1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines ExprEngine's support for calls and returns.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "ExprEngine"
15
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/ParentMap.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Support/SaveAndRestore.h"
26
27 using namespace clang;
28 using namespace ento;
29
30 STATISTIC(NumOfDynamicDispatchPathSplits,
31 "The # of times we split the path due to imprecise dynamic dispatch info");
32
33 STATISTIC(NumInlinedCalls,
34 "The # of times we inlined a call");
35
36 STATISTIC(NumReachedInlineCountMax,
37 "The # of times we reached inline count maximum");
38
processCallEnter(CallEnter CE,ExplodedNode * Pred)39 void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
40 // Get the entry block in the CFG of the callee.
41 const StackFrameContext *calleeCtx = CE.getCalleeContext();
42 const CFG *CalleeCFG = calleeCtx->getCFG();
43 const CFGBlock *Entry = &(CalleeCFG->getEntry());
44
45 // Validate the CFG.
46 assert(Entry->empty());
47 assert(Entry->succ_size() == 1);
48
49 // Get the solitary sucessor.
50 const CFGBlock *Succ = *(Entry->succ_begin());
51
52 // Construct an edge representing the starting location in the callee.
53 BlockEdge Loc(Entry, Succ, calleeCtx);
54
55 ProgramStateRef state = Pred->getState();
56
57 // Construct a new node and add it to the worklist.
58 bool isNew;
59 ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
60 Node->addPredecessor(Pred, G);
61 if (isNew)
62 Engine.getWorkList()->enqueue(Node);
63 }
64
65 // Find the last statement on the path to the exploded node and the
66 // corresponding Block.
67 static std::pair<const Stmt*,
getLastStmt(const ExplodedNode * Node)68 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
69 const Stmt *S = 0;
70 const CFGBlock *Blk = 0;
71 const StackFrameContext *SF =
72 Node->getLocation().getLocationContext()->getCurrentStackFrame();
73
74 // Back up through the ExplodedGraph until we reach a statement node in this
75 // stack frame.
76 while (Node) {
77 const ProgramPoint &PP = Node->getLocation();
78
79 if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
80 if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
81 S = SP->getStmt();
82 break;
83 } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
84 S = CEE->getCalleeContext()->getCallSite();
85 if (S)
86 break;
87
88 // If there is no statement, this is an implicitly-generated call.
89 // We'll walk backwards over it and then continue the loop to find
90 // an actual statement.
91 Optional<CallEnter> CE;
92 do {
93 Node = Node->getFirstPred();
94 CE = Node->getLocationAs<CallEnter>();
95 } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
96
97 // Continue searching the graph.
98 } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
99 Blk = BE->getSrc();
100 }
101 } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
102 // If we reached the CallEnter for this function, it has no statements.
103 if (CE->getCalleeContext() == SF)
104 break;
105 }
106
107 if (Node->pred_empty())
108 return std::pair<const Stmt*, const CFGBlock*>((Stmt*)0, (CFGBlock*)0);
109
110 Node = *Node->pred_begin();
111 }
112
113 return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
114 }
115
116 /// Adjusts a return value when the called function's return type does not
117 /// match the caller's expression type. This can happen when a dynamic call
118 /// is devirtualized, and the overridding method has a covariant (more specific)
119 /// return type than the parent's method. For C++ objects, this means we need
120 /// to add base casts.
adjustReturnValue(SVal V,QualType ExpectedTy,QualType ActualTy,StoreManager & StoreMgr)121 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
122 StoreManager &StoreMgr) {
123 // For now, the only adjustments we handle apply only to locations.
124 if (!V.getAs<Loc>())
125 return V;
126
127 // If the types already match, don't do any unnecessary work.
128 ExpectedTy = ExpectedTy.getCanonicalType();
129 ActualTy = ActualTy.getCanonicalType();
130 if (ExpectedTy == ActualTy)
131 return V;
132
133 // No adjustment is needed between Objective-C pointer types.
134 if (ExpectedTy->isObjCObjectPointerType() &&
135 ActualTy->isObjCObjectPointerType())
136 return V;
137
138 // C++ object pointers may need "derived-to-base" casts.
