• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines ExprEngine's support for calls and returns.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "ExprEngine"
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/ParentMap.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Support/SaveAndRestore.h"
26 
27 using namespace clang;
28 using namespace ento;
29 
30 STATISTIC(NumOfDynamicDispatchPathSplits,
31   "The # of times we split the path due to imprecise dynamic dispatch info");
32 
33 STATISTIC(NumInlinedCalls,
34   "The # of times we inlined a call");
35 
36 STATISTIC(NumReachedInlineCountMax,
37   "The # of times we reached inline count maximum");
38 
processCallEnter(CallEnter CE,ExplodedNode * Pred)39 void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
40   // Get the entry block in the CFG of the callee.
41   const StackFrameContext *calleeCtx = CE.getCalleeContext();
42   const CFG *CalleeCFG = calleeCtx->getCFG();
43   const CFGBlock *Entry = &(CalleeCFG->getEntry());
44 
45   // Validate the CFG.
46   assert(Entry->empty());
47   assert(Entry->succ_size() == 1);
48 
49   // Get the solitary sucessor.
50   const CFGBlock *Succ = *(Entry->succ_begin());
51 
52   // Construct an edge representing the starting location in the callee.
53   BlockEdge Loc(Entry, Succ, calleeCtx);
54 
55   ProgramStateRef state = Pred->getState();
56 
57   // Construct a new node and add it to the worklist.
58   bool isNew;
59   ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
60   Node->addPredecessor(Pred, G);
61   if (isNew)
62     Engine.getWorkList()->enqueue(Node);
63 }
64 
65 // Find the last statement on the path to the exploded node and the
66 // corresponding Block.
67 static std::pair<const Stmt*,
getLastStmt(const ExplodedNode * Node)68                  const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
69   const Stmt *S = 0;
70   const CFGBlock *Blk = 0;
71   const StackFrameContext *SF =
72           Node->getLocation().getLocationContext()->getCurrentStackFrame();
73 
74   // Back up through the ExplodedGraph until we reach a statement node in this
75   // stack frame.
76   while (Node) {
77     const ProgramPoint &PP = Node->getLocation();
78 
79     if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
80       if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
81         S = SP->getStmt();
82         break;
83       } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
84         S = CEE->getCalleeContext()->getCallSite();
85         if (S)
86           break;
87 
88         // If there is no statement, this is an implicitly-generated call.
89         // We'll walk backwards over it and then continue the loop to find
90         // an actual statement.
91         Optional<CallEnter> CE;
92         do {
93           Node = Node->getFirstPred();
94           CE = Node->getLocationAs<CallEnter>();
95         } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
96 
97         // Continue searching the graph.
98       } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
99         Blk = BE->getSrc();
100       }
101     } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
102       // If we reached the CallEnter for this function, it has no statements.
103       if (CE->getCalleeContext() == SF)
104         break;
105     }
106 
107     if (Node->pred_empty())
108       return std::pair<const Stmt*, const CFGBlock*>((Stmt*)0, (CFGBlock*)0);
109 
110     Node = *Node->pred_begin();
111   }
112 
113   return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
114 }
115 
116 /// Adjusts a return value when the called function's return type does not
117 /// match the caller's expression type. This can happen when a dynamic call
118 /// is devirtualized, and the overridding method has a covariant (more specific)
119 /// return type than the parent's method. For C++ objects, this means we need
120 /// to add base casts.
adjustReturnValue(SVal V,QualType ExpectedTy,QualType ActualTy,StoreManager & StoreMgr)121 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
122                               StoreManager &StoreMgr) {
123   // For now, the only adjustments we handle apply only to locations.
124   if (!V.getAs<Loc>())
125     return V;
126 
127   // If the types already match, don't do any unnecessary work.
128   ExpectedTy = ExpectedTy.getCanonicalType();
129   ActualTy = ActualTy.getCanonicalType();
130   if (ExpectedTy == ActualTy)
131     return V;
132 
133   // No adjustment is needed between Objective-C pointer types.
134   if (ExpectedTy->isObjCObjectPointerType() &&
135       ActualTy->isObjCObjectPointerType())
136     return V;
137 
138   // C++ object pointers may need "derived-to-base" casts.
