1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes an abstract interface used to get information about a 11 // target machines register file. This information is used for a variety of 12 // purposed, especially register allocation. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H 17 #define LLVM_TARGET_TARGETREGISTERINFO_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/ValueTypes.h" 22 #include "llvm/IR/CallingConv.h" 23 #include "llvm/MC/MCRegisterInfo.h" 24 #include <cassert> 25 #include <functional> 26 27 namespace llvm { 28 29 class BitVector; 30 class MachineFunction; 31 class RegScavenger; 32 template<class T> class SmallVectorImpl; 33 class VirtRegMap; 34 class raw_ostream; 35 36 class TargetRegisterClass { 37 public: 38 typedef const MCPhysReg* iterator; 39 typedef const MCPhysReg* const_iterator; 40 typedef const MVT::SimpleValueType* vt_iterator; 41 typedef const TargetRegisterClass* const * sc_iterator; 42 43 // Instance variables filled by tablegen, do not use! 44 const MCRegisterClass *MC; 45 const vt_iterator VTs; 46 const uint32_t *SubClassMask; 47 const uint16_t *SuperRegIndices; 48 const sc_iterator SuperClasses; 49 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 50 51 /// getID() - Return the register class ID number. 52 /// getID()53 unsigned getID() const { return MC->getID(); } 54 55 /// getName() - Return the register class name for debugging. 56 /// getName()57 const char *getName() const { return MC->getName(); } 58 59 /// begin/end - Return all of the registers in this class. 60 /// begin()61 iterator begin() const { return MC->begin(); } end()62 iterator end() const { return MC->end(); } 63 64 /// getNumRegs - Return the number of registers in this class. 65 /// getNumRegs()66 unsigned getNumRegs() const { return MC->getNumRegs(); } 67 68 /// getRegister - Return the specified register in the class. 69 /// getRegister(unsigned i)70 unsigned getRegister(unsigned i) const { 71 return MC->getRegister(i); 72 } 73 74 /// contains - Return true if the specified register is included in this 75 /// register class. This does not include virtual registers. contains(unsigned Reg)76 bool contains(unsigned Reg) const { 77 return MC->contains(Reg); 78 } 79 80 /// contains - Return true if both registers are in this class. contains(unsigned Reg1,unsigned Reg2)81 bool contains(unsigned Reg1, unsigned Reg2) const { 82 return MC->contains(Reg1, Reg2); 83 } 84 85 /// getSize - Return the size of the register in bytes, which is also the size 86 /// of a stack slot allocated to hold a spilled copy of this register. getSize()87 unsigned getSize() const { return MC->getSize(); } 88 89 /// getAlignment - Return the minimum required alignment for a register of 90 /// this class. getAlignment()91 unsigned getAlignment() const { return MC->getAlignment(); } 92 93 /// getCopyCost - Return the cost of copying a value between two registers in 94 /// this class. A negative number means the register class is very expensive 95 /// to copy e.g. status flag register classes. getCopyCost()96 int getCopyCost() const { return MC->getCopyCost(); } 97 98 /// isAllocatable - Return true if this register class may be used to create 99 /// virtual registers. isAllocatable()100 bool isAllocatable() const { return MC->isAllocatable(); } 101 102 /// hasType - return true if this TargetRegisterClass has the ValueType vt. 103 /// hasType(EVT vt)104 bool hasType(EVT vt) const { 105 for(int i = 0; VTs[i] != MVT::Other; ++i) 106 if (EVT(VTs[i]) == vt) 107 return true; 108 return false; 109 } 110 111 /// vt_begin / vt_end - Loop over all of the value types that can be 112 /// represented by values in this register class. vt_begin()113 vt_iterator vt_begin() const { 114 return VTs; 115 } 116 vt_end()117 vt_iterator vt_end() const { 118 vt_iterator I = VTs; 119 while (*I != MVT::Other) ++I; 120 return I; 121 } 122 123 /// hasSubClass - return true if the specified TargetRegisterClass 124 /// is a proper sub-class of this TargetRegisterClass. hasSubClass(const TargetRegisterClass * RC)125 bool hasSubClass(const TargetRegisterClass *RC) const { 126 return RC != this && hasSubClassEq(RC); 127 } 128 129 /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this 130 /// class. hasSubClassEq(const TargetRegisterClass * RC)131 bool hasSubClassEq(const TargetRegisterClass *RC) const { 132 unsigned ID = RC->getID(); 133 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 134 } 135 136 /// hasSuperClass - return true if the specified TargetRegisterClass is a 137 /// proper super-class of this TargetRegisterClass. hasSuperClass(const TargetRegisterClass * RC)138 bool hasSuperClass(const TargetRegisterClass *RC) const { 139 return RC->hasSubClass(this); 140 } 141 142 /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this 143 /// class. hasSuperClassEq(const TargetRegisterClass * RC)144 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 145 return RC->hasSubClassEq(this); 146 } 147 148 /// getSubClassMask - Returns a bit vector of subclasses, including this one. 149 /// The vector is indexed by class IDs, see hasSubClassEq() above for how to 150 /// use it. getSubClassMask()151 const uint32_t *getSubClassMask() const { 152 return SubClassMask; 153 } 154 155 /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices 156 /// that project some super-register class into this register class. The list 157 /// has an entry for each Idx such that: 158 /// 159 /// There exists SuperRC where: 160 /// For all Reg in SuperRC: 161 /// this->contains(Reg:Idx) 162 /// getSuperRegIndices()163 const uint16_t *getSuperRegIndices() const { 164 return SuperRegIndices; 165 } 166 167 /// getSuperClasses - Returns a NULL terminated list of super-classes. The 168 /// classes are ordered by ID which is also a topological ordering from large 169 /// to small classes. The list does NOT include the current class. getSuperClasses()170 sc_iterator getSuperClasses() const { 171 return SuperClasses; 172 } 173 174 /// isASubClass - return true if this TargetRegisterClass is a subset 175 /// class of at least one other TargetRegisterClass. isASubClass()176 bool isASubClass() const { 177 return SuperClasses[0] != 0; 178 } 179 180 /// getRawAllocationOrder - Returns the preferred order for allocating 181 /// registers from this register class in MF. The raw order comes directly 182 /// from the .td file and may include reserved registers that are not 183 /// allocatable. Register allocators should also make sure to allocate 184 /// callee-saved registers only after all the volatiles are used. The 185 /// RegisterClassInfo class provides filtered allocation orders with 186 /// callee-saved registers moved to the end. 187 /// 188 /// The MachineFunction argument can be used to tune the allocatable 189 /// registers based on the characteristics of the function, subtarget, or 190 /// other criteria. 191 /// 192 /// By default, this method returns all registers in the class. 193 /// getRawAllocationOrder(const MachineFunction & MF)194 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 195 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); 196 } 197 }; 198 199 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about 200 /// registers. These are used by codegen, not by MC. 201 struct TargetRegisterInfoDesc { 202 unsigned CostPerUse; // Extra cost of instructions using register. 203 bool inAllocatableClass; // Register belongs to an allocatable regclass. 204 }; 205 206 /// Each TargetRegisterClass has a per register weight, and weight 207 /// limit which must be less than the limits of its pressure sets. 208 struct RegClassWeight { 209 unsigned RegWeight; 210 unsigned WeightLimit; 211 }; 212 213 /// TargetRegisterInfo base class - We assume that the target defines a static 214 /// array of TargetRegisterDesc objects that represent all of the machine 215 /// registers that the target has. As such, we simply have to track a pointer 216 /// to this array so that we can turn register number into a register 217 /// descriptor. 218 /// 219 class TargetRegisterInfo : public MCRegisterInfo { 220 public: 221 typedef const TargetRegisterClass * const * regclass_iterator; 222 private: 223 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 224 const char *const *SubRegIndexNames; // Names of subreg indexes. 225 // Pointer to array of lane masks, one per sub-reg index. 226 const unsigned *SubRegIndexLaneMasks; 227 228 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 229 230 protected: 231 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 232 regclass_iterator RegClassBegin, 233 regclass_iterator RegClassEnd, 234 const char *const *SRINames, 235 const unsigned *SRILaneMasks); 236 virtual ~TargetRegisterInfo(); 237 public: 238 239 // Register numbers can represent physical registers, virtual registers, and 240 // sometimes stack slots. The unsigned values are divided into these ranges: 241 // 242 // 0 Not a register, can be used as a sentinel. 243 // [1;2^30) Physical registers assigned by TableGen. 244 // [2^30;2^31) Stack slots. (Rarely used.) 245 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 246 // 247 // Further sentinels can be allocated from the small negative integers. 