inequality
907 /// relationship.
908 /// @returns true if *this != Val
909 /// @brief Inequality comparison
ne(const APInt & RHS)910 bool ne(const APInt &RHS) const {
911 return !((*this) == RHS);
912 }
913
914 /// Regards both *this and RHS as unsigned quantities and compares them for
915 /// the validity of the less-than relationship.
916 /// @returns true if *this < RHS when both are considered unsigned.
917 /// @brief Unsigned less than comparison
918 bool ult(const APInt &RHS) const;
919
920 /// Regards both *this as an unsigned quantity and compares it with RHS for
921 /// the validity of the less-than relationship.
922 /// @returns true if *this < RHS when considered unsigned.
923 /// @brief Unsigned less than comparison
ult(uint64_t RHS)924 bool ult(uint64_t RHS) const {
925 return ult(APInt(getBitWidth(), RHS));
926 }
927
928 /// Regards both *this and RHS as signed quantities and compares them for
929 /// validity of the less-than relationship.
930 /// @returns true if *this < RHS when both are considered signed.
931 /// @brief Signed less than comparison
932 bool slt(const APInt& RHS) const;
933
934 /// Regards both *this as a signed quantity and compares it with RHS for
935 /// the validity of the less-than relationship.
936 /// @returns true if *this < RHS when considered signed.
937 /// @brief Signed less than comparison
slt(uint64_t RHS)938 bool slt(uint64_t RHS) const {
939 return slt(APInt(getBitWidth(), RHS));
940 }
941
942 /// Regards both *this and RHS as unsigned quantities and compares them for
943 /// validity of the less-or-equal relationship.
944 /// @returns true if *this <= RHS when both are considered unsigned.
945 /// @brief Unsigned less or equal comparison
ule(const APInt & RHS)946 bool ule(const APInt& RHS) const {
947 return ult(RHS) || eq(RHS);
948 }
949
950 /// Regards both *this as an unsigned quantity and compares it with RHS for
951 /// the validity of the less-or-equal relationship.
952 /// @returns true if *this <= RHS when considered unsigned.
953 /// @brief Unsigned less or equal comparison
ule(uint64_t RHS)954 bool ule(uint64_t RHS) const {
955 return ule(APInt(getBitWidth(), RHS));
956 }
957
958 /// Regards both *this and RHS as signed quantities and compares them for
959 /// validity of the less-or-equal relationship.
960 /// @returns true if *this <= RHS when both are considered signed.
961 /// @brief Signed less or equal comparison
sle(const APInt & RHS)962 bool sle(const APInt& RHS) const {
963 return slt(RHS) || eq(RHS);
964 }
965
966 /// Regards both *this as a signed quantity and compares it with RHS for
967 /// the validity of the less-or-equal relationship.
968 /// @returns true if *this <= RHS when considered signed.
969 /// @brief Signed less or equal comparison
sle(uint64_t RHS)970 bool sle(uint64_t RHS) const {
971 return sle(APInt(getBitWidth(), RHS));
972 }
973
974 /// Regards both *this and RHS as unsigned quantities and compares them for
975 /// the validity of the greater-than relationship.
976 /// @returns true if *this > RHS when both are considered unsigned.
977 /// @brief Unsigned greather than comparison
ugt(const APInt & RHS)978 bool ugt(const APInt& RHS) const {
979 return !ult(RHS) && !eq(RHS);
980 }
981
982 /// Regards both *this as an unsigned quantity and compares it with RHS for
983 /// the validity of the greater-than relationship.
984 /// @returns true if *this > RHS when considered unsigned.
985 /// @brief Unsigned greater than comparison
ugt(uint64_t RHS)986 bool ugt(uint64_t RHS) const {
987 return ugt(APInt(getBitWidth(), RHS));
988 }
989
990 /// Regards both *this and RHS as signed quantities and compares them for
991 /// the validity of the greater-than relationship.
992 /// @returns true if *this > RHS when both are considered signed.
993 /// @brief Signed greather than comparison
sgt(const APInt & RHS)994 bool sgt(const APInt& RHS) const {
995 return !slt(RHS) && !eq(RHS);
996 }
997
998 /// Regards both *this as a signed quantity and compares it with RHS for
999 /// the validity of the greater-than relationship.