139 const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
140 const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
141 if (ExpectedClass && ActualClass) {
142 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
143 /*DetectVirtual=*/false);
144 if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
145 !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
146 return StoreMgr.evalDerivedToBase(V, Paths.front());
147 }
148 }
149
150 // Unfortunately, Objective-C does not enforce that overridden methods have
151 // covariant return types, so we can't assert that that never happens.
152 // Be safe and return UnknownVal().
153 return UnknownVal();
154 }
155
removeDeadOnEndOfFunction(NodeBuilderContext & BC,ExplodedNode * Pred,ExplodedNodeSet & Dst)156 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
157 ExplodedNode *Pred,
158 ExplodedNodeSet &Dst) {
159 // Find the last statement in the function and the corresponding basic block.
160 const Stmt *LastSt = 0;
161 const CFGBlock *Blk = 0;
162 llvm::tie(LastSt, Blk) = getLastStmt(Pred);
163 if (!Blk || !LastSt) {
164 Dst.Add(Pred);
165 return;
166 }
167
168 // Here, we destroy the current location context. We use the current
169 // function's entire body as a diagnostic statement, with which the program
170 // point will be associated. However, we only want to use LastStmt as a
171 // reference for what to clean up if it's a ReturnStmt; otherwise, everything
172 // is dead.
173 SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
174 const LocationContext *LCtx = Pred->getLocationContext();
175 removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
176 LCtx->getAnalysisDeclContext()->getBody(),
177 ProgramPoint::PostStmtPurgeDeadSymbolsKind);
178 }
179
wasDifferentDeclUsedForInlining(CallEventRef<> Call,const StackFrameContext * calleeCtx)180 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
181 const StackFrameContext *calleeCtx) {
182 const Decl *RuntimeCallee = calleeCtx->getDecl();
183 const Decl *StaticDecl = Call->getDecl();
184 assert(RuntimeCallee);
185 if (!StaticDecl)
186 return true;
187 return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
188 }
189
190 /// Returns true if the CXXConstructExpr \p E was intended to construct a
191 /// prvalue for the region in \p V.
192 ///
193 /// Note that we can't just test for rvalue vs. glvalue because
194 /// CXXConstructExprs embedded in DeclStmts and initializers are considered
195 /// rvalues by the AST, and the analyzer would like to treat them as lvalues.
isTemporaryPRValue(const CXXConstructExpr * E,SVal V)196 static bool isTemporaryPRValue(const CXXConstructExpr *E, SVal V) {
197 if (E->isGLValue())
198 return false;
199
200 const MemRegion *MR = V.getAsRegion();
201 if (!MR)
202 return false;
203
204 return isa<CXXTempObjectRegion>(MR);
205 }
206
207 /// The call exit is simulated with a sequence of nodes, which occur between
208 /// CallExitBegin and CallExitEnd. The following operations occur between the
209 /// two program points:
210 /// 1. CallExitBegin (triggers the start of call exit sequence)
211 /// 2. Bind the return value
212 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
213 /// 4. CallExitEnd (switch to the caller context)
214 /// 5. PostStmt<CallExpr>
processCallExit(ExplodedNode * CEBNode)215 void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
216 // Step 1 CEBNode was generated before the call.
217
218 const StackFrameContext *calleeCtx =
219 CEBNode->getLocationContext()->getCurrentStackFrame();
220
221 // The parent context might not be a stack frame, so make sure we
222 // look up the first enclosing stack frame.
223 const StackFrameContext *callerCtx =
224 calleeCtx->getParent()->getCurrentStackFrame();
225
226 const Stmt *CE = calleeCtx->getCallSite();
227 ProgramStateRef state = CEBNode->getState();
228 // Find the last statement in the function and the corresponding basic block.
229 const Stmt *LastSt = 0;
230 const CFGBlock *Blk = 0;
231 llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
232
233 // Generate a CallEvent /before/ cleaning the state, so that we can get the
234 // correct value for 'this' (if necessary).
235 CallEventManager &CEMgr = getStateManager().getCallEventManager();
236 CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
237
238 // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
239
240 // If the callee returns an expression, bind its value to CallExpr.
241 if (CE) {
242 if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
243 const LocationContext *LCtx = CEBNode->getLocationContext();
244 SVal V = state->getSVal(RS, LCtx);
245
246 // Ensure that the return type matches the type of the returned Expr.