248 // DenseMapInfo<unsigned> uses -1u and -2u. 249 250 /// isStackSlot - Sometimes it is useful the be able to store a non-negative 251 /// frame index in a variable that normally holds a register. isStackSlot() 252 /// returns true if Reg is in the range used for stack slots. 253 /// 254 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack 255 /// slots, so if a variable may contains a stack slot, always check 256 /// isStackSlot() first. 257 /// isStackSlot(unsigned Reg)258 static bool isStackSlot(unsigned Reg) { 259 return int(Reg) >= (1 << 30); 260 } 261 262 /// stackSlot2Index - Compute the frame index from a register value 263 /// representing a stack slot. stackSlot2Index(unsigned Reg)264 static int stackSlot2Index(unsigned Reg) { 265 assert(isStackSlot(Reg) && "Not a stack slot"); 266 return int(Reg - (1u << 30)); 267 } 268 269 /// index2StackSlot - Convert a non-negative frame index to a stack slot 270 /// register value. index2StackSlot(int FI)271 static unsigned index2StackSlot(int FI) { 272 assert(FI >= 0 && "Cannot hold a negative frame index."); 273 return FI + (1u << 30); 274 } 275 276 /// isPhysicalRegister - Return true if the specified register number is in 277 /// the physical register namespace. isPhysicalRegister(unsigned Reg)278 static bool isPhysicalRegister(unsigned Reg) { 279 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 280 return int(Reg) > 0; 281 } 282 283 /// isVirtualRegister - Return true if the specified register number is in 284 /// the virtual register namespace. isVirtualRegister(unsigned Reg)285 static bool isVirtualRegister(unsigned Reg) { 286 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 287 return int(Reg) < 0; 288 } 289 290 /// virtReg2Index - Convert a virtual register number to a 0-based index. 291 /// The first virtual register in a function will get the index 0. virtReg2Index(unsigned Reg)292 static unsigned virtReg2Index(unsigned Reg) { 293 assert(isVirtualRegister(Reg) && "Not a virtual register"); 294 return Reg & ~(1u << 31); 295 } 296 297 /// index2VirtReg - Convert a 0-based index to a virtual register number. 298 /// This is the inverse operation of VirtReg2IndexFunctor below. index2VirtReg(unsigned Index)299 static unsigned index2VirtReg(unsigned Index) { 300 return Index | (1u << 31); 301 } 302 303 /// getMinimalPhysRegClass - Returns the Register Class of a physical 304 /// register of the given type, picking the most sub register class of 305 /// the right type that contains this physreg. 306 const TargetRegisterClass * 307 getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const; 308 309 /// getAllocatableClass - Return the maximal subclass of the given register 310 /// class that is alloctable, or NULL. 311 const TargetRegisterClass * 312 getAllocatableClass(const TargetRegisterClass *RC) const; 313 314 /// getAllocatableSet - Returns a bitset indexed by register number 315 /// indicating if a register is allocatable or not. If a register class is 316 /// specified, returns the subset for the class. 317 BitVector getAllocatableSet(const MachineFunction &MF, 318 const TargetRegisterClass *RC = NULL) const; 319 320 /// getCostPerUse - Return the additional cost of using this register instead 321 /// of other registers in its class. getCostPerUse(unsigned RegNo)322 unsigned getCostPerUse(unsigned RegNo) const { 323 return InfoDesc[RegNo].CostPerUse; 324 } 325 326 /// isInAllocatableClass - Return true if the register is in the allocation 327 /// of any register class. isInAllocatableClass(unsigned RegNo)328 bool isInAllocatableClass(unsigned RegNo) const { 329 return InfoDesc[RegNo].inAllocatableClass; 330 } 331 332 /// getSubRegIndexName - Return the human-readable symbolic target-specific 333 /// name for the specified SubRegIndex. getSubRegIndexName(unsigned SubIdx)334 const char *getSubRegIndexName(unsigned SubIdx) const { 335 assert(SubIdx && SubIdx < getNumSubRegIndices() && 336 "This is not a subregister index"); 337 return SubRegIndexNames[SubIdx-1]; 338 } 339 340 /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a 341 /// register that are covered by SubIdx. 342 /// 343 /// Lane masks for sub-register indices are similar to register units for 344 /// physical registers. The individual bits in a lane mask can't be assigned 345 /// any specific meaning. They can be used to check if two sub-register 346 /// indices overlap. 