139   const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
140   const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
141   if (ExpectedClass && ActualClass) {
142     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
143                        /*DetectVirtual=*/false);
144     if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
145         !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
146       return StoreMgr.evalDerivedToBase(V, Paths.front());
147     }
148   }
149 
150   // Unfortunately, Objective-C does not enforce that overridden methods have
151   // covariant return types, so we can't assert that that never happens.
152   // Be safe and return UnknownVal().
153   return UnknownVal();
154 }
155 
removeDeadOnEndOfFunction(NodeBuilderContext & BC,ExplodedNode * Pred,ExplodedNodeSet & Dst)156 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
157                                            ExplodedNode *Pred,
158                                            ExplodedNodeSet &Dst) {
159   // Find the last statement in the function and the corresponding basic block.
160   const Stmt *LastSt = 0;
161   const CFGBlock *Blk = 0;
162   llvm::tie(LastSt, Blk) = getLastStmt(Pred);
163   if (!Blk || !LastSt) {
164     Dst.Add(Pred);
165     return;
166   }
167 
168   // Here, we destroy the current location context. We use the current
169   // function's entire body as a diagnostic statement, with which the program
170   // point will be associated. However, we only want to use LastStmt as a
171   // reference for what to clean up if it's a ReturnStmt; otherwise, everything
172   // is dead.
173   SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
174   const LocationContext *LCtx = Pred->getLocationContext();
175   removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
176              LCtx->getAnalysisDeclContext()->getBody(),
177              ProgramPoint::PostStmtPurgeDeadSymbolsKind);
178 }
179 
wasDifferentDeclUsedForInlining(CallEventRef<> Call,const StackFrameContext * calleeCtx)180 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
181     const StackFrameContext *calleeCtx) {
182   const Decl *RuntimeCallee = calleeCtx->getDecl();
183   const Decl *StaticDecl = Call->getDecl();
184   assert(RuntimeCallee);
185   if (!StaticDecl)
186     return true;
187   return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
188 }
189 
190 /// Returns true if the CXXConstructExpr \p E was intended to construct a
191 /// prvalue for the region in \p V.
192 ///
193 /// Note that we can't just test for rvalue vs. glvalue because
194 /// CXXConstructExprs embedded in DeclStmts and initializers are considered
195 /// rvalues by the AST, and the analyzer would like to treat them as lvalues.
isTemporaryPRValue(const CXXConstructExpr * E,SVal V)196 static bool isTemporaryPRValue(const CXXConstructExpr *E, SVal V) {
197   if (E->isGLValue())
198     return false;
199 
200   const MemRegion *MR = V.getAsRegion();
201   if (!MR)
202     return false;
203 
204   return isa<CXXTempObjectRegion>(MR);
205 }
206 
207 /// The call exit is simulated with a sequence of nodes, which occur between
208 /// CallExitBegin and CallExitEnd. The following operations occur between the
209 /// two program points:
210 /// 1. CallExitBegin (triggers the start of call exit sequence)
211 /// 2. Bind the return value
212 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
213 /// 4. CallExitEnd (switch to the caller context)
214 /// 5. PostStmt<CallExpr>
processCallExit(ExplodedNode * CEBNode)215 void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
216   // Step 1 CEBNode was generated before the call.
217 
218   const StackFrameContext *calleeCtx =
219       CEBNode->getLocationContext()->getCurrentStackFrame();
220 
221   // The parent context might not be a stack frame, so make sure we
222   // look up the first enclosing stack frame.
223   const StackFrameContext *callerCtx =
224     calleeCtx->getParent()->getCurrentStackFrame();
225 
226   const Stmt *CE = calleeCtx->getCallSite();
227   ProgramStateRef state = CEBNode->getState();
228   // Find the last statement in the function and the corresponding basic block.
229   const Stmt *LastSt = 0;
230   const CFGBlock *Blk = 0;
231   llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
232 
233   // Generate a CallEvent /before/ cleaning the state, so that we can get the
234   // correct value for 'this' (if necessary).
235   CallEventManager &CEMgr = getStateManager().getCallEventManager();
236   CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
237 
238   // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
239 
240   // If the callee returns an expression, bind its value to CallExpr.
241   if (CE) {
242     if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
243       const LocationContext *LCtx = CEBNode->getLocationContext();
244       SVal V = state->getSVal(RS, LCtx);
245 
246       // Ensure that the return type matches the type of the returned Expr.
