• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the abstract interface that implements execution support
11 // for LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/ValueMap.h"
22 #include "llvm/MC/MCCodeGenInfo.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/Mutex.h"
25 #include "llvm/Support/ValueHandle.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Target/TargetOptions.h"
28 #include <map>
29 #include <string>
30 #include <vector>
31 
32 namespace llvm {
33 
34 struct GenericValue;
35 class Constant;
36 class ExecutionEngine;
37 class Function;
38 class GlobalVariable;
39 class GlobalValue;
40 class JITEventListener;
41 class JITMemoryManager;
42 class MachineCodeInfo;
43 class Module;
44 class MutexGuard;
45 class DataLayout;
46 class Triple;
47 class Type;
48 
49 /// \brief Helper class for helping synchronize access to the global address map
50 /// table.
51 class ExecutionEngineState {
52 public:
53   struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
54     typedef ExecutionEngineState *ExtraData;
55     static sys::Mutex *getMutex(ExecutionEngineState *EES);
56     static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
57     static void onRAUW(ExecutionEngineState *, const GlobalValue *,
58                        const GlobalValue *);
59   };
60 
61   typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
62       GlobalAddressMapTy;
63 
64 private:
65   ExecutionEngine &EE;
66 
67   /// GlobalAddressMap - A mapping between LLVM global values and their
68   /// actualized version...
69   GlobalAddressMapTy GlobalAddressMap;
70 
71   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
72   /// used to convert raw addresses into the LLVM global value that is emitted
73   /// at the address.  This map is not computed unless getGlobalValueAtAddress
74   /// is called at some point.
75   std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
76 
77 public:
78   ExecutionEngineState(ExecutionEngine &EE);
79 
getGlobalAddressMap(const MutexGuard &)80   GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
81     return GlobalAddressMap;
82   }
83 
84   std::map<void*, AssertingVH<const GlobalValue> > &
getGlobalAddressReverseMap(const MutexGuard &)85   getGlobalAddressReverseMap(const MutexGuard &) {
86     return GlobalAddressReverseMap;
87   }
88 
89   /// \brief Erase an entry from the mapping table.
90   ///
91   /// \returns The address that \p ToUnmap was happed to.
92   void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
93 };
94 
95 /// \brief Abstract interface for implementation execution of LLVM modules,
96 /// designed to support both interpreter and just-in-time (JIT) compiler
97 /// implementations.
98 class ExecutionEngine {
99   /// The state object holding the global address mapping, which must be
100   /// accessed synchronously.
101   //
102   // FIXME: There is no particular need the entire map needs to be
103   // synchronized.  Wouldn't a reader-writer design be better here?
104   ExecutionEngineState EEState;
105 
106   /// The target data for the platform for which execution is being performed.
107   const DataLayout *TD;
108 
109   /// Whether lazy JIT compilation is enabled.
110   bool CompilingLazily;
111 
112   /// Whether JIT compilation of external global variables is allowed.
113   bool GVCompilationDisabled;
114 
115   /// Whether the JIT should perform lookups of external symbols (e.g.,
116   /// using dlsym).
117   bool SymbolSearchingDisabled;
118 
119   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
120 
121 protected:
122   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
123   /// optimize for the case where there is only one module.
124   SmallVector<Module*, 1> Modules;
125 
setDataLayout(const DataLayout * td)126   void setDataLayout(const DataLayout *td) { TD = td; }
127 
128   /// getMemoryforGV - Allocate memory for a global variable.
129   virtual char *getMemoryForGV(const GlobalVariable *GV);
130 
131   // To avoid having libexecutionengine depend on the JIT and interpreter
132   // libraries, the execution engine implementations set these functions to ctor
133   // pointers at startup time if they are linked in.
