1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN2_SVD_H
11 #define EIGEN2_SVD_H
12
13 namespace Eigen {
14
15 /** \ingroup SVD_Module
16 * \nonstableyet
17 *
18 * \class SVD
19 *
20 * \brief Standard SVD decomposition of a matrix and associated features
21 *
22 * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
23 *
24 * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
25 * with \c M \>= \c N.
26 *
27 *
28 * \sa MatrixBase::SVD()
29 */
30 template<typename MatrixType> class SVD
31 {
32 private:
33 typedef typename MatrixType::Scalar Scalar;
34 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
35
36 enum {
37 PacketSize = internal::packet_traits<Scalar>::size,
38 AlignmentMask = int(PacketSize)-1,
39 MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
40 };
41
42 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
43 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
44
45 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
46 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
47 typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
48
49 public:
50
SVD()51 SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
52
SVD(const MatrixType & matrix)53 SVD(const MatrixType& matrix)
54 : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())),
55 m_matV(matrix.cols(),matrix.cols()),
56 m_sigma((std::min)(matrix.rows(),matrix.cols()))
57 {
58 compute(matrix);
59 }
60
61 template<typename OtherDerived, typename ResultType>
62 bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
63
matrixU()64 const MatrixUType& matrixU() const { return m_matU; }
singularValues()65 const SingularValuesType& singularValues() const { return m_sigma; }
matrixV()66 const MatrixVType& matrixV() const { return m_matV; }
67
68 void compute(const MatrixType& matrix);
69 SVD& sort();
70
71 template<typename UnitaryType, typename PositiveType>
72 void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
73 template<typename PositiveType, typename UnitaryType>
74 void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
75 template<typename RotationType, typename ScalingType>
76 void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
77 template<typename ScalingType, typename RotationType>
78 void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
79
80 protected:
81 /** \internal */
82 MatrixUType m_matU;
83 /** \internal */
84 MatrixVType m_matV;
85 /** \internal */
86 SingularValuesType m_sigma;
87 };
88
89 /** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
90 *
91 * \note this code has been adapted from JAMA (public domain)
92 */
93 template<typename MatrixType>
compute(const MatrixType & matrix)94 void SVD<MatrixType>::compute(const MatrixType& matrix)
95 {
96 const int m = matrix.rows();
97 const int n = matrix.cols();
98 const int nu = (std::min)(m,n);
99 ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
100 ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");
101
102 m_matU.resize(m, nu);
103 m_matU.setZero();
104 m_sigma.resize((std::min)(m,n));
105 m_matV.resize(n,n);
106
107 RowVector e(n);
108 ColVector work(m);
109 MatrixType matA(matrix);
110 const bool wantu = true;
111 const bool wantv = true;
112 int i=0, j=0, k=0;
113
114 // Reduce A to bidiagonal form, storing the diagonal elements
115 // in s and the super-diagonal elements in e.
116 int nct = (std::min)(m-1,n);
117 int nrt = (std::max)(0,(std::min)(n-2,m));
118 for (k = 0; k < (std::max)(nct,nrt); ++k)
119 {
120 if (k < nct)
121 {
122 // Compute the transformation for the k-th column and
123 // place the k-th diagonal in m_sigma[k].
124 m_sigma[k] = matA.col(k).end(m-k).norm();
125 if (m_sigma[k] != 0.0) // FIXME
126 {
127 if (matA(k,k) < 0.0)
128 m_sigma[k] = -m_sigma[k];
129 matA.col(k).end(m-k) /= m_sigma[k];
130 matA(k,k) += 1.0;
131 }
132 m_sigma[k] = -m_sigma[k];
133 }
134
135 for (j = k+1; j < n; ++j)
136 {
137 if ((k < nct) && (m_sigma[k] != 0.0))
138 {
139 // Apply the transformation.
140 Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
141 t = -t/matA(k,k);
142 matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
143 }
144
145 // Place the k-th row of A into e for the
146 // subsequent calculation of the row transformation.
147 e[j] = matA(k,j);
148 }
149
150 // Place the transformation in U for subsequent back multiplication.
151 if (wantu & (k < nct))
152 m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
153
154 if (k < nrt)
155 {
156 // Compute the k-th row transformation and place the
157 // k-th super-diagonal in e[k].