1000 /// @returns true if *this > RHS when considered signed.
1001 /// @brief Signed greater than comparison
sgt(uint64_t RHS)1002 bool sgt(uint64_t RHS) const {
1003 return sgt(APInt(getBitWidth(), RHS));
1004 }
1005
1006 /// Regards both *this and RHS as unsigned quantities and compares them for
1007 /// validity of the greater-or-equal relationship.
1008 /// @returns true if *this >= RHS when both are considered unsigned.
1009 /// @brief Unsigned greater or equal comparison
uge(const APInt & RHS)1010 bool uge(const APInt& RHS) const {
1011 return !ult(RHS);
1012 }
1013
1014 /// Regards both *this as an unsigned quantity and compares it with RHS for
1015 /// the validity of the greater-or-equal relationship.
1016 /// @returns true if *this >= RHS when considered unsigned.
1017 /// @brief Unsigned greater or equal comparison
uge(uint64_t RHS)1018 bool uge(uint64_t RHS) const {
1019 return uge(APInt(getBitWidth(), RHS));
1020 }
1021
1022 /// Regards both *this and RHS as signed quantities and compares them for
1023 /// validity of the greater-or-equal relationship.
1024 /// @returns true if *this >= RHS when both are considered signed.
1025 /// @brief Signed greather or equal comparison
sge(const APInt & RHS)1026 bool sge(const APInt& RHS) const {
1027 return !slt(RHS);
1028 }
1029
1030 /// Regards both *this as a signed quantity and compares it with RHS for
1031 /// the validity of the greater-or-equal relationship.
1032 /// @returns true if *this >= RHS when considered signed.
1033 /// @brief Signed greater or equal comparison
sge(uint64_t RHS)1034 bool sge(uint64_t RHS) const {
1035 return sge(APInt(getBitWidth(), RHS));
1036 }
1037
1038
1039
1040
1041 /// This operation tests if there are any pairs of corresponding bits
1042 /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1043 bool intersects(const APInt &RHS) const {
1044 return (*this & RHS) != 0;
1045 }
1046
1047 /// @}
1048 /// @name Resizing Operators
1049 /// @{
1050 /// Truncate the APInt to a specified width. It is an error to specify a width
1051 /// that is greater than or equal to the current width.
1052 /// @brief Truncate to new width.
1053 APInt trunc(unsigned width) const;
1054
1055 /// This operation sign extends the APInt to a new width. If the high order
1056 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1057 /// It is an error to specify a width that is less than or equal to the
1058 /// current width.
1059 /// @brief Sign extend to a new width.
1060 APInt sext(unsigned width) const;
1061
1062 /// This operation zero extends the APInt to a new width. The high order bits
1063 /// are filled with 0 bits. It is an error to specify a width that is less
1064 /// than or equal to the current width.
1065 /// @brief Zero extend to a new width.
1066 APInt zext(unsigned width) const;
1067
1068 /// Make this APInt have the bit width given by \p width. The value is sign
1069 /// extended, truncated, or left alone to make it that width.
1070 /// @brief Sign extend or truncate to width
1071 APInt sextOrTrunc(unsigned width) const;
1072
1073 /// Make this APInt have the bit width given by \p width. The value is zero
1074 /// extended, truncated, or left alone to make it that width.
1075 /// @brief Zero extend or truncate to width
1076 APInt zextOrTrunc(unsigned width) const;
1077
1078 /// Make this APInt have the bit width given by \p width. The value is sign
1079 /// extended, or left alone to make it that width.
1080 /// @brief Sign extend or truncate to width
1081 APInt sextOrSelf(unsigned width) const;
1082
1083 /// Make this APInt have the bit width given by \p width. The value is zero
1084 /// extended, or left alone to make it that width.
1085 /// @brief Zero extend or truncate to width
1086 APInt zextOrSelf(unsigned width) const;
1087
1088 /// @}
1089 /// @name Bit Manipulation Operators
1090 /// @{
1091 /// @brief Set every bit to 1.
setAllBits()1092 void setAllBits() {
1093 if (isSingleWord())
1094 VAL = UINT64_MAX;
1095 else {
1096 // Set all the bits in all the words.