247       if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
248         QualType ReturnedTy =
249           CallEvent::getDeclaredResultType(calleeCtx->getDecl());
250         if (!ReturnedTy.isNull()) {
251           if (const Expr *Ex = dyn_cast<Expr>(CE)) {
252             V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
253                                   getStoreManager());
254           }
255         }
256       }
257 
258       state = state->BindExpr(CE, callerCtx, V);
259     }
260 
261     // Bind the constructed object value to CXXConstructExpr.
262     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
263       loc::MemRegionVal This =
264         svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
265       SVal ThisV = state->getSVal(This);
266 
267       // If the constructed object is a temporary prvalue, get its bindings.
268       if (isTemporaryPRValue(CCE, ThisV))
269         ThisV = state->getSVal(ThisV.castAs<Loc>());
270 
271       state = state->BindExpr(CCE, callerCtx, ThisV);
272     }
273   }
274 
275   // Step 3: BindedRetNode -> CleanedNodes
276   // If we can find a statement and a block in the inlined function, run remove
277   // dead bindings before returning from the call. This is important to ensure
278   // that we report the issues such as leaks in the stack contexts in which
279   // they occurred.
280   ExplodedNodeSet CleanedNodes;
281   if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
282     static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
283     PostStmt Loc(LastSt, calleeCtx, &retValBind);
284     bool isNew;
285     ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
286     BindedRetNode->addPredecessor(CEBNode, G);
287     if (!isNew)
288       return;
289 
290     NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
291     currBldrCtx = &Ctx;
292     // Here, we call the Symbol Reaper with 0 statement and callee location
293     // context, telling it to clean up everything in the callee's context
294     // (and its children). We use the callee's function body as a diagnostic
295     // statement, with which the program point will be associated.
296     removeDead(BindedRetNode, CleanedNodes, 0, calleeCtx,
297                calleeCtx->getAnalysisDeclContext()->getBody(),
298                ProgramPoint::PostStmtPurgeDeadSymbolsKind);
299     currBldrCtx = 0;
300   } else {
301     CleanedNodes.Add(CEBNode);
302   }
303 
304   for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
305                                  E = CleanedNodes.end(); I != E; ++I) {
306 
307     // Step 4: Generate the CallExit and leave the callee's context.
308     // CleanedNodes -> CEENode
309     CallExitEnd Loc(calleeCtx, callerCtx);
310     bool isNew;
311     ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
312     ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
313     CEENode->addPredecessor(*I, G);
314     if (!isNew)
315       return;
316 
317     // Step 5: Perform the post-condition check of the CallExpr and enqueue the
318     // result onto the work list.
319     // CEENode -> Dst -> WorkList
320     NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
321     SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
322         &Ctx);
323     SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
324 
325     CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
326 
327     ExplodedNodeSet DstPostCall;
328     getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
329                                                *UpdatedCall, *this,
330                                                /*WasInlined=*/true);
331 
332     ExplodedNodeSet Dst;
333     if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
334       getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
335                                                         *this,
336                                                         /*WasInlined=*/true);
337     } else if (CE) {
338       getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
339                                                  *this, /*WasInlined=*/true);
340     } else {
341       Dst.insert(DstPostCall);
342     }
343 
344     // Enqueue the next element in the block.
345     for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
346                                    PSI != PSE; ++PSI) {
347       Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
348                                     calleeCtx->getIndex()+1);
349     }
350   }
351 }
352 
examineStackFrames(const Decl * D,const LocationContext * LCtx,bool & IsRecursive,unsigned & StackDepth)353 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
354                                bool &IsRecursive, unsigned &StackDepth) {
355   IsRecursive = false;
356   StackDepth = 0;
357 
358   while (LCtx) {
359     if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
360       const Decl *DI = SFC->getDecl();
361 
362       // Mark recursive (and mutually recursive) functions and always count
363       // them when measuring the stack depth.
364       if (DI == D) {
365         IsRecursive = true;
366         ++StackDepth;
367         LCtx = LCtx->getParent();
368         continue;
369       }
370 
371       // Do not count the small functions when determining the stack depth.
