• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "dyld"
15 #include "RuntimeDyldMachO.h"
16 #include "llvm/ADT/OwningPtr.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 using namespace llvm;
20 using namespace llvm::object;
21 
22 namespace llvm {
23 
resolveRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)24 void RuntimeDyldMachO::resolveRelocation(const SectionEntry &Section,
25                                          uint64_t Offset,
26                                          uint64_t Value,
27                                          uint32_t Type,
28                                          int64_t Addend) {
29   uint8_t *LocalAddress = Section.Address + Offset;
30   uint64_t FinalAddress = Section.LoadAddress + Offset;
31   bool isPCRel = (Type >> 24) & 1;
32   unsigned MachoType = (Type >> 28) & 0xf;
33   unsigned Size = 1 << ((Type >> 25) & 3);
34 
35   DEBUG(dbgs() << "resolveRelocation LocalAddress: "
36         << format("%p", LocalAddress)
37         << " FinalAddress: " << format("%p", FinalAddress)
38         << " Value: " << format("%p", Value)
39         << " Addend: " << Addend
40         << " isPCRel: " << isPCRel
41         << " MachoType: " << MachoType
42         << " Size: " << Size
43         << "\n");
44 
45   // This just dispatches to the proper target specific routine.
46   switch (Arch) {
47   default: llvm_unreachable("Unsupported CPU type!");
48   case Triple::x86_64:
49     resolveX86_64Relocation(LocalAddress,
50                             FinalAddress,
51                             (uintptr_t)Value,
52                             isPCRel,
53                             MachoType,
54                             Size,
55                             Addend);
56     break;
57   case Triple::x86:
58     resolveI386Relocation(LocalAddress,
59                           FinalAddress,
60                           (uintptr_t)Value,
61                           isPCRel,
62                           MachoType,
63                           Size,
64                           Addend);
65     break;
66   case Triple::arm:    // Fall through.
67   case Triple::thumb:
68     resolveARMRelocation(LocalAddress,
69                          FinalAddress,
70                          (uintptr_t)Value,
71                          isPCRel,
72                          MachoType,
73                          Size,
74                          Addend);
75     break;
76   }
77 }
78 
resolveI386Relocation(uint8_t * LocalAddress,uint64_t FinalAddress,uint64_t Value,bool isPCRel,unsigned Type,unsigned Size,int64_t Addend)79 bool RuntimeDyldMachO::resolveI386Relocation(uint8_t *LocalAddress,
80                                              uint64_t FinalAddress,
81                                              uint64_t Value,
82                                              bool isPCRel,
83                                              unsigned Type,
84                                              unsigned Size,
85                                              int64_t Addend) {
86   if (isPCRel)
87     Value -= FinalAddress + 4; // see resolveX86_64Relocation
88 
89   switch (Type) {
90   default:
91     llvm_unreachable("Invalid relocation type!");
92   case macho::RIT_Vanilla: {
93     uint8_t *p = LocalAddress;
94     uint64_t ValueToWrite = Value + Addend;
95     for (unsigned i = 0; i < Size; ++i) {
96       *p++ = (uint8_t)(ValueToWrite & 0xff);
97       ValueToWrite >>= 8;
98     }
99     return false;
100   }
101   case macho::RIT_Difference:
102   case macho::RIT_Generic_LocalDifference:
103   case macho::RIT_Generic_PreboundLazyPointer:
104     return Error("Relocation type not implemented yet!");
105   }
106 }
107 
resolveX86_64Relocation(uint8_t * LocalAddress,uint64_t FinalAddress,uint64_t Value,bool isPCRel,unsigned Type,unsigned Size,int64_t Addend)108 bool RuntimeDyldMachO::resolveX86_64Relocation(uint8_t *LocalAddress,
109                                                uint64_t FinalAddress,
110                                                uint64_t Value,
111                                                bool isPCRel,
112                                                unsigned Type,
113                                                unsigned Size,
114                                                int64_t Addend) {
115   // If the relocation is PC-relative, the value to be encoded is the
116   // pointer difference.