247 if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
248 QualType ReturnedTy =
249 CallEvent::getDeclaredResultType(calleeCtx->getDecl());
250 if (!ReturnedTy.isNull()) {
251 if (const Expr *Ex = dyn_cast<Expr>(CE)) {
252 V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
253 getStoreManager());
254 }
255 }
256 }
257
258 state = state->BindExpr(CE, callerCtx, V);
259 }
260
261 // Bind the constructed object value to CXXConstructExpr.
262 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
263 loc::MemRegionVal This =
264 svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
265 SVal ThisV = state->getSVal(This);
266
267 // If the constructed object is a temporary prvalue, get its bindings.
268 if (isTemporaryPRValue(CCE, ThisV))
269 ThisV = state->getSVal(ThisV.castAs<Loc>());
270
271 state = state->BindExpr(CCE, callerCtx, ThisV);
272 }
273 }
274
275 // Step 3: BindedRetNode -> CleanedNodes
276 // If we can find a statement and a block in the inlined function, run remove
277 // dead bindings before returning from the call. This is important to ensure
278 // that we report the issues such as leaks in the stack contexts in which
279 // they occurred.
280 ExplodedNodeSet CleanedNodes;
281 if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
282 static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
283 PostStmt Loc(LastSt, calleeCtx, &retValBind);
284 bool isNew;
285 ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
286 BindedRetNode->addPredecessor(CEBNode, G);
287 if (!isNew)
288 return;
289
290 NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
291 currBldrCtx = &Ctx;
292 // Here, we call the Symbol Reaper with 0 statement and callee location
293 // context, telling it to clean up everything in the callee's context
294 // (and its children). We use the callee's function body as a diagnostic
295 // statement, with which the program point will be associated.
296 removeDead(BindedRetNode, CleanedNodes, 0, calleeCtx,
297 calleeCtx->getAnalysisDeclContext()->getBody(),
298 ProgramPoint::PostStmtPurgeDeadSymbolsKind);
299 currBldrCtx = 0;
300 } else {
301 CleanedNodes.Add(CEBNode);
302 }
303
304 for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
305 E = CleanedNodes.end(); I != E; ++I) {
306
307 // Step 4: Generate the CallExit and leave the callee's context.
308 // CleanedNodes -> CEENode
309 CallExitEnd Loc(calleeCtx, callerCtx);
310 bool isNew;
311 ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
312 ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
313 CEENode->addPredecessor(*I, G);
314 if (!isNew)
315 return;
316
317 // Step 5: Perform the post-condition check of the CallExpr and enqueue the
318 // result onto the work list.
319 // CEENode -> Dst -> WorkList
320 NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
321 SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
322 &Ctx);
323 SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
324
325 CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
326
327 ExplodedNodeSet DstPostCall;
328 getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
329 *UpdatedCall, *this,
330 /*WasInlined=*/true);
331
332 ExplodedNodeSet Dst;
333 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
334 getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
335 *this,
336 /*WasInlined=*/true);
337 } else if (CE) {
338 getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
339 *this, /*WasInlined=*/true);
340 } else {
341 Dst.insert(DstPostCall);
342 }
343
344 // Enqueue the next element in the block.
345 for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
346 PSI != PSE; ++PSI) {
347 Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
348 calleeCtx->getIndex()+1);
349 }
350 }
351 }
352
examineStackFrames(const Decl * D,const LocationContext * LCtx,bool & IsRecursive,unsigned & StackDepth)353 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
354 bool &IsRecursive, unsigned &StackDepth) {
355 IsRecursive = false;
356 StackDepth = 0;
357
358 while (LCtx) {
359 if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
360 const Decl *DI = SFC->getDecl();
361
362 // Mark recursive (and mutually recursive) functions and always count
363 // them when measuring the stack depth.
364 if (DI == D) {
365 IsRecursive = true;
366 ++StackDepth;
367 LCtx = LCtx->getParent();
368 continue;
369 }
370
371 // Do not count the small functions when determining the stack depth.