372       AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
373       const CFG *CalleeCFG = CalleeADC->getCFG();
374       if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
375         ++StackDepth;
376     }
377     LCtx = LCtx->getParent();
378   }
379 
380 }
381 
IsInStdNamespace(const FunctionDecl * FD)382 static bool IsInStdNamespace(const FunctionDecl *FD) {
383   const DeclContext *DC = FD->getEnclosingNamespaceContext();
384   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
385   if (!ND)
386     return false;
387 
388   while (const DeclContext *Parent = ND->getParent()) {
389     if (!isa<NamespaceDecl>(Parent))
390       break;
391     ND = cast<NamespaceDecl>(Parent);
392   }
393 
394   return ND->getName() == "std";
395 }
396 
397 // The GDM component containing the dynamic dispatch bifurcation info. When
398 // the exact type of the receiver is not known, we want to explore both paths -
399 // one on which we do inline it and the other one on which we don't. This is
400 // done to ensure we do not drop coverage.
401 // This is the map from the receiver region to a bool, specifying either we
402 // consider this region's information precise or not along the given path.
403 namespace {
404   enum DynamicDispatchMode {
405     DynamicDispatchModeInlined = 1,
406     DynamicDispatchModeConservative
407   };
408 }
REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,CLANG_ENTO_PROGRAMSTATE_MAP (const MemRegion *,unsigned))409 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
410                                  CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
411                                                              unsigned))
412 
413 bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
414                             NodeBuilder &Bldr, ExplodedNode *Pred,
415                             ProgramStateRef State) {
416   assert(D);
417 
418   const LocationContext *CurLC = Pred->getLocationContext();
419   const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
420   const LocationContext *ParentOfCallee = CallerSFC;
421   if (Call.getKind() == CE_Block) {
422     const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
423     assert(BR && "If we have the block definition we should have its region");
424     AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
425     ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
426                                                          cast<BlockDecl>(D),
427                                                          BR);
428   }
429 
430   // This may be NULL, but that's fine.
431   const Expr *CallE = Call.getOriginExpr();
432 
433   // Construct a new stack frame for the callee.
434   AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
435   const StackFrameContext *CalleeSFC =
436     CalleeADC->getStackFrame(ParentOfCallee, CallE,
437                              currBldrCtx->getBlock(),
438                              currStmtIdx);
439 
440 
441   CallEnter Loc(CallE, CalleeSFC, CurLC);
442 
443   // Construct a new state which contains the mapping from actual to
444   // formal arguments.
445   State = State->enterStackFrame(Call, CalleeSFC);
446 
447   bool isNew;
448   if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
449     N->addPredecessor(Pred, G);
450     if (isNew)
451       Engine.getWorkList()->enqueue(N);
452   }
453 
454   // If we decided to inline the call, the successor has been manually
455   // added onto the work list so remove it from the node builder.
456   Bldr.takeNodes(Pred);
457 
458   NumInlinedCalls++;
459 
460   // Mark the decl as visited.
461   if (VisitedCallees)
462     VisitedCallees->insert(D);
463 
464   return true;
465 }
466 
getInlineFailedState(ProgramStateRef State,const Stmt * CallE)467 static ProgramStateRef getInlineFailedState(ProgramStateRef State,
468                                             const Stmt *CallE) {
469   const void *ReplayState = State->get<ReplayWithoutInlining>();
470   if (!ReplayState)
471     return 0;
472 
473   assert(ReplayState == CallE && "Backtracked to the wrong call.");
474   (void)CallE;
475 
476   return State->remove<ReplayWithoutInlining>();
477 }
478 
VisitCallExpr(const CallExpr * CE,ExplodedNode * Pred,ExplodedNodeSet & dst)479 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
480                                ExplodedNodeSet &dst) {
481   // Perform the previsit of the CallExpr.
482   ExplodedNodeSet dstPreVisit;
483   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
484 
485   // Get the call in its initial state. We use this as a template to perform
486   // all the checks.
487   CallEventManager &CEMgr = getStateManager().getCallEventManager();
488   CallEventRef<> CallTemplate
489     = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
490 
491   // Evaluate the function call.  We try each of the checkers
492   // to see if the can evaluate the function call.
493   ExplodedNodeSet dstCallEvaluated;
494   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
495        I != E; ++I) {
496     evalCall(dstCallEvaluated, *I, *CallTemplate);
497   }
498 
499   // Finally, perform the post-condition check of the CallExpr and store
500   // the created nodes in 'Dst'.