1097 for (unsigned i = 0; i < getNumWords(); ++i)
1098 pVal[i] = UINT64_MAX;
1099 }
1100 // Clear the unused ones
1101 clearUnusedBits();
1102 }
1103
1104 /// Set the given bit to 1 whose position is given as "bitPosition".
1105 /// @brief Set a given bit to 1.
1106 void setBit(unsigned bitPosition);
1107
1108 /// @brief Set every bit to 0.
clearAllBits()1109 void clearAllBits() {
1110 if (isSingleWord())
1111 VAL = 0;
1112 else
1113 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1114 }
1115
1116 /// Set the given bit to 0 whose position is given as "bitPosition".
1117 /// @brief Set a given bit to 0.
1118 void clearBit(unsigned bitPosition);
1119
1120 /// @brief Toggle every bit to its opposite value.
flipAllBits()1121 void flipAllBits() {
1122 if (isSingleWord())
1123 VAL ^= UINT64_MAX;
1124 else {
1125 for (unsigned i = 0; i < getNumWords(); ++i)
1126 pVal[i] ^= UINT64_MAX;
1127 }
1128 clearUnusedBits();
1129 }
1130
1131 /// Toggle a given bit to its opposite value whose position is given
1132 /// as "bitPosition".
1133 /// @brief Toggles a given bit to its opposite value.
1134 void flipBit(unsigned bitPosition);
1135
1136 /// @}
1137 /// @name Value Characterization Functions
1138 /// @{
1139
1140 /// @returns the total number of bits.
getBitWidth()1141 unsigned getBitWidth() const {
1142 return BitWidth;
1143 }
1144
1145 /// Here one word's bitwidth equals to that of uint64_t.
1146 /// @returns the number of words to hold the integer value of this APInt.
1147 /// @brief Get the number of words.
getNumWords()1148 unsigned getNumWords() const {
1149 return getNumWords(BitWidth);
1150 }
1151
1152 /// Here one word's bitwidth equals to that of uint64_t.
1153 /// @returns the number of words to hold the integer value with a
1154 /// given bit width.
1155 /// @brief Get the number of words.
getNumWords(unsigned BitWidth)1156 static unsigned getNumWords(unsigned BitWidth) {
1157 return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1158 }
1159
1160 /// This function returns the number of active bits which is defined as the
1161 /// bit width minus the number of leading zeros. This is used in several
1162 /// computations to see how "wide" the value is.
1163 /// @brief Compute the number of active bits in the value
getActiveBits()1164 unsigned getActiveBits() const {
1165 return BitWidth - countLeadingZeros();
1166 }
1167
1168 /// This function returns the number of active words in the value of this
1169 /// APInt. This is used in conjunction with getActiveData to extract the raw
1170 /// value of the APInt.
getActiveWords()1171 unsigned getActiveWords() const {
1172 unsigned numActiveBits = getActiveBits();
1173 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1174 }
1175
1176 /// Computes the minimum bit width for this APInt while considering it to be
1177 /// a signed (and probably negative) value. If the value is not negative,
1178 /// this function returns the same value as getActiveBits()+1. Otherwise, it
1179 /// returns the smallest bit width that will retain the negative value. For
1180 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1181 /// for -1, this function will always return 1.
1182 /// @brief Get the minimum bit size for this signed APInt
getMinSignedBits()1183 unsigned getMinSignedBits() const {
1184 if (isNegative())
1185 return BitWidth - countLeadingOnes() + 1;
1186 return getActiveBits()+1;
1187 }
1188
1189 /// This method attempts to return the value of this APInt as a zero extended
1190 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1191 /// uint64_t. Otherwise an assertion will result.
1192 /// @brief Get zero extended value
getZExtValue()1193 uint64_t getZExtValue() const {
1194 if (isSingleWord())
1195 return VAL;
1196 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1197 return pVal[0];
1198 }
1199
1200 /// This method attempts to return the value of this APInt as a sign extended
1201 /// int64_t. The bit width must be <= 64 or the value must fit within an
1202 /// int64_t. Otherwise an assertion will result.
1203 /// @brief Get sign extended value
getSExtValue()1204 int64_t getSExtValue() const {
1205 if (isSingleWord())
1206 return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1207 (APINT_BITS_PER_WORD - BitWidth);
1208 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1209 return int64_t(pVal[0]);
1210 }
1211
1212 /// This method determines how many bits are required to hold the APInt
1213 /// equivalent of the string given by \p str.