372 AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
373 const CFG *CalleeCFG = CalleeADC->getCFG();
374 if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
375 ++StackDepth;
376 }
377 LCtx = LCtx->getParent();
378 }
379
380 }
381
IsInStdNamespace(const FunctionDecl * FD)382 static bool IsInStdNamespace(const FunctionDecl *FD) {
383 const DeclContext *DC = FD->getEnclosingNamespaceContext();
384 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
385 if (!ND)
386 return false;
387
388 while (const DeclContext *Parent = ND->getParent()) {
389 if (!isa<NamespaceDecl>(Parent))
390 break;
391 ND = cast<NamespaceDecl>(Parent);
392 }
393
394 return ND->getName() == "std";
395 }
396
397 // The GDM component containing the dynamic dispatch bifurcation info. When
398 // the exact type of the receiver is not known, we want to explore both paths -
399 // one on which we do inline it and the other one on which we don't. This is
400 // done to ensure we do not drop coverage.
401 // This is the map from the receiver region to a bool, specifying either we
402 // consider this region's information precise or not along the given path.
403 namespace {
404 enum DynamicDispatchMode {
405 DynamicDispatchModeInlined = 1,
406 DynamicDispatchModeConservative
407 };
408 }
REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,CLANG_ENTO_PROGRAMSTATE_MAP (const MemRegion *,unsigned))409 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
410 CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
411 unsigned))
412
413 bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
414 NodeBuilder &Bldr, ExplodedNode *Pred,
415 ProgramStateRef State) {
416 assert(D);
417
418 const LocationContext *CurLC = Pred->getLocationContext();
419 const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
420 const LocationContext *ParentOfCallee = CallerSFC;
421 if (Call.getKind() == CE_Block) {
422 const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
423 assert(BR && "If we have the block definition we should have its region");
424 AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
425 ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
426 cast<BlockDecl>(D),
427 BR);
428 }
429
430 // This may be NULL, but that's fine.
431 const Expr *CallE = Call.getOriginExpr();
432
433 // Construct a new stack frame for the callee.
434 AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
435 const StackFrameContext *CalleeSFC =
436 CalleeADC->getStackFrame(ParentOfCallee, CallE,
437 currBldrCtx->getBlock(),
438 currStmtIdx);
439
440
441 CallEnter Loc(CallE, CalleeSFC, CurLC);
442
443 // Construct a new state which contains the mapping from actual to
444 // formal arguments.
445 State = State->enterStackFrame(Call, CalleeSFC);
446
447 bool isNew;
448 if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
449 N->addPredecessor(Pred, G);
450 if (isNew)
451 Engine.getWorkList()->enqueue(N);
452 }
453
454 // If we decided to inline the call, the successor has been manually
455 // added onto the work list so remove it from the node builder.
456 Bldr.takeNodes(Pred);
457
458 NumInlinedCalls++;
459
460 // Mark the decl as visited.
461 if (VisitedCallees)
462 VisitedCallees->insert(D);
463
464 return true;
465 }
466
getInlineFailedState(ProgramStateRef State,const Stmt * CallE)467 static ProgramStateRef getInlineFailedState(ProgramStateRef State,
468 const Stmt *CallE) {
469 const void *ReplayState = State->get<ReplayWithoutInlining>();
470 if (!ReplayState)
471 return 0;
472
473 assert(ReplayState == CallE && "Backtracked to the wrong call.");
474 (void)CallE;
475
476 return State->remove<ReplayWithoutInlining>();
477 }
478
VisitCallExpr(const CallExpr * CE,ExplodedNode * Pred,ExplodedNodeSet & dst)479 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
480 ExplodedNodeSet &dst) {
481 // Perform the previsit of the CallExpr.
482 ExplodedNodeSet dstPreVisit;
483 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
484
485 // Get the call in its initial state. We use this as a template to perform
486 // all the checks.
487 CallEventManager &CEMgr = getStateManager().getCallEventManager();
488 CallEventRef<> CallTemplate
489 = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
490
491 // Evaluate the function call. We try each of the checkers
492 // to see if the can evaluate the function call.
493 ExplodedNodeSet dstCallEvaluated;
494 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
495 I != E; ++I) {
496 evalCall(dstCallEvaluated, *I, *CallTemplate);
497 }
498
499 // Finally, perform the post-condition check of the CallExpr and store
500 // the created nodes in 'Dst'.