501   // Note that if the call was inlined, dstCallEvaluated will be empty.
502   // The post-CallExpr check will occur in processCallExit.
503   getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
504                                              *this);
505 }
506 
evalCall(ExplodedNodeSet & Dst,ExplodedNode * Pred,const CallEvent & Call)507 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
508                           const CallEvent &Call) {
509   // WARNING: At this time, the state attached to 'Call' may be older than the
510   // state in 'Pred'. This is a minor optimization since CheckerManager will
511   // use an updated CallEvent instance when calling checkers, but if 'Call' is
512   // ever used directly in this function all callers should be updated to pass
513   // the most recent state. (It is probably not worth doing the work here since
514   // for some callers this will not be necessary.)
515 
516   // Run any pre-call checks using the generic call interface.
517   ExplodedNodeSet dstPreVisit;
518   getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
519 
520   // Actually evaluate the function call.  We try each of the checkers
521   // to see if the can evaluate the function call, and get a callback at
522   // defaultEvalCall if all of them fail.
523   ExplodedNodeSet dstCallEvaluated;
524   getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
525                                              Call, *this);
526 
527   // Finally, run any post-call checks.
528   getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
529                                              Call, *this);
530 }
531 
bindReturnValue(const CallEvent & Call,const LocationContext * LCtx,ProgramStateRef State)532 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
533                                             const LocationContext *LCtx,
534                                             ProgramStateRef State) {
535   const Expr *E = Call.getOriginExpr();
536   if (!E)
537     return State;
538 
539   // Some method families have known return values.
540   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
541     switch (Msg->getMethodFamily()) {
542     default:
543       break;
544     case OMF_autorelease:
545     case OMF_retain:
546     case OMF_self: {
547       // These methods return their receivers.
548       return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
549     }
550     }
551   } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
552     SVal ThisV = C->getCXXThisVal();
553 
554     // If the constructed object is a temporary prvalue, get its bindings.
555     if (isTemporaryPRValue(cast<CXXConstructExpr>(E), ThisV))
556       ThisV = State->getSVal(ThisV.castAs<Loc>());
557 
558     return State->BindExpr(E, LCtx, ThisV);
559   }
560 
561   // Conjure a symbol if the return value is unknown.
562   QualType ResultTy = Call.getResultType();
563   SValBuilder &SVB = getSValBuilder();
564   unsigned Count = currBldrCtx->blockCount();
565   SVal R = SVB.conjureSymbolVal(0, E, LCtx, ResultTy, Count);
566   return State->BindExpr(E, LCtx, R);
567 }
568 
569 // Conservatively evaluate call by invalidating regions and binding
570 // a conjured return value.
conservativeEvalCall(const CallEvent & Call,NodeBuilder & Bldr,ExplodedNode * Pred,ProgramStateRef State)571 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
572                                       ExplodedNode *Pred,
573                                       ProgramStateRef State) {
574   State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
575   State = bindReturnValue(Call, Pred->getLocationContext(), State);
576 
577   // And make the result node.
578   Bldr.generateNode(Call.getProgramPoint(), State, Pred);
579 }
580 
shouldInlineCallKind(const CallEvent & Call,const ExplodedNode * Pred,AnalyzerOptions & Opts)581 static bool shouldInlineCallKind(const CallEvent &Call,
582                                  const ExplodedNode *Pred,
583                                  AnalyzerOptions &Opts) {
584   const LocationContext *CurLC = Pred->getLocationContext();
585   const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
586   switch (Call.getKind()) {
587   case CE_Function:
588   case CE_Block:
589     break;
590   case CE_CXXMember:
591   case CE_CXXMemberOperator:
592     if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
593       return false;
594     break;
595   case CE_CXXConstructor: {
596     if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
597       return false;
598 
599     const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
600 
601     // FIXME: We don't handle constructors or destructors for arrays properly.
602     const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
603     if (Target && isa<ElementRegion>(Target))
604       return false;
605 
606     // FIXME: This is a hack. We don't use the correct region for a new
607     // expression, so if we inline the constructor its result will just be
608     // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
609     // and the longer-term possible fix is discussed in PR12014.
610     const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
611     if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
612       if (isa<CXXNewExpr>(Parent))
613         return false;
614 
615     // Inlining constructors requires including initializers in the CFG.