158 e[k] = e.end(n-k-1).norm();
159 if (e[k] != 0.0)
160 {
161 if (e[k+1] < 0.0)
162 e[k] = -e[k];
163 e.end(n-k-1) /= e[k];
164 e[k+1] += 1.0;
165 }
166 e[k] = -e[k];
167 if ((k+1 < m) & (e[k] != 0.0))
168 {
169 // Apply the transformation.
170 work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
171 for (j = k+1; j < n; ++j)
172 matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
173 }
174
175 // Place the transformation in V for subsequent back multiplication.
176 if (wantv)
177 m_matV.col(k).end(n-k-1) = e.end(n-k-1);
178 }
179 }
180
181
182 // Set up the final bidiagonal matrix or order p.
183 int p = (std::min)(n,m+1);
184 if (nct < n)
185 m_sigma[nct] = matA(nct,nct);
186 if (m < p)
187 m_sigma[p-1] = 0.0;
188 if (nrt+1 < p)
189 e[nrt] = matA(nrt,p-1);
190 e[p-1] = 0.0;
191
192 // If required, generate U.
193 if (wantu)
194 {
195 for (j = nct; j < nu; ++j)
196 {
197 m_matU.col(j).setZero();
198 m_matU(j,j) = 1.0;
199 }
200 for (k = nct-1; k >= 0; k--)
201 {
202 if (m_sigma[k] != 0.0)
203 {
204 for (j = k+1; j < nu; ++j)
205 {
206 Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
207 t = -t/m_matU(k,k);
208 m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
209 }
210 m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
211 m_matU(k,k) = Scalar(1) + m_matU(k,k);
212 if (k-1>0)
213 m_matU.col(k).start(k-1).setZero();
214 }
215 else
216 {
217 m_matU.col(k).setZero();
218 m_matU(k,k) = 1.0;
219 }
220 }
221 }
222
223 // If required, generate V.
224 if (wantv)
225 {
226 for (k = n-1; k >= 0; k--)
227 {
228 if ((k < nrt) & (e[k] != 0.0))
229 {
230 for (j = k+1; j < nu; ++j)
231 {
232 Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
233 t = -t/m_matV(k+1,k);
234 m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
235 }
236 }
237 m_matV.col(k).setZero();
238 m_matV(k,k) = 1.0;
239 }
240 }
241
242 // Main iteration loop for the singular values.
243 int pp = p-1;
244 int iter = 0;
245 Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
246 while (p > 0)
247 {
248 int k=0;
249 int kase=0;
250
251 // Here is where a test for too many iterations would go.
252
253 // This section of the program inspects for
254 // negligible elements in the s and e arrays. On
255 // completion the variables kase and k are set as follows.
256
257 // kase = 1 if s(p) and e[k-1] are negligible and k<p
258 // kase = 2 if s(k) is negligible and k<p
259 // kase = 3 if e[k-1] is negligible, k<p, and
260 // s(k), ..., s(p) are not negligible (qr step).
261 // kase = 4 if e(p-1) is negligible (convergence).
262
263 for (k = p-2; k >= -1; --k)
264 {
265 if (k == -1)
266 break;
267 if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
268 {
269 e[k] = 0.0;
270 break;
271 }
272 }
273 if (k == p-2)
274 {
275 kase = 4;
276 }
277 else
278 {
279 int ks;
280 for (ks = p-1; ks >= k; --ks)
281 {
282 if (ks == k)
283 break;
284 Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
285 if (ei_abs(m_sigma[ks]) <= eps*t)
286 {
287 m_sigma[ks] = 0.0;
288 break;
289 }
290 }
291 if (ks == k)
292 {
293 kase = 3;
294 }
295 else if (ks == p-1)
296 {
297 kase = 1;
298 }
299 else
300 {
301 kase = 2;
302 k = ks;
303 }
304 }
305 ++k;
306
307 // Perform the task indicated by kase.
308 switch (kase)
309 {
310
311 // Deflate negligible s(p).
312 case 1:
313 {
314 Scalar f(e[p-2]);
315 e[p-2] = 0.0;
316 for (j = p-2; j >= k; --j)
317 {
318 Scalar t(internal::hypot(m_sigma[j],f));
319 Scalar cs(m_sigma[j]/t);
320 Scalar sn(f/t);
321 m_sigma[j] = t;
322 if (j != k)
323 {
324 f = -sn*e[j-1];
325 e[j-1] = cs*e[j-1];
326 }
327 if (wantv)
328 {
329 for (i = 0; i < n; ++i)
330 {
331 t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
332 m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
333 m_matV(i,j) = t;
334 }
335 }
336 }
337 }
338 break;
339
340 // Split at negligible s(k).