347 /// 348 /// If the target has a register such that: 349 /// 350 /// getSubReg(Reg, A) overlaps getSubReg(Reg, B) 351 /// 352 /// then: 353 /// 354 /// getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0 355 /// 356 /// The converse is not necessarily true. If two lane masks have a common 357 /// bit, the corresponding sub-registers may not overlap, but it can be 358 /// assumed that they usually will. getSubRegIndexLaneMask(unsigned SubIdx)359 unsigned getSubRegIndexLaneMask(unsigned SubIdx) const { 360 // SubIdx == 0 is allowed, it has the lane mask ~0u. 361 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 362 return SubRegIndexLaneMasks[SubIdx]; 363 } 364 365 /// regsOverlap - Returns true if the two registers are equal or alias each 366 /// other. The registers may be virtual register. regsOverlap(unsigned regA,unsigned regB)367 bool regsOverlap(unsigned regA, unsigned regB) const { 368 if (regA == regB) return true; 369 if (isVirtualRegister(regA) || isVirtualRegister(regB)) 370 return false; 371 372 // Regunits are numerically ordered. Find a common unit. 373 MCRegUnitIterator RUA(regA, this); 374 MCRegUnitIterator RUB(regB, this); 375 do { 376 if (*RUA == *RUB) return true; 377 if (*RUA < *RUB) ++RUA; 378 else ++RUB; 379 } while (RUA.isValid() && RUB.isValid()); 380 return false; 381 } 382 383 /// hasRegUnit - Returns true if Reg contains RegUnit. hasRegUnit(unsigned Reg,unsigned RegUnit)384 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { 385 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) 386 if (*Units == RegUnit) 387 return true; 388 return false; 389 } 390 391 /// getCalleeSavedRegs - Return a null-terminated list of all of the 392 /// callee saved registers on this target. The register should be in the 393 /// order of desired callee-save stack frame offset. The first register is 394 /// closest to the incoming stack pointer if stack grows down, and vice versa. 395 /// 396 virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF = 0) 397 const = 0; 398 399 /// getCallPreservedMask - Return a mask of call-preserved registers for the 400 /// given calling convention on the current sub-target. The mask should 401 /// include all call-preserved aliases. This is used by the register 402 /// allocator to determine which registers can be live across a call. 403 /// 404 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 405 /// A set bit indicates that all bits of the corresponding register are 406 /// preserved across the function call. The bit mask is expected to be 407 /// sub-register complete, i.e. if A is preserved, so are all its 408 /// sub-registers. 409 /// 410 /// Bits are numbered from the LSB, so the bit for physical register Reg can 411 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 412 /// 413 /// A NULL pointer means that no register mask will be used, and call 414 /// instructions should use implicit-def operands to indicate call clobbered 415 /// registers. 416 /// getCallPreservedMask(CallingConv::ID)417 virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const { 418 // The default mask clobbers everything. All targets should override. 419 return 0; 420 } 421 422 /// getReservedRegs - Returns a bitset indexed by physical register number 423 /// indicating if a register is a special register that has particular uses 424 /// and should be considered unavailable at all times, e.g. SP, RA. This is 425 /// used by register scavenger to determine what registers are free. 426 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 427 428 /// getMatchingSuperReg - Return a super-register of the specified register 429 /// Reg so its sub-register of index SubIdx is Reg. getMatchingSuperReg(unsigned Reg,unsigned SubIdx,const TargetRegisterClass * RC)430 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 431 const TargetRegisterClass *RC) const { 432 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 433 } 434 435 /// getMatchingSuperRegClass - Return a subclass of the specified register 436 /// class A so that each register in it has a sub-register of the 437 /// specified sub-register index which is in the specified register class B. 438 /// 439 /// TableGen will synthesize missing A sub-classes. 440 virtual const TargetRegisterClass * 441 getMatchingSuperRegClass(const TargetRegisterClass *A, 442 const TargetRegisterClass *B, unsigned Idx) const; 443 444 /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that 445 /// supports the sub-register index Idx. 446 /// If no such sub-class exists, return NULL. 447 /// If all registers in RC already have an Idx sub-register, return RC. 448 /// 449 /// TableGen generates a version of this function that is good enough in most 450 /// cases. Targets can override if they have constraints that TableGen 451 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 452 /// supported by the full GR32 register class in 64-bit mode, but only by the 453 /// GR32_ABCD regiister class in 32-bit mode. 454 /// 455 /// TableGen will synthesize missing RC sub-classes. 