117   if (isPCRel)
118     // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
119     // address. Is that expected? Only for branches, perhaps?
120     Value -= FinalAddress + 4;
121 
122   switch(Type) {
123   default:
124     llvm_unreachable("Invalid relocation type!");
125   case macho::RIT_X86_64_Signed1:
126   case macho::RIT_X86_64_Signed2:
127   case macho::RIT_X86_64_Signed4:
128   case macho::RIT_X86_64_Signed:
129   case macho::RIT_X86_64_Unsigned:
130   case macho::RIT_X86_64_Branch: {
131     Value += Addend;
132     // Mask in the target value a byte at a time (we don't have an alignment
133     // guarantee for the target address, so this is safest).
134     uint8_t *p = (uint8_t*)LocalAddress;
135     for (unsigned i = 0; i < Size; ++i) {
136       *p++ = (uint8_t)Value;
137       Value >>= 8;
138     }
139     return false;
140   }
141   case macho::RIT_X86_64_GOTLoad:
142   case macho::RIT_X86_64_GOT:
143   case macho::RIT_X86_64_Subtractor:
144   case macho::RIT_X86_64_TLV:
145     return Error("Relocation type not implemented yet!");
146   }
147 }
148 
resolveARMRelocation(uint8_t * LocalAddress,uint64_t FinalAddress,uint64_t Value,bool isPCRel,unsigned Type,unsigned Size,int64_t Addend)149 bool RuntimeDyldMachO::resolveARMRelocation(uint8_t *LocalAddress,
150                                             uint64_t FinalAddress,
151                                             uint64_t Value,
152                                             bool isPCRel,
153                                             unsigned Type,
154                                             unsigned Size,
155                                             int64_t Addend) {
156   // If the relocation is PC-relative, the value to be encoded is the
157   // pointer difference.
158   if (isPCRel) {
159     Value -= FinalAddress;
160     // ARM PCRel relocations have an effective-PC offset of two instructions
161     // (four bytes in Thumb mode, 8 bytes in ARM mode).
162     // FIXME: For now, assume ARM mode.
163     Value -= 8;
164   }
165 
166   switch(Type) {
167   default:
168     llvm_unreachable("Invalid relocation type!");
169   case macho::RIT_Vanilla: {
170     // Mask in the target value a byte at a time (we don't have an alignment
171     // guarantee for the target address, so this is safest).
172     uint8_t *p = (uint8_t*)LocalAddress;
173     for (unsigned i = 0; i < Size; ++i) {
174       *p++ = (uint8_t)Value;
175       Value >>= 8;
176     }
177     break;
178   }
179   case macho::RIT_ARM_Branch24Bit: {
180     // Mask the value into the target address. We know instructions are
181     // 32-bit aligned, so we can do it all at once.
182     uint32_t *p = (uint32_t*)LocalAddress;
183     // The low two bits of the value are not encoded.
184     Value >>= 2;
185     // Mask the value to 24 bits.
186     Value &= 0xffffff;
187     // FIXME: If the destination is a Thumb function (and the instruction
188     // is a non-predicated BL instruction), we need to change it to a BLX
189     // instruction instead.
190 
191     // Insert the value into the instruction.
