• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Abstract interface for objects solving linear systems of various
32 // kinds.
33 
34 #ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
35 #define CERES_INTERNAL_LINEAR_SOLVER_H_
36 
37 #include <cstddef>
38 #include <vector>
39 
40 #include <glog/logging.h>
41 #include "ceres/block_sparse_matrix.h"
42 #include "ceres/casts.h"
43 #include "ceres/compressed_row_sparse_matrix.h"
44 #include "ceres/dense_sparse_matrix.h"
45 #include "ceres/triplet_sparse_matrix.h"
46 #include "ceres/types.h"
47 
48 namespace ceres {
49 namespace internal {
50 
51 class LinearOperator;
52 
53 // Abstract base class for objects that implement algorithms for
54 // solving linear systems
55 //
56 //   Ax = b
57 //
58 // It is expected that a single instance of a LinearSolver object
59 // maybe used multiple times for solving multiple linear systems with
60 // the same sparsity structure. This allows them to cache and reuse
61 // information across solves. This means that calling Solve on the
62 // same LinearSolver instance with two different linear systems will
63 // result in undefined behaviour.
64 //
65 // Subclasses of LinearSolver use two structs to configure themselves.
66 // The Options struct configures the LinearSolver object for its
67 // lifetime. The PerSolveOptions struct is used to specify options for
68 // a particular Solve call.
69 class LinearSolver {
70  public:
71   struct Options {
OptionsOptions72     Options()
73         : type(SPARSE_NORMAL_CHOLESKY),
74           preconditioner_type(JACOBI),
75           sparse_linear_algebra_library(SUITE_SPARSE),
76           use_block_amd(true),
77           min_num_iterations(1),
78           max_num_iterations(1),
79           num_threads(1),
80           residual_reset_period(10),
81           row_block_size(Dynamic),
82           e_block_size(Dynamic),
83           f_block_size(Dynamic) {
84     }
85 
86     LinearSolverType type;
87 
88     PreconditionerType preconditioner_type;
89 
90     SparseLinearAlgebraLibraryType sparse_linear_algebra_library;
91 
92     // See solver.h for explanation of this option.
93     bool use_block_amd;
94 
95     // Number of internal iterations that the solver uses. This
96     // parameter only makes sense for iterative solvers like CG.
97     int min_num_iterations;
98     int max_num_iterations;
99 
100     // If possible, how many threads can the solver use.
101     int num_threads;
102 
103     // Hints about the order in which the parameter blocks should be
104     // eliminated by the linear solver.
105     //
106     // For example if elimination_groups is a vector of size k, then
107     // the linear solver is informed that it should eliminate the
108     // parameter blocks 0 - elimination_groups[0] - 1 first, and then
109     // elimination_groups[0] - elimination_groups[1] and so on. Within
110     // each elimination group, the linear solver is free to choose how
111     // the parameter blocks are ordered. Different linear solvers have
112     // differing requirements on elimination_groups.
113     //
114     // The most common use is for Schur type solvers, where there
115     // should be at least two elimination groups and the first
116     // elimination group must form an independent set in the normal
117     // equations. The first elimination group corresponds to the
118     // num_eliminate_blocks in the Schur type solvers.
119     vector<int> elimination_groups;
120 
121     // Iterative solvers, e.g. Preconditioned Conjugate Gradients
122     // maintain a cheap estimate of the residual which may become
123     // inaccurate over time. Thus for non-zero values of this
124     // parameter, the solver can be told to recalculate the value of
125     // the residual using a |b - Ax| evaluation.
126     int residual_reset_period;
127 
128     // If the block sizes in a BlockSparseMatrix are fixed, then in
129     // some cases the Schur complement based solvers can detect and
130     // specialize on them.
131     //
132     // It is expected that these parameters are set programmatically
133     // rather than manually.
134     //
135     // Please see schur_complement_solver.h and schur_eliminator.h for
136     // more details.
137     int row_block_size;
138     int e_block_size;
139     int f_block_size;
140   };
141 
142   // Options for the Solve method.
143   struct PerSolveOptions {
PerSolveOptionsPerSolveOptions144     PerSolveOptions()
145         : D(NULL),
146           preconditioner(NULL),
147           r_tolerance(0.0),
148           q_tolerance(0.0) {
149     }
150 
151     // This option only makes sense for unsymmetric linear solvers
152     // that can solve rectangular linear systems.
153     //
154     // Given a matrix A, an optional diagonal matrix D as a vector,
155     // and a vector b, the linear solver will solve for
156     //
157     //   | A | x = | b |
158     //   | D |     | 0 |
159     //
160     // If D is null, then it is treated as zero, and the solver returns
161     // the solution to
162     //
163     //   A x = b
164     //
165     // In either case, x is the vector that solves the following
166     // optimization problem.
167     //
168     //   arg min_x ||Ax - b||^2 + ||Dx||^2
169     //
170     // Here A is a matrix of size m x n, with full column rank. If A
171     // does not have full column rank, the results returned by the
172     // solver cannot be relied on. D, if it is not null is an array of
173     // size n.  b is an array of size m and x is an array of size n.