501 // Note that if the call was inlined, dstCallEvaluated will be empty.
502 // The post-CallExpr check will occur in processCallExit.
503 getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
504 *this);
505 }
506
evalCall(ExplodedNodeSet & Dst,ExplodedNode * Pred,const CallEvent & Call)507 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
508 const CallEvent &Call) {
509 // WARNING: At this time, the state attached to 'Call' may be older than the
510 // state in 'Pred'. This is a minor optimization since CheckerManager will
511 // use an updated CallEvent instance when calling checkers, but if 'Call' is
512 // ever used directly in this function all callers should be updated to pass
513 // the most recent state. (It is probably not worth doing the work here since
514 // for some callers this will not be necessary.)
515
516 // Run any pre-call checks using the generic call interface.
517 ExplodedNodeSet dstPreVisit;
518 getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
519
520 // Actually evaluate the function call. We try each of the checkers
521 // to see if the can evaluate the function call, and get a callback at
522 // defaultEvalCall if all of them fail.
523 ExplodedNodeSet dstCallEvaluated;
524 getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
525 Call, *this);
526
527 // Finally, run any post-call checks.
528 getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
529 Call, *this);
530 }
531
bindReturnValue(const CallEvent & Call,const LocationContext * LCtx,ProgramStateRef State)532 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
533 const LocationContext *LCtx,
534 ProgramStateRef State) {
535 const Expr *E = Call.getOriginExpr();
536 if (!E)
537 return State;
538
539 // Some method families have known return values.
540 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
541 switch (Msg->getMethodFamily()) {
542 default:
543 break;
544 case OMF_autorelease:
545 case OMF_retain:
546 case OMF_self: {
547 // These methods return their receivers.
548 return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
549 }
550 }
551 } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
552 SVal ThisV = C->getCXXThisVal();
553
554 // If the constructed object is a temporary prvalue, get its bindings.
555 if (isTemporaryPRValue(cast<CXXConstructExpr>(E), ThisV))
556 ThisV = State->getSVal(ThisV.castAs<Loc>());
557
558 return State->BindExpr(E, LCtx, ThisV);
559 }
560
561 // Conjure a symbol if the return value is unknown.
562 QualType ResultTy = Call.getResultType();
563 SValBuilder &SVB = getSValBuilder();
564 unsigned Count = currBldrCtx->blockCount();
565 SVal R = SVB.conjureSymbolVal(0, E, LCtx, ResultTy, Count);
566 return State->BindExpr(E, LCtx, R);
567 }
568
569 // Conservatively evaluate call by invalidating regions and binding
570 // a conjured return value.
conservativeEvalCall(const CallEvent & Call,NodeBuilder & Bldr,ExplodedNode * Pred,ProgramStateRef State)571 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
572 ExplodedNode *Pred,
573 ProgramStateRef State) {
574 State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
575 State = bindReturnValue(Call, Pred->getLocationContext(), State);
576
577 // And make the result node.
578 Bldr.generateNode(Call.getProgramPoint(), State, Pred);
579 }
580
shouldInlineCallKind(const CallEvent & Call,const ExplodedNode * Pred,AnalyzerOptions & Opts)581 static bool shouldInlineCallKind(const CallEvent &Call,
582 const ExplodedNode *Pred,
583 AnalyzerOptions &Opts) {
584 const LocationContext *CurLC = Pred->getLocationContext();
585 const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
586 switch (Call.getKind()) {
587 case CE_Function:
588 case CE_Block:
589 break;
590 case CE_CXXMember:
591 case CE_CXXMemberOperator:
592 if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
593 return false;
594 break;
595 case CE_CXXConstructor: {
596 if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
597 return false;
598
599 const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
600
601 // FIXME: We don't handle constructors or destructors for arrays properly.
602 const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
603 if (Target && isa<ElementRegion>(Target))
604 return false;
605
606 // FIXME: This is a hack. We don't use the correct region for a new
607 // expression, so if we inline the constructor its result will just be
608 // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
609 // and the longer-term possible fix is discussed in PR12014.
610 const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
611 if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
612 if (isa<CXXNewExpr>(Parent))
613 return false;
614
615 // Inlining constructors requires including initializers in the CFG.