1214 /// @brief Get bits required for string value.
1215 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1216
1217 /// countLeadingZeros - This function is an APInt version of the
1218 /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1219 /// of zeros from the most significant bit to the first one bit.
1220 /// @returns BitWidth if the value is zero, otherwise
1221 /// returns the number of zeros from the most significant bit to the first
1222 /// one bits.
countLeadingZeros()1223 unsigned countLeadingZeros() const {
1224 if (isSingleWord()) {
1225 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1226 return CountLeadingZeros_64(VAL) - unusedBits;
1227 }
1228 return countLeadingZerosSlowCase();
1229 }
1230
1231 /// countLeadingOnes - This function is an APInt version of the
1232 /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1233 /// of ones from the most significant bit to the first zero bit.
1234 /// @returns 0 if the high order bit is not set, otherwise
1235 /// returns the number of 1 bits from the most significant to the least
1236 /// @brief Count the number of leading one bits.
1237 unsigned countLeadingOnes() const;
1238
1239 /// Computes the number of leading bits of this APInt that are equal to its
1240 /// sign bit.
getNumSignBits()1241 unsigned getNumSignBits() const {
1242 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1243 }
1244
1245 /// countTrailingZeros - This function is an APInt version of the
1246 /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1247 /// the number of zeros from the least significant bit to the first set bit.
1248 /// @returns BitWidth if the value is zero, otherwise
1249 /// returns the number of zeros from the least significant bit to the first
1250 /// one bit.
1251 /// @brief Count the number of trailing zero bits.
1252 unsigned countTrailingZeros() const;
1253
1254 /// countTrailingOnes - This function is an APInt version of the
1255 /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1256 /// the number of ones from the least significant bit to the first zero bit.
1257 /// @returns BitWidth if the value is all ones, otherwise
1258 /// returns the number of ones from the least significant bit to the first
1259 /// zero bit.
1260 /// @brief Count the number of trailing one bits.
countTrailingOnes()1261 unsigned countTrailingOnes() const {
1262 if (isSingleWord())
1263 return CountTrailingOnes_64(VAL);
1264 return countTrailingOnesSlowCase();
1265 }
1266
1267 /// countPopulation - This function is an APInt version of the
1268 /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1269 /// of 1 bits in the APInt value.
1270 /// @returns 0 if the value is zero, otherwise returns the number of set
1271 /// bits.
1272 /// @brief Count the number of bits set.
countPopulation()1273 unsigned countPopulation() const {
1274 if (isSingleWord())
1275 return CountPopulation_64(VAL);
1276 return countPopulationSlowCase();
1277 }
1278
1279 /// @}
1280 /// @name Conversion Functions
1281 /// @{
1282 void print(raw_ostream &OS, bool isSigned) const;
1283
1284 /// toString - Converts an APInt to a string and append it to Str. Str is
1285 /// commonly a SmallString.
1286 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1287 bool formatAsCLiteral = false) const;
1288
1289 /// Considers the APInt to be unsigned and converts it into a string in the
1290 /// radix given. The radix can be 2, 8, 10 16, or 36.
1291 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1292 toString(Str, Radix, false, false);
1293 }
1294
1295 /// Considers the APInt to be signed and converts it into a string in the
1296 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1297 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1298 toString(Str, Radix, true, false);
1299 }
1300
1301 /// toString - This returns the APInt as a std::string. Note that this is an
1302 /// inefficient method. It is better to pass in a SmallVector/SmallString
1303 /// to the methods above to avoid thrashing the heap for the string.
1304 std::string toString(unsigned Radix, bool Signed) const;
1305
1306
1307 /// @returns a byte-swapped representation of this APInt Value.
1308 APInt byteSwap() const;
1309
1310 /// @brief Converts this APInt to a double value.
1311 double roundToDouble(bool isSigned) const;
1312
1313 /// @brief Converts this unsigned APInt to a double value.
roundToDouble()1314 double roundToDouble() const {
1315 return roundToDouble(false);
1316 }
1317
1318 /// @brief Converts this signed APInt to a double value.
signedRoundToDouble()1319 double signedRoundToDouble() const {
1320 return roundToDouble(true);
1321 }
1322
1323 /// The conversion does not do a translation from integer to double, it just
1324 /// re-interprets the bits as a double. Note that it is valid to do this on
1325 /// any bit width. Exactly 64 bits will be translated.