134   static ExecutionEngine *(*JITCtor)(
135     Module *M,
136     std::string *ErrorStr,
137     JITMemoryManager *JMM,
138     bool GVsWithCode,
139     TargetMachine *TM);
140   static ExecutionEngine *(*MCJITCtor)(
141     Module *M,
142     std::string *ErrorStr,
143     JITMemoryManager *JMM,
144     bool GVsWithCode,
145     TargetMachine *TM);
146   static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
147 
148   /// LazyFunctionCreator - If an unknown function is needed, this function
149   /// pointer is invoked to create it.  If this returns null, the JIT will
150   /// abort.
151   void *(*LazyFunctionCreator)(const std::string &);
152 
153   /// ExceptionTableRegister - If Exception Handling is set, the JIT will
154   /// register dwarf tables with this function.
155   typedef void (*EERegisterFn)(void*);
156   EERegisterFn ExceptionTableRegister;
157   EERegisterFn ExceptionTableDeregister;
158   /// This maps functions to their exception tables frames.
159   DenseMap<const Function*, void*> AllExceptionTables;
160 
161 
162 public:
163   /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
164   /// JITEmitter classes.  It must be held while changing the internal state of
165   /// any of those classes.
166   sys::Mutex lock;
167 
168   //===--------------------------------------------------------------------===//
169   //  ExecutionEngine Startup
170   //===--------------------------------------------------------------------===//
171 
172   virtual ~ExecutionEngine();
173 
174   /// create - This is the factory method for creating an execution engine which
175   /// is appropriate for the current machine.  This takes ownership of the
176   /// module.
177   ///
178   /// \param GVsWithCode - Allocating globals with code breaks
179   /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
180   /// However, we have clients who depend on this behavior, so we must support
181   /// it.  Eventually, when we're willing to break some backwards compatibility,
182   /// this flag should be flipped to false, so that by default
183   /// freeMachineCodeForFunction works.
184   static ExecutionEngine *create(Module *M,
185                                  bool ForceInterpreter = false,
186                                  std::string *ErrorStr = 0,
187                                  CodeGenOpt::Level OptLevel =
188                                  CodeGenOpt::Default,
189                                  bool GVsWithCode = true);
190 
191   /// createJIT - This is the factory method for creating a JIT for the current
192   /// machine, it does not fall back to the interpreter.  This takes ownership
193   /// of the Module and JITMemoryManager if successful.
194   ///
195   /// Clients should make sure to initialize targets prior to calling this
196   /// function.
197   static ExecutionEngine *createJIT(Module *M,
198                                     std::string *ErrorStr = 0,
199                                     JITMemoryManager *JMM = 0,
200                                     CodeGenOpt::Level OptLevel =
201                                     CodeGenOpt::Default,
202                                     bool GVsWithCode = true,
203                                     Reloc::Model RM = Reloc::Default,
204                                     CodeModel::Model CMM =
205                                     CodeModel::JITDefault);
206 
207   /// addModule - Add a Module to the list of modules that we can JIT from.
208   /// Note that this takes ownership of the Module: when the ExecutionEngine is
209   /// destroyed, it destroys the Module as well.
addModule(Module * M)210   virtual void addModule(Module *M) {
211     Modules.push_back(M);
212   }
213 
214   //===--------------------------------------------------------------------===//
215 
getDataLayout()216   const DataLayout *getDataLayout() const { return TD; }
217 
218   /// removeModule - Remove a Module from the list of modules.  Returns true if
219   /// M is found.
220   virtual bool removeModule(Module *M);
221 
222   /// FindFunctionNamed - Search all of the active modules to find the one that
223   /// defines FnName.  This is very slow operation and shouldn't be used for
224   /// general code.
225   Function *FindFunctionNamed(const char *FnName);
226 
227   /// runFunction - Execute the specified function with the specified arguments,
228   /// and return the result.
229   virtual GenericValue runFunction(Function *F,
230                                 const std::vector<GenericValue> &ArgValues) = 0;
231 
232   /// getPointerToNamedFunction - This method returns the address of the
233   /// specified function by using the dlsym function call.  As such it is only
234   /// useful for resolving library symbols, not code generated symbols.