174     double * D;
175 
176     // This option only makes sense for iterative solvers.
177     //
178     // In general the performance of an iterative linear solver
179     // depends on the condition number of the matrix A. For example
180     // the convergence rate of the conjugate gradients algorithm
181     // is proportional to the square root of the condition number.
182     //
183     // One particularly useful technique for improving the
184     // conditioning of a linear system is to precondition it. In its
185     // simplest form a preconditioner is a matrix M such that instead
186     // of solving Ax = b, we solve the linear system AM^{-1} y = b
187     // instead, where M is such that the condition number k(AM^{-1})
188     // is smaller than the conditioner k(A). Given the solution to
189     // this system, x = M^{-1} y. The iterative solver takes care of
190     // the mechanics of solving the preconditioned system and
191     // returning the corrected solution x. The user only needs to
192     // supply a linear operator.
193     //
194     // A null preconditioner is equivalent to an identity matrix being
195     // used a preconditioner.
196     LinearOperator* preconditioner;
197 
198 
199     // The following tolerance related options only makes sense for
200     // iterative solvers. Direct solvers ignore them.
201 
202     // Solver terminates when
203     //
204     //   |Ax - b| <= r_tolerance * |b|.
205     //
206     // This is the most commonly used termination criterion for
207     // iterative solvers.
208     double r_tolerance;
209 
210     // For PSD matrices A, let
211     //
212     //   Q(x) = x'Ax - 2b'x
213     //
214     // be the cost of the quadratic function defined by A and b. Then,
215     // the solver terminates at iteration i if
216     //
217     //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
218     //
219     // This termination criterion is more useful when using CG to
220     // solve the Newton step. This particular convergence test comes
221     // from Stephen Nash's work on truncated Newton
222     // methods. References:
223     //
224     //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
225     //      Direction Within A Truncated Newton Method, Operation
226     //      Research Letters 9(1990) 219-221.
227     //
228     //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
229     //      Journal of Computational and Applied Mathematics,
230     //      124(1-2), 45-59, 2000.
231     //
232     double q_tolerance;
233   };
234 
235   // Summary of a call to the Solve method. We should move away from
236   // the true/false method for determining solver success. We should
237   // let the summary object do the talking.
238   struct Summary {
SummarySummary239     Summary()
240         : residual_norm(0.0),
241           num_iterations(-1),
242           termination_type(FAILURE) {
243     }
244 
245     double residual_norm;
246     int num_iterations;
247     LinearSolverTerminationType termination_type;
248   };
249 
250   virtual ~LinearSolver();
251 
252   // Solve Ax = b.
253   virtual Summary Solve(LinearOperator* A,
254                         const double* b,
255                         const PerSolveOptions& per_solve_options,
256                         double* x) = 0;
257 
258   // Factory
259   static LinearSolver* Create(const Options& options);
260 };
261 
262 // This templated subclass of LinearSolver serves as a base class for
263 // other linear solvers that depend on the particular matrix layout of
264 // the underlying linear operator. For example some linear solvers
265 // need low level access to the TripletSparseMatrix implementing the
266 // LinearOperator interface. This class hides those implementation
267 // details behind a private virtual method, and has the Solve method
268 // perform the necessary upcasting.
269 template <typename MatrixType>
270 class TypedLinearSolver : public LinearSolver {
271  public:
~TypedLinearSolver()272   virtual ~TypedLinearSolver() {}
Solve(LinearOperator * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)273   virtual LinearSolver::Summary Solve(
274       LinearOperator* A,
275       const double* b,
276       const LinearSolver::PerSolveOptions& per_solve_options,
277       double* x) {
278     CHECK_NOTNULL(A);
279     CHECK_NOTNULL(b);
280     CHECK_NOTNULL(x);
281     return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
282   }
283 
284  private:
285   virtual LinearSolver::Summary SolveImpl(
286       MatrixType* A,
287       const double* b,
288       const LinearSolver::PerSolveOptions& per_solve_options,
289       double* x) = 0;
290 };
291 
292 // Linear solvers that depend on acccess to the low level structure of
293 // a SparseMatrix.
294 typedef TypedLinearSolver<BlockSparseMatrix>         BlockSparseMatrixSolver;          // NOLINT
295 typedef TypedLinearSolver<BlockSparseMatrixBase>     BlockSparseMatrixBaseSolver;      // NOLINT
296 typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver;  // NOLINT
297 typedef TypedLinearSolver<DenseSparseMatrix>         DenseSparseMatrixSolver;          // NOLINT
298 typedef TypedLinearSolver<TripletSparseMatrix>       TripletSparseMatrixSolver;        // NOLINT
299 
300 }  // namespace internal
301 }  // namespace ceres
302 
303 #endif  // CERES_INTERNAL_LINEAR_SOLVER_H_
304