1326 /// @brief Converts APInt bits to a double
bitsToDouble()1327 double bitsToDouble() const {
1328 union {
1329 uint64_t I;
1330 double D;
1331 } T;
1332 T.I = (isSingleWord() ? VAL : pVal[0]);
1333 return T.D;
1334 }
1335
1336 /// The conversion does not do a translation from integer to float, it just
1337 /// re-interprets the bits as a float. Note that it is valid to do this on
1338 /// any bit width. Exactly 32 bits will be translated.
1339 /// @brief Converts APInt bits to a double
bitsToFloat()1340 float bitsToFloat() const {
1341 union {
1342 unsigned I;
1343 float F;
1344 } T;
1345 T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1346 return T.F;
1347 }
1348
1349 /// The conversion does not do a translation from double to integer, it just
1350 /// re-interprets the bits of the double.
1351 /// @brief Converts a double to APInt bits.
doubleToBits(double V)1352 static APInt doubleToBits(double V) {
1353 union {
1354 uint64_t I;
1355 double D;
1356 } T;
1357 T.D = V;
1358 return APInt(sizeof T * CHAR_BIT, T.I);
1359 }
1360
1361 /// The conversion does not do a translation from float to integer, it just
1362 /// re-interprets the bits of the float.
1363 /// @brief Converts a float to APInt bits.
floatToBits(float V)1364 static APInt floatToBits(float V) {
1365 union {
1366 unsigned I;
1367 float F;
1368 } T;
1369 T.F = V;
1370 return APInt(sizeof T * CHAR_BIT, T.I);
1371 }
1372
1373 /// @}
1374 /// @name Mathematics Operations
1375 /// @{
1376
1377 /// @returns the floor log base 2 of this APInt.
logBase2()1378 unsigned logBase2() const {
1379 return BitWidth - 1 - countLeadingZeros();
1380 }
1381
1382 /// @returns the ceil log base 2 of this APInt.
ceilLogBase2()1383 unsigned ceilLogBase2() const {
1384 return BitWidth - (*this - 1).countLeadingZeros();
1385 }
1386
1387 /// @returns the log base 2 of this APInt if its an exact power of two, -1
1388 /// otherwise
exactLogBase2()1389 int32_t exactLogBase2() const {
1390 if (!isPowerOf2())
1391 return -1;
1392 return logBase2();
1393 }
1394
1395 /// @brief Compute the square root
1396 APInt sqrt() const;
1397
1398 /// If *this is < 0 then return -(*this), otherwise *this;
1399 /// @brief Get the absolute value;
abs()1400 APInt abs() const {
1401 if (isNegative())
1402 return -(*this);
1403 return *this;
1404 }
1405
1406 /// @returns the multiplicative inverse for a given modulo.
1407 APInt multiplicativeInverse(const APInt& modulo) const;
1408
1409 /// @}
1410 /// @name Support for division by constant
1411 /// @{
1412
1413 /// Calculate the magic number for signed division by a constant.
1414 struct ms;
1415 ms magic() const;
1416
1417 /// Calculate the magic number for unsigned division by a constant.
1418 struct mu;
1419 mu magicu(unsigned LeadingZeros = 0) const;
1420
1421 /// @}
1422 /// @name Building-block Operations for APInt and APFloat
1423 /// @{
1424
1425 // These building block operations operate on a representation of
1426 // arbitrary precision, two's-complement, bignum integer values.
1427 // They should be sufficient to implement APInt and APFloat bignum
1428 // requirements. Inputs are generally a pointer to the base of an
1429 // array of integer parts, representing an unsigned bignum, and a
1430 // count of how many parts there are.
1431
1432 /// Sets the least significant part of a bignum to the input value,
1433 /// and zeroes out higher parts. */
1434 static void tcSet(integerPart *, integerPart, unsigned int);
1435
1436 /// Assign one bignum to another.
1437 static void tcAssign(integerPart *, const integerPart *, unsigned int);
1438
1439 /// Returns true if a bignum is zero, false otherwise.