235   ///
236   /// If AbortOnFailure is false and no function with the given name is
237   /// found, this function silently returns a null pointer. Otherwise,
238   /// it prints a message to stderr and aborts.
239   ///
240   virtual void *getPointerToNamedFunction(const std::string &Name,
241                                           bool AbortOnFailure = true) = 0;
242 
243   /// mapSectionAddress - map a section to its target address space value.
244   /// Map the address of a JIT section as returned from the memory manager
245   /// to the address in the target process as the running code will see it.
246   /// This is the address which will be used for relocation resolution.
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)247   virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) {
248     llvm_unreachable("Re-mapping of section addresses not supported with this "
249                      "EE!");
250   }
251 
252   // finalizeObject - This method should be called after sections within an
253   // object have been relocated using mapSectionAddress.  When this method is
254   // called the MCJIT execution engine will reapply relocations for a loaded
255   // object.  This method has no effect for the legacy JIT engine or the
256   // interpeter.
finalizeObject()257   virtual void finalizeObject() {}
258 
259   /// runStaticConstructorsDestructors - This method is used to execute all of
260   /// the static constructors or destructors for a program.
261   ///
262   /// \param isDtors - Run the destructors instead of constructors.
263   void runStaticConstructorsDestructors(bool isDtors);
264 
265   /// runStaticConstructorsDestructors - This method is used to execute all of
266   /// the static constructors or destructors for a particular module.
267   ///
268   /// \param isDtors - Run the destructors instead of constructors.
269   void runStaticConstructorsDestructors(Module *module, bool isDtors);
270 
271 
272   /// runFunctionAsMain - This is a helper function which wraps runFunction to
273   /// handle the common task of starting up main with the specified argc, argv,
274   /// and envp parameters.
275   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
276                         const char * const * envp);
277 
278 
279   /// addGlobalMapping - Tell the execution engine that the specified global is
280   /// at the specified location.  This is used internally as functions are JIT'd
281   /// and as global variables are laid out in memory.  It can and should also be
282   /// used by clients of the EE that want to have an LLVM global overlay
283   /// existing data in memory.  Mappings are automatically removed when their
284   /// GlobalValue is destroyed.
285   void addGlobalMapping(const GlobalValue *GV, void *Addr);
286 
287   /// clearAllGlobalMappings - Clear all global mappings and start over again,
288   /// for use in dynamic compilation scenarios to move globals.
289   void clearAllGlobalMappings();
290 
291   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
292   /// particular module, because it has been removed from the JIT.
293   void clearGlobalMappingsFromModule(Module *M);
294 
295   /// updateGlobalMapping - Replace an existing mapping for GV with a new
296   /// address.  This updates both maps as required.  If "Addr" is null, the
297   /// entry for the global is removed from the mappings.  This returns the old
298   /// value of the pointer, or null if it was not in the map.
299   void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
300 
301   /// getPointerToGlobalIfAvailable - This returns the address of the specified
302   /// global value if it is has already been codegen'd, otherwise it returns
303   /// null.
304   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
305 
306   /// getPointerToGlobal - This returns the address of the specified global
307   /// value. This may involve code generation if it's a function.
308   void *getPointerToGlobal(const GlobalValue *GV);
309 
310   /// getPointerToFunction - The different EE's represent function bodies in
311   /// different ways.  They should each implement this to say what a function
312   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
313   /// remove its global mapping and free any machine code.  Be sure no threads
314   /// are running inside F when that happens.
315   virtual void *getPointerToFunction(Function *F) = 0;
316 
317   /// getPointerToBasicBlock - The different EE's represent basic blocks in
318   /// different ways.  Return the representation for a blockaddress of the
319   /// specified block.
320   virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
321 
322   /// getPointerToFunctionOrStub - If the specified function has been
323   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
324   /// a stub to implement lazy compilation if available.  See
325   /// getPointerToFunction for the requirements on destroying F.
getPointerToFunctionOrStub(Function * F)326   virtual void *getPointerToFunctionOrStub(Function *F) {
327     // Default implementation, just codegen the function.