192     *p = (*p & ~0xffffff) | Value;
193     break;
194   }
195   case macho::RIT_ARM_ThumbBranch22Bit:
196   case macho::RIT_ARM_ThumbBranch32Bit:
197   case macho::RIT_ARM_Half:
198   case macho::RIT_ARM_HalfDifference:
199   case macho::RIT_Pair:
200   case macho::RIT_Difference:
201   case macho::RIT_ARM_LocalDifference:
202   case macho::RIT_ARM_PreboundLazyPointer:
203     return Error("Relocation type not implemented yet!");
204   }
205   return false;
206 }
207 
processRelocationRef(const ObjRelocationInfo & Rel,ObjectImage & Obj,ObjSectionToIDMap & ObjSectionToID,const SymbolTableMap & Symbols,StubMap & Stubs)208 void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel,
209                                             ObjectImage &Obj,
210                                             ObjSectionToIDMap &ObjSectionToID,
211                                             const SymbolTableMap &Symbols,
212                                             StubMap &Stubs) {
213 
214   uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
215   RelocationValueRef Value;
216   SectionEntry &Section = Sections[Rel.SectionID];
217 
218   bool isExtern = (RelType >> 27) & 1;
219   if (isExtern) {
220     // Obtain the symbol name which is referenced in the relocation
221     StringRef TargetName;
222     const SymbolRef &Symbol = Rel.Symbol;
223     Symbol.getName(TargetName);
224     // First search for the symbol in the local symbol table
225     SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
226     if (lsi != Symbols.end()) {
227       Value.SectionID = lsi->second.first;
228       Value.Addend = lsi->second.second;
229     } else {
230       // Search for the symbol in the global symbol table
231       SymbolTableMap::const_iterator gsi = GlobalSymbolTable.find(TargetName.data());
232       if (gsi != GlobalSymbolTable.end()) {
233         Value.SectionID = gsi->second.first;
234         Value.Addend = gsi->second.second;
235       } else
236         Value.SymbolName = TargetName.data();
237     }
238   } else {
239     error_code err;
240     uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
241     section_iterator si = Obj.begin_sections(),
242                      se = Obj.end_sections();
243     for (uint8_t i = 1; i < sectionIndex; i++) {
244       error_code err;
245       si.increment(err);
246       if (si == se)
247         break;
248     }
249     assert(si != se && "No section containing relocation!");
250     Value.SectionID = findOrEmitSection(Obj, *si, true, ObjSectionToID);
251     Value.Addend = 0;
252     // FIXME: The size and type of the relocation determines if we can
253     // encode an Addend in the target location itself, and if so, how many
254     // bytes we should read in order to get it. We don't yet support doing
255     // that, and just assuming it's sizeof(intptr_t) is blatantly wrong.
256     //Value.Addend = *(const intptr_t *)Target;
257     if (Value.Addend) {
258       // The MachO addend is an offset from the current section.  We need it
259       // to be an offset from the destination section
260       Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
261     }
262   }
263 
264   if (Arch == Triple::arm && (RelType & 0xf) == macho::RIT_ARM_Branch24Bit) {
265     // This is an ARM branch relocation, need to use a stub function.
266 
267     //  Look up for existing stub.
268     StubMap::const_iterator i = Stubs.find(Value);
269     if (i != Stubs.end())
270       resolveRelocation(Section, Rel.Offset,
271                         (uint64_t)Section.Address + i->second,
272                         RelType, 0);
273     else {
274       // Create a new stub function.
275       Stubs[Value] = Section.StubOffset;
276       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
277                                                    Section.StubOffset);
278       RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
279                          macho::RIT_Vanilla, Value.Addend);
280       if (Value.SymbolName)
281         addRelocationForSymbol(RE, Value.SymbolName);
282       else
283         addRelocationForSection(RE, Value.SectionID);
284       resolveRelocation(Section, Rel.Offset,
285                         (uint64_t)Section.Address + Section.StubOffset,
286                         RelType, 0);
287       Section.StubOffset += getMaxStubSize();
288     }
289   } else {
290     RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
291     if (Value.SymbolName)
292       addRelocationForSymbol(RE, Value.SymbolName);
293     else
294       addRelocationForSection(RE, Value.SectionID);
295   }
296 }
297 
298 
isCompatibleFormat(const ObjectBuffer * InputBuffer) const299 bool RuntimeDyldMachO::isCompatibleFormat(
300         const ObjectBuffer *InputBuffer) const {
301   if (InputBuffer->getBufferSize() < 4)
302     return false;
303   StringRef Magic(InputBuffer->getBufferStart(), 4);
304   if (Magic == "\xFE\xED\xFA\xCE") return true;
305   if (Magic == "\xCE\xFA\xED\xFE") return true;
306   if (Magic == "\xFE\xED\xFA\xCF") return true;
307   if (Magic == "\xCF\xFA\xED\xFE") return true;
308   return false;
309 }
310 
311 } // end namespace llvm
312