341 case 2:
342 {
343 Scalar f(e[k-1]);
344 e[k-1] = 0.0;
345 for (j = k; j < p; ++j)
346 {
347 Scalar t(internal::hypot(m_sigma[j],f));
348 Scalar cs( m_sigma[j]/t);
349 Scalar sn(f/t);
350 m_sigma[j] = t;
351 f = -sn*e[j];
352 e[j] = cs*e[j];
353 if (wantu)
354 {
355 for (i = 0; i < m; ++i)
356 {
357 t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
358 m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
359 m_matU(i,j) = t;
360 }
361 }
362 }
363 }
364 break;
365
366 // Perform one qr step.
367 case 3:
368 {
369 // Calculate the shift.
370 Scalar scale = (std::max)((std::max)((std::max)((std::max)(
371 ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
372 ei_abs(m_sigma[k])),ei_abs(e[k]));
373 Scalar sp = m_sigma[p-1]/scale;
374 Scalar spm1 = m_sigma[p-2]/scale;
375 Scalar epm1 = e[p-2]/scale;
376 Scalar sk = m_sigma[k]/scale;
377 Scalar ek = e[k]/scale;
378 Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
379 Scalar c = (sp*epm1)*(sp*epm1);
380 Scalar shift(0);
381 if ((b != 0.0) || (c != 0.0))
382 {
383 shift = ei_sqrt(b*b + c);
384 if (b < 0.0)
385 shift = -shift;
386 shift = c/(b + shift);
387 }
388 Scalar f = (sk + sp)*(sk - sp) + shift;
389 Scalar g = sk*ek;
390
391 // Chase zeros.
392
393 for (j = k; j < p-1; ++j)
394 {
395 Scalar t = internal::hypot(f,g);
396 Scalar cs = f/t;
397 Scalar sn = g/t;
398 if (j != k)
399 e[j-1] = t;
400 f = cs*m_sigma[j] + sn*e[j];
401 e[j] = cs*e[j] - sn*m_sigma[j];
402 g = sn*m_sigma[j+1];
403 m_sigma[j+1] = cs*m_sigma[j+1];
404 if (wantv)
405 {
406 for (i = 0; i < n; ++i)
407 {
408 t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
409 m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
410 m_matV(i,j) = t;
411 }
412 }
413 t = internal::hypot(f,g);
414 cs = f/t;
415 sn = g/t;
416 m_sigma[j] = t;
417 f = cs*e[j] + sn*m_sigma[j+1];
418 m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
419 g = sn*e[j+1];
420 e[j+1] = cs*e[j+1];
421 if (wantu && (j < m-1))
422 {
423 for (i = 0; i < m; ++i)
424 {
425 t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
426 m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
427 m_matU(i,j) = t;
428 }
429 }
430 }
431 e[p-2] = f;
432 iter = iter + 1;
433 }
434 break;
435
436 // Convergence.
437 case 4:
438 {
439 // Make the singular values positive.
440 if (m_sigma[k] <= 0.0)
441 {
442 m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
443 if (wantv)
444 m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
445 }
446
447 // Order the singular values.
448 while (k < pp)
449 {
450 if (m_sigma[k] >= m_sigma[k+1])
451 break;
452 Scalar t = m_sigma[k];
453 m_sigma[k] = m_sigma[k+1];
454 m_sigma[k+1] = t;
455 if (wantv && (k < n-1))
456 m_matV.col(k).swap(m_matV.col(k+1));
457 if (wantu && (k < m-1))
458 m_matU.col(k).swap(m_matU.col(k+1));
459 ++k;
460 }
461 iter = 0;
462 p--;
463 }
464 break;
465 } // end big switch
466 } // end iterations
467 }
468
469 template<typename MatrixType>
sort()470 SVD<MatrixType>& SVD<MatrixType>::sort()
471 {
472 int mu = m_matU.rows();
473 int mv = m_matV.rows();
474 int n = m_matU.cols();
475
476 for (int i=0; i<n; ++i)
477 {
478 int k = i;
479 Scalar p = m_sigma.coeff(i);
480
481 for (int j=i+1; j<n; ++j)
482 {
483 if (m_sigma.coeff(j) > p)
484 {
485 k = j;
486 p = m_sigma.coeff(j);
487 }
488 }
489 if (k != i)
490 {
491 m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e.