328     return getPointerToFunction(F);
329   }
330 
331   // The JIT overrides a version that actually does this.
332   virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
333 
334   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
335   /// at the specified address.
336   ///
337   const GlobalValue *getGlobalValueAtAddress(void *Addr);
338 
339   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
340   /// Ptr is the address of the memory at which to store Val, cast to
341   /// GenericValue *.  It is not a pointer to a GenericValue containing the
342   /// address at which to store Val.
343   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
344                           Type *Ty);
345 
346   void InitializeMemory(const Constant *Init, void *Addr);
347 
348   /// recompileAndRelinkFunction - This method is used to force a function which
349   /// has already been compiled to be compiled again, possibly after it has been
350   /// modified.  Then the entry to the old copy is overwritten with a branch to
351   /// the new copy.  If there was no old copy, this acts just like
352   /// VM::getPointerToFunction().
353   virtual void *recompileAndRelinkFunction(Function *F) = 0;
354 
355   /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
356   /// corresponding to the machine code emitted to execute this function, useful
357   /// for garbage-collecting generated code.
358   virtual void freeMachineCodeForFunction(Function *F) = 0;
359 
360   /// getOrEmitGlobalVariable - Return the address of the specified global
361   /// variable, possibly emitting it to memory if needed.  This is used by the
362   /// Emitter.
getOrEmitGlobalVariable(const GlobalVariable * GV)363   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
364     return getPointerToGlobal((const GlobalValue *)GV);
365   }
366 
367   /// Registers a listener to be called back on various events within
368   /// the JIT.  See JITEventListener.h for more details.  Does not
369   /// take ownership of the argument.  The argument may be NULL, in
370   /// which case these functions do nothing.
RegisterJITEventListener(JITEventListener *)371   virtual void RegisterJITEventListener(JITEventListener *) {}
UnregisterJITEventListener(JITEventListener *)372   virtual void UnregisterJITEventListener(JITEventListener *) {}
373 
374   /// DisableLazyCompilation - When lazy compilation is off (the default), the
375   /// JIT will eagerly compile every function reachable from the argument to
376   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
377   /// compile the one function and emit stubs to compile the rest when they're
378   /// first called.  If lazy compilation is turned off again while some lazy
379   /// stubs are still around, and one of those stubs is called, the program will
380   /// abort.
381   ///
382   /// In order to safely compile lazily in a threaded program, the user must
383   /// ensure that 1) only one thread at a time can call any particular lazy
384   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
385   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
386   /// lazy stub.  See http://llvm.org/PR5184 for details.
387   void DisableLazyCompilation(bool Disabled = true) {
388     CompilingLazily = !Disabled;
389   }
isCompilingLazily()390   bool isCompilingLazily() const {
391     return CompilingLazily;
392   }
393   // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
394   // Remove this in LLVM 2.8.
isLazyCompilationDisabled()395   bool isLazyCompilationDisabled() const {
396     return !CompilingLazily;
397   }
398 
399   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
400   /// allocate space and populate a GlobalVariable that is not internal to
401   /// the module.
402   void DisableGVCompilation(bool Disabled = true) {
403     GVCompilationDisabled = Disabled;
404   }
isGVCompilationDisabled()405   bool isGVCompilationDisabled() const {
406     return GVCompilationDisabled;
407   }
408 
409   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
410   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
411   /// resolve symbols in a custom way.
412   void DisableSymbolSearching(bool Disabled = true) {
413     SymbolSearchingDisabled = Disabled;
414   }
isSymbolSearchingDisabled()415   bool isSymbolSearchingDisabled() const {
416     return SymbolSearchingDisabled;
417   }
418 
419   /// InstallLazyFunctionCreator - If an unknown function is needed, the
420   /// specified function pointer is invoked to create it.  If it returns null,
421   /// the JIT will abort.