616     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
617     assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
618     (void)ADC;
619 
620     // If the destructor is trivial, it's always safe to inline the constructor.
621     if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
622       break;
623 
624     // For other types, only inline constructors if destructor inlining is
625     // also enabled.
626     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
627       return false;
628 
629     // FIXME: This is a hack. We don't handle temporary destructors
630     // right now, so we shouldn't inline their constructors.
631     if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
632       if (!Target || !isa<DeclRegion>(Target))
633         return false;
634 
635     break;
636   }
637   case CE_CXXDestructor: {
638     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
639       return false;
640 
641     // Inlining destructors requires building the CFG correctly.
642     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
643     assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
644     (void)ADC;
645 
646     const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
647 
648     // FIXME: We don't handle constructors or destructors for arrays properly.
649     const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
650     if (Target && isa<ElementRegion>(Target))
651       return false;
652 
653     break;
654   }
655   case CE_CXXAllocator:
656     // Do not inline allocators until we model deallocators.
657     // This is unfortunate, but basically necessary for smart pointers and such.
658     return false;
659   case CE_ObjCMessage:
660     if (!Opts.mayInlineObjCMethod())
661       return false;
662     if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
663           Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
664       return false;
665     break;
666   }
667   return true;
668 }
669 
shouldInlineCall(const CallEvent & Call,const Decl * D,const ExplodedNode * Pred)670 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
671                                   const ExplodedNode *Pred) {
672   if (!D)
673     return false;
674 
675   AnalysisManager &AMgr = getAnalysisManager();
676   AnalyzerOptions &Opts = AMgr.options;
677   AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
678   AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
679 
680   // The auto-synthesized bodies are essential to inline as they are
681   // usually small and commonly used. Note: we should do this check early on to
682   // ensure we always inline these calls.
683   if (CalleeADC->isBodyAutosynthesized())
684     return true;
685 
686   if (HowToInline == Inline_None)
687     return false;
688 
689   // Check if we should inline a call based on its kind.
690   if (!shouldInlineCallKind(Call, Pred, Opts))
691     return false;
692 
693   // It is possible that the CFG cannot be constructed.
694   // Be safe, and check if the CalleeCFG is valid.
695   const CFG *CalleeCFG = CalleeADC->getCFG();
696   if (!CalleeCFG)
697     return false;
698 
699   // Do not inline if recursive or we've reached max stack frame count.
700   bool IsRecursive = false;
701   unsigned StackDepth = 0;
702   examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
703   if ((StackDepth >= Opts.InlineMaxStackDepth) &&
704       ((CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize())
705        || IsRecursive))
706     return false;
707 
708   // Do not inline if it took too long to inline previously.
709   if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
710     return false;
711 
712   // Or if the function is too big.
713   if (CalleeCFG->getNumBlockIDs() > Opts.getMaxInlinableSize())
714     return false;
715 
716   // Do not inline variadic calls (for now).
717   if (Call.isVariadic())
718     return false;
719 
720   // Check our template policy.
721   if (getContext().getLangOpts().CPlusPlus) {
722     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
723       // Conditionally allow the inlining of template functions.
724       if (!Opts.mayInlineTemplateFunctions())
725         if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
726           return false;
727 
728       // Conditionally allow the inlining of C++ standard library functions.
729       if (!Opts.mayInlineCXXStandardLibrary())
730         if (getContext().getSourceManager().isInSystemHeader(FD->getLocation()))
731           if (IsInStdNamespace(FD))
732             return false;
733     }
734   }
735 
736   // It is possible that the live variables analysis cannot be
737   // run.  If so, bail out.
738   if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
739     return false;
740 
741   // Do not inline large functions too many times.
742   if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
743        Opts.getMaxTimesInlineLarge()) &&
744       CalleeCFG->getNumBlockIDs() > 13) {
745     NumReachedInlineCountMax++;
746     return false;
747   }
748   Engine.FunctionSummaries->bumpNumTimesInlined(D);
749 
750   return true;
751 }
752 
isTrivialObjectAssignment(const CallEvent & Call)753 static bool isTrivialObjectAssignment(const CallEvent &Call) {
754   const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
755   if (!ICall)
756     return false;
757 
758   const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
759   if (!MD)
760     return false;
761   if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
762     return false;
763 
764   return MD->isTrivial();
765 }
766 
defaultEvalCall(NodeBuilder & Bldr,ExplodedNode * Pred,const CallEvent & CallTemplate)767 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
768                                  const CallEvent &CallTemplate) {
769   // Make sure we have the most recent state attached to the call.