492 m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements
493
494 int j = mu;
495 for(int s=0; j!=0; ++s, --j)
496 std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
497
498 j = mv;
499 for (int s=0; j!=0; ++s, --j)
500 std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
501 }
502 }
503 return *this;
504 }
505
506 /** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
507 * The parts of the solution corresponding to zero singular values are ignored.
508 *
509 * \sa MatrixBase::svd(), LU::solve(), LLT::solve()
510 */
511 template<typename MatrixType>
512 template<typename OtherDerived, typename ResultType>
solve(const MatrixBase<OtherDerived> & b,ResultType * result)513 bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
514 {
515 const int rows = m_matU.rows();
516 ei_assert(b.rows() == rows);
517
518 Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
519 for (int j=0; j<b.cols(); ++j)
520 {
521 Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
522
523 for (int i = 0; i <m_matU.cols(); ++i)
524 {
525 Scalar si = m_sigma.coeff(i);
526 if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
527 aux.coeffRef(i) = 0;
528 else
529 aux.coeffRef(i) /= si;
530 }
531
532 result->col(j) = m_matV * aux;
533 }
534 return true;
535 }
536
537 /** Computes the polar decomposition of the matrix, as a product unitary x positive.
538 *
539 * If either pointer is zero, the corresponding computation is skipped.
540 *
541 * Only for square matrices.
542 *
543 * \sa computePositiveUnitary(), computeRotationScaling()
544 */
545 template<typename MatrixType>
546 template<typename UnitaryType, typename PositiveType>
computeUnitaryPositive(UnitaryType * unitary,PositiveType * positive)547 void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
548 PositiveType *positive) const
549 {
550 ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
551 if(unitary) *unitary = m_matU * m_matV.adjoint();
552 if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
553 }
554
555 /** Computes the polar decomposition of the matrix, as a product positive x unitary.
556 *
557 * If either pointer is zero, the corresponding computation is skipped.
558 *
559 * Only for square matrices.
560 *
561 * \sa computeUnitaryPositive(), computeRotationScaling()
562 */
563 template<typename MatrixType>
564 template<typename UnitaryType, typename PositiveType>
computePositiveUnitary(UnitaryType * positive,PositiveType * unitary)565 void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
566 PositiveType *unitary) const
567 {
568 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
569 if(unitary) *unitary = m_matU * m_matV.adjoint();
570 if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
571 }
572
573 /** decomposes the matrix as a product rotation x scaling, the scaling being
574 * not necessarily positive.
575 *
576 * If either pointer is zero, the corresponding computation is skipped.
577 *
578 * This method requires the Geometry module.
579 *
580 * \sa computeScalingRotation(), computeUnitaryPositive()
581 */
582 template<typename MatrixType>
583 template<typename RotationType, typename ScalingType>
computeRotationScaling(RotationType * rotation,ScalingType * scaling)584 void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
585 {
586 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
587 Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
588 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
589 sv.coeffRef(0) *= x;
590 if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
591 if(rotation)
592 {
593 MatrixType m(m_matU);
594 m.col(0) /= x;
595 rotation->lazyAssign(m * m_matV.adjoint());
596 }
597 }
598
599 /** decomposes the matrix as a product scaling x rotation, the scaling being
600 * not necessarily positive.
601 *
602 * If either pointer is zero, the corresponding computation is skipped.
603 *
604 * This method requires the Geometry module.
605 *
606 * \sa computeRotationScaling(), computeUnitaryPositive()
607 */
608 template<typename MatrixType>
609 template<typename ScalingType, typename RotationType>
computeScalingRotation(ScalingType * scaling,RotationType * rotation)610 void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
611 {
612 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
613 Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
614 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
615 sv.coeffRef(0) *= x;
616 if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
617 if(rotation)
618 {
619 MatrixType m(m_matU);
620 m.col(0) /= x;
621 rotation->lazyAssign(m * m_matV.adjoint());
622 }
623 }
624
625
626 /** \svd_module
627 * \returns the SVD decomposition of \c *this
628 */
629 template<typename Derived>
630 inline SVD<typename MatrixBase<Derived>::PlainObject>
svd()631 MatrixBase<Derived>::svd() const
632 {
633 return SVD<PlainObject>(derived());
634 }
635
636 } // end namespace Eigen
637
638 #endif // EIGEN2_SVD_H
639