InstallLazyFunctionCreator(void * (* P)(const std::string &))422   void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
423     LazyFunctionCreator = P;
424   }
425 
426   /// InstallExceptionTableRegister - The JIT will use the given function
427   /// to register the exception tables it generates.
InstallExceptionTableRegister(EERegisterFn F)428   void InstallExceptionTableRegister(EERegisterFn F) {
429     ExceptionTableRegister = F;
430   }
InstallExceptionTableDeregister(EERegisterFn F)431   void InstallExceptionTableDeregister(EERegisterFn F) {
432     ExceptionTableDeregister = F;
433   }
434 
435   /// RegisterTable - Registers the given pointer as an exception table.  It
436   /// uses the ExceptionTableRegister function.
RegisterTable(const Function * fn,void * res)437   void RegisterTable(const Function *fn, void* res) {
438     if (ExceptionTableRegister) {
439       ExceptionTableRegister(res);
440       AllExceptionTables[fn] = res;
441     }
442   }
443 
444   /// DeregisterTable - Deregisters the exception frame previously registered
445   /// for the given function.
DeregisterTable(const Function * Fn)446   void DeregisterTable(const Function *Fn) {
447     if (ExceptionTableDeregister) {
448       DenseMap<const Function*, void*>::iterator frame =
449         AllExceptionTables.find(Fn);
450       if(frame != AllExceptionTables.end()) {
451         ExceptionTableDeregister(frame->second);
452         AllExceptionTables.erase(frame);
453       }
454     }
455   }
456 
457   /// DeregisterAllTables - Deregisters all previously registered pointers to an
458   /// exception tables.  It uses the ExceptionTableoDeregister function.
459   void DeregisterAllTables();
460 
461 protected:
462   explicit ExecutionEngine(Module *M);
463 
464   void emitGlobals();
465 
466   void EmitGlobalVariable(const GlobalVariable *GV);
467 
468   GenericValue getConstantValue(const Constant *C);
469   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
470                            Type *Ty);
471 };
472 
473 namespace EngineKind {
474   // These are actually bitmasks that get or-ed together.
475   enum Kind {
476     JIT         = 0x1,
477     Interpreter = 0x2
478   };
479   const static Kind Either = (Kind)(JIT | Interpreter);
480 }
481 
482 /// EngineBuilder - Builder class for ExecutionEngines.  Use this by
483 /// stack-allocating a builder, chaining the various set* methods, and
484 /// terminating it with a .create() call.
485 class EngineBuilder {
486 private:
487   Module *M;
488   EngineKind::Kind WhichEngine;
489   std::string *ErrorStr;
490   CodeGenOpt::Level OptLevel;
491   JITMemoryManager *JMM;
492   bool AllocateGVsWithCode;
493   TargetOptions Options;
494   Reloc::Model RelocModel;
495   CodeModel::Model CMModel;
496   std::string MArch;
497   std::string MCPU;
498   SmallVector<std::string, 4> MAttrs;
499   bool UseMCJIT;
500 
501   /// InitEngine - Does the common initialization of default options.
InitEngine()502   void InitEngine() {
503     WhichEngine = EngineKind::Either;
504     ErrorStr = NULL;
505     OptLevel = CodeGenOpt::Default;
506     JMM = NULL;
507     Options = TargetOptions();
508     AllocateGVsWithCode = false;
509     RelocModel = Reloc::Default;
510     CMModel = CodeModel::JITDefault;
511     UseMCJIT = false;
512   }
513 
514 public:
515   /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
516   /// is successful, the created engine takes ownership of the module.