456 virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)457 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 458 assert(Idx == 0 && "Target has no sub-registers"); 459 return RC; 460 } 461 462 /// composeSubRegIndices - Return the subregister index you get from composing 463 /// two subregister indices. 464 /// 465 /// The special null sub-register index composes as the identity. 466 /// 467 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 468 /// returns c. Note that composeSubRegIndices does not tell you about illegal 469 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 470 /// b, composeSubRegIndices doesn't tell you. 471 /// 472 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 473 /// ssub_0:S0 - ssub_3:S3 subregs. 474 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. 475 /// composeSubRegIndices(unsigned a,unsigned b)476 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 477 if (!a) return b; 478 if (!b) return a; 479 return composeSubRegIndicesImpl(a, b); 480 } 481 482 protected: 483 /// Overridden by TableGen in targets that have sub-registers. composeSubRegIndicesImpl(unsigned,unsigned)484 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 485 llvm_unreachable("Target has no sub-registers"); 486 } 487 488 public: 489 /// getCommonSuperRegClass - Find a common super-register class if it exists. 490 /// 491 /// Find a register class, SuperRC and two sub-register indices, PreA and 492 /// PreB, such that: 493 /// 494 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 495 /// 496 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 497 /// 498 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 499 /// 500 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 501 /// requirements, and there is no register class with a smaller spill size 502 /// that satisfies the requirements. 503 /// 504 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 505 /// 506 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 507 /// that case, the returned register class will be a sub-class of the 508 /// corresponding argument register class. 509 /// 510 /// The function returns NULL if no register class can be found. 511 /// 512 const TargetRegisterClass* 513 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 514 const TargetRegisterClass *RCB, unsigned SubB, 515 unsigned &PreA, unsigned &PreB) const; 516 517 //===--------------------------------------------------------------------===// 518 // Register Class Information 519 // 520 521 /// Register class iterators 522 /// regclass_begin()523 regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_end()524 regclass_iterator regclass_end() const { return RegClassEnd; } 525 getNumRegClasses()526 unsigned getNumRegClasses() const { 527 return (unsigned)(regclass_end()-regclass_begin()); 528 } 529 530 /// getRegClass - Returns the register class associated with the enumeration 531 /// value. See class MCOperandInfo. getRegClass(unsigned i)532 const TargetRegisterClass *getRegClass(unsigned i) const { 533 assert(i < getNumRegClasses() && "Register Class ID out of range"); 534 return RegClassBegin[i]; 535 } 536 537 /// getCommonSubClass - find the largest common subclass of A and B. Return 538 /// NULL if there is no common subclass. 539 const TargetRegisterClass * 540 getCommonSubClass(const TargetRegisterClass *A, 541 const TargetRegisterClass *B) const; 542 543 /// getPointerRegClass - Returns a TargetRegisterClass used for pointer 544 /// values. If a target supports multiple different pointer register classes, 545 /// kind specifies which one is indicated. 546 virtual const TargetRegisterClass * 547 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 548 llvm_unreachable("Target didn't implement getPointerRegClass!"); 549 } 550 551 /// getCrossCopyRegClass - Returns a legal register class to copy a register 552 /// in the specified class to or from. If it is possible to copy the register 553 /// directly without using a cross register class copy, return the specified 554 /// RC. Returns NULL if it is not possible to copy between a two registers of 555 /// the specified class. 556 virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass * RC)557 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 558 return RC; 559 } 560 561 /// getLargestLegalSuperClass - Returns the largest super class of RC that is 562 /// legal to use in the current sub-target and has the same spill size. 563 /// The returned register class can be used to create virtual registers which 564 /// means that all its registers can be copied and spilled. 