1440 static bool tcIsZero(const integerPart *, unsigned int);
1441
1442 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1443 static int tcExtractBit(const integerPart *, unsigned int bit);
1444
1445 /// Copy the bit vector of width srcBITS from SRC, starting at bit
1446 /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1447 /// becomes the least significant bit of DST. All high bits above
1448 /// srcBITS in DST are zero-filled.
1449 static void tcExtract(integerPart *, unsigned int dstCount,
1450 const integerPart *,
1451 unsigned int srcBits, unsigned int srcLSB);
1452
1453 /// Set the given bit of a bignum. Zero-based.
1454 static void tcSetBit(integerPart *, unsigned int bit);
1455
1456 /// Clear the given bit of a bignum. Zero-based.
1457 static void tcClearBit(integerPart *, unsigned int bit);
1458
1459 /// Returns the bit number of the least or most significant set bit
1460 /// of a number. If the input number has no bits set -1U is
1461 /// returned.
1462 static unsigned int tcLSB(const integerPart *, unsigned int);
1463 static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1464
1465 /// Negate a bignum in-place.
1466 static void tcNegate(integerPart *, unsigned int);
1467
1468 /// DST += RHS + CARRY where CARRY is zero or one. Returns the
1469 /// carry flag.
1470 static integerPart tcAdd(integerPart *, const integerPart *,
1471 integerPart carry, unsigned);
1472
1473 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the
1474 /// carry flag.
1475 static integerPart tcSubtract(integerPart *, const integerPart *,
1476 integerPart carry, unsigned);
1477
1478 /// DST += SRC * MULTIPLIER + PART if add is true
1479 /// DST = SRC * MULTIPLIER + PART if add is false
1480 ///
1481 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
1482 /// they must start at the same point, i.e. DST == SRC.
1483 ///
1484 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1485 /// returned. Otherwise DST is filled with the least significant
1486 /// DSTPARTS parts of the result, and if all of the omitted higher
1487 /// parts were zero return zero, otherwise overflow occurred and
1488 /// return one.
1489 static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1490 integerPart multiplier, integerPart carry,
1491 unsigned int srcParts, unsigned int dstParts,
1492 bool add);
1493
1494 /// DST = LHS * RHS, where DST has the same width as the operands
1495 /// and is filled with the least significant parts of the result.
1496 /// Returns one if overflow occurred, otherwise zero. DST must be
1497 /// disjoint from both operands.
1498 static int tcMultiply(integerPart *, const integerPart *,
1499 const integerPart *, unsigned);
1500
1501 /// DST = LHS * RHS, where DST has width the sum of the widths of
1502 /// the operands. No overflow occurs. DST must be disjoint from
1503 /// both operands. Returns the number of parts required to hold the
1504 /// result.
1505 static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1506 const integerPart *, unsigned, unsigned);
1507
1508 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1509 /// Otherwise set LHS to LHS / RHS with the fractional part
1510 /// discarded, set REMAINDER to the remainder, return zero. i.e.
1511 ///
1512 /// OLD_LHS = RHS * LHS + REMAINDER
1513 ///
1514 /// SCRATCH is a bignum of the same size as the operands and result
1515 /// for use by the routine; its contents need not be initialized
1516 /// and are destroyed. LHS, REMAINDER and SCRATCH must be
1517 /// distinct.
1518 static int tcDivide(integerPart *lhs, const integerPart *rhs,
1519 integerPart *remainder, integerPart *scratch,
1520 unsigned int parts);
1521
1522 /// Shift a bignum left COUNT bits. Shifted in bits are zero.
1523 /// There are no restrictions on COUNT.
1524 static void tcShiftLeft(integerPart *, unsigned int parts,
1525 unsigned int count);
1526
1527 /// Shift a bignum right COUNT bits. Shifted in bits are zero.
1528 /// There are no restrictions on COUNT.
1529 static void tcShiftRight(integerPart *, unsigned int parts,
1530 unsigned int count);
1531
1532 /// The obvious AND, OR and XOR and complement operations.
1533 static void tcAnd(integerPart *, const integerPart *, unsigned int);
1534 static void tcOr(integerPart *, const integerPart *, unsigned int);
1535 static void tcXor(integerPart *, const integerPart *, unsigned int);
1536 static void tcComplement(integerPart *, unsigned int);
1537
1538 /// Comparison (unsigned) of two bignums.