EngineBuilder(Module * m)517   EngineBuilder(Module *m) : M(m) {
518     InitEngine();
519   }
520 
521   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
522   /// or whichever engine works.  This option defaults to EngineKind::Either.
setEngineKind(EngineKind::Kind w)523   EngineBuilder &setEngineKind(EngineKind::Kind w) {
524     WhichEngine = w;
525     return *this;
526   }
527 
528   /// setJITMemoryManager - Sets the memory manager to use.  This allows
529   /// clients to customize their memory allocation policies.  If create() is
530   /// called and is successful, the created engine takes ownership of the
531   /// memory manager.  This option defaults to NULL.
setJITMemoryManager(JITMemoryManager * jmm)532   EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
533     JMM = jmm;
534     return *this;
535   }
536 
537   /// setErrorStr - Set the error string to write to on error.  This option
538   /// defaults to NULL.
setErrorStr(std::string * e)539   EngineBuilder &setErrorStr(std::string *e) {
540     ErrorStr = e;
541     return *this;
542   }
543 
544   /// setOptLevel - Set the optimization level for the JIT.  This option
545   /// defaults to CodeGenOpt::Default.
setOptLevel(CodeGenOpt::Level l)546   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
547     OptLevel = l;
548     return *this;
549   }
550 
551   /// setTargetOptions - Set the target options that the ExecutionEngine
552   /// target is using. Defaults to TargetOptions().
setTargetOptions(const TargetOptions & Opts)553   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
554     Options = Opts;
555     return *this;
556   }
557 
558   /// setRelocationModel - Set the relocation model that the ExecutionEngine
559   /// target is using. Defaults to target specific default "Reloc::Default".
setRelocationModel(Reloc::Model RM)560   EngineBuilder &setRelocationModel(Reloc::Model RM) {
561     RelocModel = RM;
562     return *this;
563   }
564 
565   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
566   /// data is using. Defaults to target specific default
567   /// "CodeModel::JITDefault".
setCodeModel(CodeModel::Model M)568   EngineBuilder &setCodeModel(CodeModel::Model M) {
569     CMModel = M;
570     return *this;
571   }
572 
573   /// setAllocateGVsWithCode - Sets whether global values should be allocated
574   /// into the same buffer as code.  For most applications this should be set
575   /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
576   /// and is probably unsafe and bad for performance.  However, we have clients
577   /// who depend on this behavior, so we must support it.  This option defaults
578   /// to false so that users of the new API can safely use the new memory
579   /// manager and free machine code.
setAllocateGVsWithCode(bool a)580   EngineBuilder &setAllocateGVsWithCode(bool a) {
581     AllocateGVsWithCode = a;
582     return *this;
583   }
584 
585   /// setMArch - Override the architecture set by the Module's triple.
setMArch(StringRef march)586   EngineBuilder &setMArch(StringRef march) {
587     MArch.assign(march.begin(), march.end());
588     return *this;
589   }
590 
591   /// setMCPU - Target a specific cpu type.
setMCPU(StringRef mcpu)592   EngineBuilder &setMCPU(StringRef mcpu) {
593     MCPU.assign(mcpu.begin(), mcpu.end());
594     return *this;
595   }
596 
597   /// setUseMCJIT - Set whether the MC-JIT implementation should be used
598   /// (experimental).
setUseMCJIT(bool Value)599   EngineBuilder &setUseMCJIT(bool Value) {
600     UseMCJIT = Value;
601     return *this;
602   }
603 
604   /// setMAttrs - Set cpu-specific attributes.
605   template<typename StringSequence>
setMAttrs(const StringSequence & mattrs)606   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
607     MAttrs.clear();
608     MAttrs.append(mattrs.begin(), mattrs.end());
609     return *this;
610   }
611 
612   TargetMachine *selectTarget();
613 
614   /// selectTarget - Pick a target either via -march or by guessing the native
615   /// arch.  Add any CPU features specified via -mcpu or -mattr.
616   TargetMachine *selectTarget(const Triple &TargetTriple,
617                               StringRef MArch,
618                               StringRef MCPU,
619                               const SmallVectorImpl<std::string>& MAttrs);
620 
create()621   ExecutionEngine *create() {
622     return create(selectTarget());
623   }
624 
625   ExecutionEngine *create(TargetMachine *TM);
626 };
627 
628 } // End llvm namespace
629 
630 #endif
631