565 virtual const TargetRegisterClass* getLargestLegalSuperClass(const TargetRegisterClass * RC)566 getLargestLegalSuperClass(const TargetRegisterClass *RC) const { 567 /// The default implementation is very conservative and doesn't allow the 568 /// register allocator to inflate register classes. 569 return RC; 570 } 571 572 /// getRegPressureLimit - Return the register pressure "high water mark" for 573 /// the specific register class. The scheduler is in high register pressure 574 /// mode (for the specific register class) if it goes over the limit. 575 /// 576 /// Note: this is the old register pressure model that relies on a manually 577 /// specified representative register class per value type. getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)578 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 579 MachineFunction &MF) const { 580 return 0; 581 } 582 583 /// Get the weight in units of pressure for this register class. 584 virtual const RegClassWeight &getRegClassWeight( 585 const TargetRegisterClass *RC) const = 0; 586 587 /// Get the weight in units of pressure for this register unit. 588 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 589 590 /// Get the number of dimensions of register pressure. 591 virtual unsigned getNumRegPressureSets() const = 0; 592 593 /// Get the name of this register unit pressure set. 594 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 595 596 /// Get the register unit pressure limit for this dimension. 597 /// This limit must be adjusted dynamically for reserved registers. 598 virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0; 599 600 /// Get the dimensions of register pressure impacted by this register class. 601 /// Returns a -1 terminated array of pressure set IDs. 602 virtual const int *getRegClassPressureSets( 603 const TargetRegisterClass *RC) const = 0; 604 605 /// Get the dimensions of register pressure impacted by this register unit. 606 /// Returns a -1 terminated array of pressure set IDs. 607 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 608 609 /// Get a list of 'hint' registers that the register allocator should try 610 /// first when allocating a physical register for the virtual register 611 /// VirtReg. These registers are effectively moved to the front of the 612 /// allocation order. 613 /// 614 /// The Order argument is the allocation order for VirtReg's register class 615 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 616 /// come from Order, and they must not be reserved. 617 /// 618 /// The default implementation of this function can resolve 619 /// target-independent hints provided to MRI::setRegAllocationHint with 620 /// HintType == 0. Targets that override this function should defer to the 621 /// default implementation if they have no reason to change the allocation 622 /// order for VirtReg. There may be target-independent hints. 623 virtual void getRegAllocationHints(unsigned VirtReg, 624 ArrayRef<MCPhysReg> Order, 625 SmallVectorImpl<MCPhysReg> &Hints, 626 const MachineFunction &MF, 627 const VirtRegMap *VRM = 0) const; 628 629 /// avoidWriteAfterWrite - Return true if the register allocator should avoid 630 /// writing a register from RC in two consecutive instructions. 631 /// This can avoid pipeline stalls on certain architectures. 632 /// It does cause increased register pressure, though. avoidWriteAfterWrite(const TargetRegisterClass * RC)633 virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const { 634 return false; 635 } 636 637 /// UpdateRegAllocHint - A callback to allow target a chance to update 638 /// register allocation hints when a register is "changed" (e.g. coalesced) 639 /// to another register. e.g. On ARM, some virtual registers should target 640 /// register pairs, if one of pair is coalesced to another register, the 641 /// allocation hint of the other half of the pair should be changed to point 642 /// to the new register. UpdateRegAllocHint(unsigned Reg,unsigned NewReg,MachineFunction & MF)643 virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg, 644 MachineFunction &MF) const { 645 // Do nothing. 