1539 static int tcCompare(const integerPart *, const integerPart *,
1540 unsigned int);
1541
1542 /// Increment a bignum in-place. Return the carry flag.
1543 static integerPart tcIncrement(integerPart *, unsigned int);
1544
1545 /// Set the least significant BITS and clear the rest.
1546 static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1547 unsigned int bits);
1548
1549 /// @brief debug method
1550 void dump() const;
1551
1552 /// @}
1553 };
1554
1555 /// Magic data for optimising signed division by a constant.
1556 struct APInt::ms {
1557 APInt m; ///< magic number
1558 unsigned s; ///< shift amount
1559 };
1560
1561 /// Magic data for optimising unsigned division by a constant.
1562 struct APInt::mu {
1563 APInt m; ///< magic number
1564 bool a; ///< add indicator
1565 unsigned s; ///< shift amount
1566 };
1567
1568 inline bool operator==(uint64_t V1, const APInt& V2) {
1569 return V2 == V1;
1570 }
1571
1572 inline bool operator!=(uint64_t V1, const APInt& V2) {
1573 return V2 != V1;
1574 }
1575
1576 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1577 I.print(OS, true);
1578 return OS;
1579 }
1580
1581 namespace APIntOps {
1582
1583 /// @brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1584 inline APInt smin(const APInt &A, const APInt &B) {
1585 return A.slt(B) ? A : B;
1586 }
1587
1588 /// @brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1589 inline APInt smax(const APInt &A, const APInt &B) {
1590 return A.sgt(B) ? A : B;
1591 }
1592
1593 /// @brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1594 inline APInt umin(const APInt &A, const APInt &B) {
1595 return A.ult(B) ? A : B;
1596 }
1597
1598 /// @brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1599 inline APInt umax(const APInt &A, const APInt &B) {
1600 return A.ugt(B) ? A : B;
1601 }
1602
1603 /// @brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1604 inline bool isIntN(unsigned N, const APInt& APIVal) {
1605 return APIVal.isIntN(N);
1606 }
1607
1608 /// @brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1609 inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1610 return APIVal.isSignedIntN(N);
1611 }
1612
1613 /// @returns true if the argument APInt value is a sequence of ones
1614 /// starting at the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1615 inline bool isMask(unsigned numBits, const APInt& APIVal) {
1616 return numBits <= APIVal.getBitWidth() &&
1617 APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1618 }
1619
1620 /// @returns true if the argument APInt value contains a sequence of ones
1621 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1622 inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1623 return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1624 }
1625
1626 /// @returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1627 inline APInt byteSwap(const APInt& APIVal) {
1628 return APIVal.byteSwap();
1629 }
1630
1631 /// @returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1632 inline unsigned logBase2(const APInt& APIVal) {
1633 return APIVal.logBase2();
1634 }
1635
1636 /// GreatestCommonDivisor - This function returns the greatest common
1637 /// divisor of the two APInt values using Euclid's algorithm.
1638 /// @returns the greatest common divisor of Val1 and Val2
1639 /// @brief Compute GCD of two APInt values.
1640 APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1641
1642 /// Treats the APInt as an unsigned value for conversion purposes.
1643 /// @brief Converts the given APInt to a double value.
RoundAPIntToDouble(const APInt & APIVal)1644 inline double RoundAPIntToDouble(const APInt& APIVal) {
1645 return APIVal.roundToDouble();
1646 }
1647
1648 /// Treats the APInt as a signed value for conversion purposes.
1649 /// @brief Converts the given APInt to a double value.
RoundSignedAPIntToDouble(const APInt & APIVal)1650 inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1651 return APIVal.signedRoundToDouble();
1652 }
1653
1654 /// @brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1655 inline float RoundAPIntToFloat(const APInt& APIVal) {
1656 return float(RoundAPIntToDouble(APIVal));
1657 }
1658
1659 /// Treast the APInt as a signed value for conversion purposes.
1660 /// @brief Converts the given APInt to a float value.
RoundSignedAPIntToFloat(const APInt & APIVal)1661 inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1662 return float(APIVal.signedRoundToDouble());
1663 }
1664
1665 /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1666 /// @brief Converts the given double value into a APInt.
1667 APInt RoundDoubleToAPInt(double Double, unsigned width);
1668
1669 /// RoundFloatToAPInt - Converts a float value into an APInt value.