616 const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
617 assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
618 (void)ADC;
619
620 // If the destructor is trivial, it's always safe to inline the constructor.
621 if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
622 break;
623
624 // For other types, only inline constructors if destructor inlining is
625 // also enabled.
626 if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
627 return false;
628
629 // FIXME: This is a hack. We don't handle temporary destructors
630 // right now, so we shouldn't inline their constructors.
631 if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
632 if (!Target || !isa<DeclRegion>(Target))
633 return false;
634
635 break;
636 }
637 case CE_CXXDestructor: {
638 if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
639 return false;
640
641 // Inlining destructors requires building the CFG correctly.
642 const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
643 assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
644 (void)ADC;
645
646 const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
647
648 // FIXME: We don't handle constructors or destructors for arrays properly.
649 const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
650 if (Target && isa<ElementRegion>(Target))
651 return false;
652
653 break;
654 }
655 case CE_CXXAllocator:
656 // Do not inline allocators until we model deallocators.
657 // This is unfortunate, but basically necessary for smart pointers and such.
658 return false;
659 case CE_ObjCMessage:
660 if (!Opts.mayInlineObjCMethod())
661 return false;
662 if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
663 Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
664 return false;
665 break;
666 }
667 return true;
668 }
669
shouldInlineCall(const CallEvent & Call,const Decl * D,const ExplodedNode * Pred)670 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
671 const ExplodedNode *Pred) {
672 if (!D)
673 return false;
674
675 AnalysisManager &AMgr = getAnalysisManager();
676 AnalyzerOptions &Opts = AMgr.options;
677 AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
678 AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
679
680 // The auto-synthesized bodies are essential to inline as they are
681 // usually small and commonly used. Note: we should do this check early on to
682 // ensure we always inline these calls.
683 if (CalleeADC->isBodyAutosynthesized())
684 return true;
685
686 if (HowToInline == Inline_None)
687 return false;
688
689 // Check if we should inline a call based on its kind.
690 if (!shouldInlineCallKind(Call, Pred, Opts))
691 return false;
692
693 // It is possible that the CFG cannot be constructed.
694 // Be safe, and check if the CalleeCFG is valid.
695 const CFG *CalleeCFG = CalleeADC->getCFG();
696 if (!CalleeCFG)
697 return false;
698
699 // Do not inline if recursive or we've reached max stack frame count.
700 bool IsRecursive = false;
701 unsigned StackDepth = 0;
702 examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
703 if ((StackDepth >= Opts.InlineMaxStackDepth) &&
704 ((CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize())
705 || IsRecursive))
706 return false;
707
708 // Do not inline if it took too long to inline previously.
709 if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
710 return false;
711
712 // Or if the function is too big.
713 if (CalleeCFG->getNumBlockIDs() > Opts.getMaxInlinableSize())
714 return false;
715
716 // Do not inline variadic calls (for now).
717 if (Call.isVariadic())
718 return false;
719
720 // Check our template policy.
721 if (getContext().getLangOpts().CPlusPlus) {
722 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
723 // Conditionally allow the inlining of template functions.
724 if (!Opts.mayInlineTemplateFunctions())
725 if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
726 return false;
727
728 // Conditionally allow the inlining of C++ standard library functions.
729 if (!Opts.mayInlineCXXStandardLibrary())
730 if (getContext().getSourceManager().isInSystemHeader(FD->getLocation()))
731 if (IsInStdNamespace(FD))
732 return false;
733 }
734 }
735
736 // It is possible that the live variables analysis cannot be
737 // run. If so, bail out.
738 if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
739 return false;
740
741 // Do not inline large functions too many times.
742 if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
743 Opts.getMaxTimesInlineLarge()) &&
744 CalleeCFG->getNumBlockIDs() > 13) {
745 NumReachedInlineCountMax++;
746 return false;
747 }
748 Engine.FunctionSummaries->bumpNumTimesInlined(D);
749
750 return true;
751 }
752
isTrivialObjectAssignment(const CallEvent & Call)753 static bool isTrivialObjectAssignment(const CallEvent &Call) {
754 const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
755 if (!ICall)
756 return false;
757
758 const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
759 if (!MD)
760 return false;
761 if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
762 return false;
763
764 return MD->isTrivial();
765 }
766
defaultEvalCall(NodeBuilder & Bldr,ExplodedNode * Pred,const CallEvent & CallTemplate)767 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
768 const CallEvent &CallTemplate) {
769 // Make sure we have the most recent state attached to the call.