646 } 647 648 /// requiresRegisterScavenging - returns true if the target requires (and can 649 /// make use of) the register scavenger. requiresRegisterScavenging(const MachineFunction & MF)650 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 651 return false; 652 } 653 654 /// useFPForScavengingIndex - returns true if the target wants to use 655 /// frame pointer based accesses to spill to the scavenger emergency spill 656 /// slot. useFPForScavengingIndex(const MachineFunction & MF)657 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 658 return true; 659 } 660 661 /// requiresFrameIndexScavenging - returns true if the target requires post 662 /// PEI scavenging of registers for materializing frame index constants. requiresFrameIndexScavenging(const MachineFunction & MF)663 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 664 return false; 665 } 666 667 /// requiresVirtualBaseRegisters - Returns true if the target wants the 668 /// LocalStackAllocation pass to be run and virtual base registers 669 /// used for more efficient stack access. requiresVirtualBaseRegisters(const MachineFunction & MF)670 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 671 return false; 672 } 673 674 /// hasReservedSpillSlot - Return true if target has reserved a spill slot in 675 /// the stack frame of the given function for the specified register. e.g. On 676 /// x86, if the frame register is required, the first fixed stack object is 677 /// reserved as its spill slot. This tells PEI not to create a new stack frame 678 /// object for the given register. It should be called only after 679 /// processFunctionBeforeCalleeSavedScan(). hasReservedSpillSlot(const MachineFunction & MF,unsigned Reg,int & FrameIdx)680 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, 681 int &FrameIdx) const { 682 return false; 683 } 684 685 /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked 686 /// after register allocation. trackLivenessAfterRegAlloc(const MachineFunction & MF)687 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 688 return false; 689 } 690 691 /// needsStackRealignment - true if storage within the function requires the 692 /// stack pointer to be aligned more than the normal calling convention calls 693 /// for. needsStackRealignment(const MachineFunction & MF)694 virtual bool needsStackRealignment(const MachineFunction &MF) const { 695 return false; 696 } 697 698 /// getFrameIndexInstrOffset - Get the offset from the referenced frame 699 /// index in the instruction, if there is one. getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)700 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 701 int Idx) const { 702 return 0; 703 } 704 705 /// needsFrameBaseReg - Returns true if the instruction's frame index 706 /// reference would be better served by a base register other than FP 707 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 708 /// references it should create new base registers for. needsFrameBaseReg(MachineInstr * MI,int64_t Offset)709 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 710 return false; 711 } 712 713 /// materializeFrameBaseRegister - Insert defining instruction(s) for 714 /// BaseReg to be a pointer to FrameIdx before insertion point I. materializeFrameBaseRegister(MachineBasicBlock * MBB,unsigned BaseReg,int FrameIdx,int64_t Offset)715 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, 716 unsigned BaseReg, int FrameIdx, 717 int64_t Offset) const { 718 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 719 "target"); 720 } 721 722 /// resolveFrameIndex - Resolve a frame index operand of an instruction 723 /// to reference the indicated base register plus offset instead. resolveFrameIndex(MachineBasicBlock::iterator I,unsigned BaseReg,int64_t Offset)724 virtual void resolveFrameIndex(MachineBasicBlock::iterator I, 725 unsigned BaseReg, int64_t Offset) const { 726 llvm_unreachable("resolveFrameIndex does not exist on this target"); 727 } 728 729 /// isFrameOffsetLegal - Determine whether a given offset immediate is 730 /// encodable to resolve a frame index. isFrameOffsetLegal(const MachineInstr * MI,int64_t Offset)731 virtual bool isFrameOffsetLegal(const MachineInstr *MI, 732 int64_t Offset) const { 733 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 734 } 735 736 737 /// saveScavengerRegister - Spill the register so it can be used by the 738 /// register scavenger. Return true if the register was spilled, false 739 /// otherwise. If this function does not spill the register, the scavenger 740 /// will instead spill it to the emergency spill slot. 741 /// saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,unsigned Reg)742 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 743 MachineBasicBlock::iterator I, 744 MachineBasicBlock::iterator &UseMI, 745 const TargetRegisterClass *RC, 746 unsigned Reg) const { 747 return false; 748 } 749 750 /// eliminateFrameIndex - This method must be overriden to eliminate abstract 751 /// frame indices from instructions which may use them. The instruction 752 /// referenced by the iterator contains an MO_FrameIndex operand which must be 753 /// eliminated by this method. This method may modify or replace the 754 /// specified instruction, as long as it keeps the iterator pointing at the 755 /// finished product. SPAdj is the SP adjustment due to call frame setup 756 /// instruction. FIOperandNum is the FI operand number. 