1670 /// @brief Converts a float value into a APInt.
RoundFloatToAPInt(float Float,unsigned width)1671 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1672 return RoundDoubleToAPInt(double(Float), width);
1673 }
1674
1675 /// Arithmetic right-shift the APInt by shiftAmt.
1676 /// @brief Arithmetic right-shift function.
ashr(const APInt & LHS,unsigned shiftAmt)1677 inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1678 return LHS.ashr(shiftAmt);
1679 }
1680
1681 /// Logical right-shift the APInt by shiftAmt.
1682 /// @brief Logical right-shift function.
lshr(const APInt & LHS,unsigned shiftAmt)1683 inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1684 return LHS.lshr(shiftAmt);
1685 }
1686
1687 /// Left-shift the APInt by shiftAmt.
1688 /// @brief Left-shift function.
shl(const APInt & LHS,unsigned shiftAmt)1689 inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1690 return LHS.shl(shiftAmt);
1691 }
1692
1693 /// Signed divide APInt LHS by APInt RHS.
1694 /// @brief Signed division function for APInt.
sdiv(const APInt & LHS,const APInt & RHS)1695 inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1696 return LHS.sdiv(RHS);
1697 }
1698
1699 /// Unsigned divide APInt LHS by APInt RHS.
1700 /// @brief Unsigned division function for APInt.
udiv(const APInt & LHS,const APInt & RHS)1701 inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1702 return LHS.udiv(RHS);
1703 }
1704
1705 /// Signed remainder operation on APInt.
1706 /// @brief Function for signed remainder operation.
srem(const APInt & LHS,const APInt & RHS)1707 inline APInt srem(const APInt& LHS, const APInt& RHS) {
1708 return LHS.srem(RHS);
1709 }
1710
1711 /// Unsigned remainder operation on APInt.
1712 /// @brief Function for unsigned remainder operation.
urem(const APInt & LHS,const APInt & RHS)1713 inline APInt urem(const APInt& LHS, const APInt& RHS) {
1714 return LHS.urem(RHS);
1715 }
1716
1717 /// Performs multiplication on APInt values.
1718 /// @brief Function for multiplication operation.
mul(const APInt & LHS,const APInt & RHS)1719 inline APInt mul(const APInt& LHS, const APInt& RHS) {
1720 return LHS * RHS;
1721 }
1722
1723 /// Performs addition on APInt values.
1724 /// @brief Function for addition operation.
add(const APInt & LHS,const APInt & RHS)1725 inline APInt add(const APInt& LHS, const APInt& RHS) {
1726 return LHS + RHS;
1727 }
1728
1729 /// Performs subtraction on APInt values.
1730 /// @brief Function for subtraction operation.
sub(const APInt & LHS,const APInt & RHS)1731 inline APInt sub(const APInt& LHS, const APInt& RHS) {
1732 return LHS - RHS;
1733 }
1734
1735 /// Performs bitwise AND operation on APInt LHS and
1736 /// APInt RHS.
1737 /// @brief Bitwise AND function for APInt.
And(const APInt & LHS,const APInt & RHS)1738 inline APInt And(const APInt& LHS, const APInt& RHS) {
1739 return LHS & RHS;
1740 }
1741
1742 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
1743 /// @brief Bitwise OR function for APInt.
Or(const APInt & LHS,const APInt & RHS)1744 inline APInt Or(const APInt& LHS, const APInt& RHS) {
1745 return LHS | RHS;
1746 }
1747
1748 /// Performs bitwise XOR operation on APInt.
1749 /// @brief Bitwise XOR function for APInt.
Xor(const APInt & LHS,const APInt & RHS)1750 inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1751 return LHS ^ RHS;
1752 }
1753
1754 /// Performs a bitwise complement operation on APInt.
1755 /// @brief Bitwise complement function.
Not(const APInt & APIVal)1756 inline APInt Not(const APInt& APIVal) {
1757 return ~APIVal;
1758 }
1759
1760 } // End of APIntOps namespace
1761
1762 // See friend declaration above. This additional declaration is required in
1763 // order to compile LLVM with IBM xlC compiler.
1764 hash_code hash_value(const APInt &Arg);
1765 } // End of llvm namespace
1766
1767 #endif
1768