770   ProgramStateRef State = Pred->getState();
771   CallEventRef<> Call = CallTemplate.cloneWithState(State);
772 
773   // Special-case trivial assignment operators.
774   if (isTrivialObjectAssignment(*Call)) {
775     performTrivialCopy(Bldr, Pred, *Call);
776     return;
777   }
778 
779   // Try to inline the call.
780   // The origin expression here is just used as a kind of checksum;
781   // this should still be safe even for CallEvents that don't come from exprs.
782   const Expr *E = Call->getOriginExpr();
783 
784   ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
785   if (InlinedFailedState) {
786     // If we already tried once and failed, make sure we don't retry later.
787     State = InlinedFailedState;
788   } else {
789     RuntimeDefinition RD = Call->getRuntimeDefinition();
790     const Decl *D = RD.getDecl();
791     if (shouldInlineCall(*Call, D, Pred)) {
792       if (RD.mayHaveOtherDefinitions()) {
793         AnalyzerOptions &Options = getAnalysisManager().options;
794 
795         // Explore with and without inlining the call.
796         if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
797           BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
798           return;
799         }
800 
801         // Don't inline if we're not in any dynamic dispatch mode.
802         if (Options.getIPAMode() != IPAK_DynamicDispatch) {
803           conservativeEvalCall(*Call, Bldr, Pred, State);
804           return;
805         }
806       }
807 
808       // We are not bifurcating and we do have a Decl, so just inline.
809       if (inlineCall(*Call, D, Bldr, Pred, State))
810         return;
811     }
812   }
813 
814   // If we can't inline it, handle the return value and invalidate the regions.
815   conservativeEvalCall(*Call, Bldr, Pred, State);
816 }
817 
BifurcateCall(const MemRegion * BifurReg,const CallEvent & Call,const Decl * D,NodeBuilder & Bldr,ExplodedNode * Pred)818 void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
819                                const CallEvent &Call, const Decl *D,
820                                NodeBuilder &Bldr, ExplodedNode *Pred) {
821   assert(BifurReg);
822   BifurReg = BifurReg->StripCasts();
823 
824   // Check if we've performed the split already - note, we only want
825   // to split the path once per memory region.
826   ProgramStateRef State = Pred->getState();
827   const unsigned *BState =
828                         State->get<DynamicDispatchBifurcationMap>(BifurReg);
829   if (BState) {
830     // If we are on "inline path", keep inlining if possible.
831     if (*BState == DynamicDispatchModeInlined)
832       if (inlineCall(Call, D, Bldr, Pred, State))
833         return;
834     // If inline failed, or we are on the path where we assume we
835     // don't have enough info about the receiver to inline, conjure the
836     // return value and invalidate the regions.
837     conservativeEvalCall(Call, Bldr, Pred, State);
838     return;
839   }
840 
841   // If we got here, this is the first time we process a message to this
842   // region, so split the path.
843   ProgramStateRef IState =
844       State->set<DynamicDispatchBifurcationMap>(BifurReg,
845                                                DynamicDispatchModeInlined);
846   inlineCall(Call, D, Bldr, Pred, IState);
847 
848   ProgramStateRef NoIState =
849       State->set<DynamicDispatchBifurcationMap>(BifurReg,
850                                                DynamicDispatchModeConservative);
851   conservativeEvalCall(Call, Bldr, Pred, NoIState);
852 
853   NumOfDynamicDispatchPathSplits++;
854   return;
855 }
856 
857 
VisitReturnStmt(const ReturnStmt * RS,ExplodedNode * Pred,ExplodedNodeSet & Dst)858 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
859                                  ExplodedNodeSet &Dst) {
860 
861   ExplodedNodeSet dstPreVisit;
862   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
863 
864   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
865 
866   if (RS->getRetValue()) {
867     for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
868                                   ei = dstPreVisit.end(); it != ei; ++it) {
869       B.generateNode(RS, *it, (*it)->getState());
870     }
871   }
872 }
873