757 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, 758 int SPAdj, unsigned FIOperandNum, 759 RegScavenger *RS = NULL) const = 0; 760 761 //===--------------------------------------------------------------------===// 762 /// Debug information queries. 763 764 /// getFrameRegister - This method should return the register used as a base 765 /// for values allocated in the current stack frame. 766 virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; 767 768 /// getCompactUnwindRegNum - This function maps the register to the number for 769 /// compact unwind encoding. Return -1 if the register isn't valid. getCompactUnwindRegNum(unsigned,bool)770 virtual int getCompactUnwindRegNum(unsigned, bool) const { 771 return -1; 772 } 773 }; 774 775 776 //===----------------------------------------------------------------------===// 777 // SuperRegClassIterator 778 //===----------------------------------------------------------------------===// 779 // 780 // Iterate over the possible super-registers for a given register class. The 781 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 782 // possible classes of super-registers. 783 // 784 // Each bit mask will have at least one set bit, and each set bit in Mask 785 // corresponds to a SuperRC such that: 786 // 787 // For all Reg in SuperRC: Reg:Idx is in RC. 788 // 789 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 790 // also satisfies the above requirement, assuming Reg:0 == Reg. 791 // 792 class SuperRegClassIterator { 793 const unsigned RCMaskWords; 794 unsigned SubReg; 795 const uint16_t *Idx; 796 const uint32_t *Mask; 797 798 public: 799 /// Create a SuperRegClassIterator that visits all the super-register classes 800 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 801 SuperRegClassIterator(const TargetRegisterClass *RC, 802 const TargetRegisterInfo *TRI, 803 bool IncludeSelf = false) 804 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 805 SubReg(0), 806 Idx(RC->getSuperRegIndices()), 807 Mask(RC->getSubClassMask()) { 808 if (!IncludeSelf) 809 ++*this; 810 } 811 812 /// Returns true if this iterator is still pointing at a valid entry. isValid()813 bool isValid() const { return Idx; } 814 815 /// Returns the current sub-register index. getSubReg()816 unsigned getSubReg() const { return SubReg; } 817 818 /// Returns the bit mask if register classes that getSubReg() projects into 819 /// RC. getMask()820 const uint32_t *getMask() const { return Mask; } 821 822 /// Advance iterator to the next entry. 823 void operator++() { 824 assert(isValid() && "Cannot move iterator past end."); 825 Mask += RCMaskWords; 826 SubReg = *Idx++; 827 if (!SubReg) 828 Idx = 0; 829 } 830 }; 831 832 // This is useful when building IndexedMaps keyed on virtual registers 833 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> { operatorVirtReg2IndexFunctor834 unsigned operator()(unsigned Reg) const { 835 return TargetRegisterInfo::virtReg2Index(Reg); 836 } 837 }; 838 839 /// PrintReg - Helper class for printing registers on a raw_ostream. 840 /// Prints virtual and physical registers with or without a TRI instance. 841 /// 842 /// The format is: 843 /// %noreg - NoRegister 844 /// %vreg5 - a virtual register. 845 /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI). 846 /// %EAX - a physical register 847 /// %physreg17 - a physical register when no TRI instance given. 848 /// 849 /// Usage: OS << PrintReg(Reg, TRI) << '\n'; 850 /// 851 class PrintReg { 852 const TargetRegisterInfo *TRI; 853 unsigned Reg; 854 unsigned SubIdx; 855 public: 856 explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, 857 unsigned subidx = 0) TRI(tri)858 : TRI(tri), Reg(reg), SubIdx(subidx) {} 859 void print(raw_ostream&) const; 860 }; 861 862 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) { 863 PR.print(OS); 864 return OS; 865 } 866 867 /// PrintRegUnit - Helper class for printing register units on a raw_ostream. 868 /// 869 /// Register units are named after their root registers: 870 /// 871 /// AL - Single root. 872 /// FP0~ST7 - Dual roots. 873 /// 874 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n'; 875 /// 876 class PrintRegUnit { 877 const TargetRegisterInfo *TRI; 878 unsigned Unit; 879 public: PrintRegUnit(unsigned unit,const TargetRegisterInfo * tri)880 PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri) 881 : TRI(tri), Unit(unit) {} 882 void print(raw_ostream&) const; 883 }; 884 885 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) { 886 PR.print(OS); 887 return OS; 888 } 889 890 } // End llvm namespace 891 892 #endif 893