770 ProgramStateRef State = Pred->getState();
771 CallEventRef<> Call = CallTemplate.cloneWithState(State);
772
773 // Special-case trivial assignment operators.
774 if (isTrivialObjectAssignment(*Call)) {
775 performTrivialCopy(Bldr, Pred, *Call);
776 return;
777 }
778
779 // Try to inline the call.
780 // The origin expression here is just used as a kind of checksum;
781 // this should still be safe even for CallEvents that don't come from exprs.
782 const Expr *E = Call->getOriginExpr();
783
784 ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
785 if (InlinedFailedState) {
786 // If we already tried once and failed, make sure we don't retry later.
787 State = InlinedFailedState;
788 } else {
789 RuntimeDefinition RD = Call->getRuntimeDefinition();
790 const Decl *D = RD.getDecl();
791 if (shouldInlineCall(*Call, D, Pred)) {
792 if (RD.mayHaveOtherDefinitions()) {
793 AnalyzerOptions &Options = getAnalysisManager().options;
794
795 // Explore with and without inlining the call.
796 if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
797 BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
798 return;
799 }
800
801 // Don't inline if we're not in any dynamic dispatch mode.
802 if (Options.getIPAMode() != IPAK_DynamicDispatch) {
803 conservativeEvalCall(*Call, Bldr, Pred, State);
804 return;
805 }
806 }
807
808 // We are not bifurcating and we do have a Decl, so just inline.
809 if (inlineCall(*Call, D, Bldr, Pred, State))
810 return;
811 }
812 }
813
814 // If we can't inline it, handle the return value and invalidate the regions.
815 conservativeEvalCall(*Call, Bldr, Pred, State);
816 }
817
BifurcateCall(const MemRegion * BifurReg,const CallEvent & Call,const Decl * D,NodeBuilder & Bldr,ExplodedNode * Pred)818 void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
819 const CallEvent &Call, const Decl *D,
820 NodeBuilder &Bldr, ExplodedNode *Pred) {
821 assert(BifurReg);
822 BifurReg = BifurReg->StripCasts();
823
824 // Check if we've performed the split already - note, we only want
825 // to split the path once per memory region.
826 ProgramStateRef State = Pred->getState();
827 const unsigned *BState =
828 State->get<DynamicDispatchBifurcationMap>(BifurReg);
829 if (BState) {
830 // If we are on "inline path", keep inlining if possible.
831 if (*BState == DynamicDispatchModeInlined)
832 if (inlineCall(Call, D, Bldr, Pred, State))
833 return;
834 // If inline failed, or we are on the path where we assume we
835 // don't have enough info about the receiver to inline, conjure the
836 // return value and invalidate the regions.
837 conservativeEvalCall(Call, Bldr, Pred, State);
838 return;
839 }
840
841 // If we got here, this is the first time we process a message to this
842 // region, so split the path.
843 ProgramStateRef IState =
844 State->set<DynamicDispatchBifurcationMap>(BifurReg,
845 DynamicDispatchModeInlined);
846 inlineCall(Call, D, Bldr, Pred, IState);
847
848 ProgramStateRef NoIState =
849 State->set<DynamicDispatchBifurcationMap>(BifurReg,
850 DynamicDispatchModeConservative);
851 conservativeEvalCall(Call, Bldr, Pred, NoIState);
852
853 NumOfDynamicDispatchPathSplits++;
854 return;
855 }
856
857
VisitReturnStmt(const ReturnStmt * RS,ExplodedNode * Pred,ExplodedNodeSet & Dst)858 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
859 ExplodedNodeSet &Dst) {
860
861 ExplodedNodeSet dstPreVisit;
862 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
863
864 StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
865
866 if (RS->getRetValue()) {
867 for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
868 ei = dstPreVisit.end(); it != ei; ++it) {
869 B.generateNode(RS, *it, (*it)->getState());
870 }
871 }
872 }
873