1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
11 // conditions), based off of an annotation system.
12 //
13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14 // information.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "clang/Analysis/Analyses/ThreadSafety.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
25 #include "clang/Analysis/AnalysisContext.h"
26 #include "clang/Analysis/CFG.h"
27 #include "clang/Analysis/CFGStmtMap.h"
28 #include "clang/Basic/OperatorKinds.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/FoldingSet.h"
33 #include "llvm/ADT/ImmutableMap.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <utility>
40 #include <vector>
41
42 using namespace clang;
43 using namespace thread_safety;
44
45 // Key method definition
~ThreadSafetyHandler()46 ThreadSafetyHandler::~ThreadSafetyHandler() {}
47
48 namespace {
49
50 /// SExpr implements a simple expression language that is used to store,
51 /// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr
52 /// does not capture surface syntax, and it does not distinguish between
53 /// C++ concepts, like pointers and references, that have no real semantic
54 /// differences. This simplicity allows SExprs to be meaningfully compared,
55 /// e.g.
56 /// (x) = x
57 /// (*this).foo = this->foo
58 /// *&a = a
59 ///
60 /// Thread-safety analysis works by comparing lock expressions. Within the
61 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to
62 /// a particular mutex object at run-time. Subsequent occurrences of the same
63 /// expression (where "same" means syntactic equality) will refer to the same
64 /// run-time object if three conditions hold:
65 /// (1) Local variables in the expression, such as "x" have not changed.
66 /// (2) Values on the heap that affect the expression have not changed.
67 /// (3) The expression involves only pure function calls.
68 ///
69 /// The current implementation assumes, but does not verify, that multiple uses
70 /// of the same lock expression satisfies these criteria.
71 class SExpr {
72 private:
73 enum ExprOp {
74 EOP_Nop, ///< No-op
75 EOP_Wildcard, ///< Matches anything.
76 EOP_Universal, ///< Universal lock.
77 EOP_This, ///< This keyword.
78 EOP_NVar, ///< Named variable.
79 EOP_LVar, ///< Local variable.
80 EOP_Dot, ///< Field access
81 EOP_Call, ///< Function call
82 EOP_MCall, ///< Method call
83 EOP_Index, ///< Array index
84 EOP_Unary, ///< Unary operation
85 EOP_Binary, ///< Binary operation
86 EOP_Unknown ///< Catchall for everything else
87 };
88
89
90 class SExprNode {
91 private:
92 unsigned char Op; ///< Opcode of the root node
93 unsigned char Flags; ///< Additional opcode-specific data
94 unsigned short Sz; ///< Number of child nodes
95 const void* Data; ///< Additional opcode-specific data
96
97 public:
SExprNode(ExprOp O,unsigned F,const void * D)98 SExprNode(ExprOp O, unsigned F, const void* D)
99 : Op(static_cast<unsigned char>(O)),
100 Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
101 { }
102
size() const103 unsigned size() const { return Sz; }
setSize(unsigned S)104 void setSize(unsigned S) { Sz = S; }
105
kind() const106 ExprOp kind() const { return static_cast<ExprOp>(Op); }
107
getNamedDecl() const108 const NamedDecl* getNamedDecl() const {
109 assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
110 return reinterpret_cast<const NamedDecl*>(Data);
111 }
112
getFunctionDecl() const113 const NamedDecl* getFunctionDecl() const {
114 assert(Op == EOP_Call || Op == EOP_MCall);
115 return reinterpret_cast<const NamedDecl*>(Data);
116 }
117
isArrow() const118 bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
setArrow(bool A)119 void setArrow(bool A) { Flags = A ? 1 : 0; }
120
arity() const121 unsigned arity() const {
122 switch (Op) {
123 case EOP_Nop: return 0;
124 case EOP_Wildcard: return 0;
125 case EOP_Universal: return 0;
126 case EOP_NVar: return 0;
127 case EOP_LVar: return 0;
128 case EOP_This: return 0;
129 case EOP_Dot: return 1;
130 case EOP_Call: return Flags+1; // First arg is function.
131 case EOP_MCall: return Flags+1; // First arg is implicit obj.
132 case EOP_Index: return 2;
133 case EOP_Unary: return 1;
134 case EOP_Binary: return 2;
135 case EOP_Unknown: return Flags;
136 }
137 return 0;
138 }
139
operator ==(const SExprNode & Other) const140 bool operator==(const SExprNode& Other) const {
141 // Ignore flags and size -- they don't matter.
142 return (Op == Other.Op &&
143 Data == Other.Data);
144 }
145
operator !=(const SExprNode & Other) const146 bool operator!=(const SExprNode& Other) const {
147 return !(*this == Other);
148 }
149
matches(const SExprNode & Other) const150 bool matches(const SExprNode& Other) const {
151 return (*this == Other) ||
152 (Op == EOP_Wildcard) ||
153 (Other.Op == EOP_Wildcard);
154 }
155 };
156
157
158 /// \brief Encapsulates the lexical context of a function call. The lexical
159 /// context includes the arguments to the call, including the implicit object
160 /// argument. When an attribute containing a mutex expression is attached to
161 /// a method, the expression may refer to formal parameters of the method.
162 /// Actual arguments must be substituted for formal parameters to derive
163 /// the appropriate mutex expression in the lexical context where the function
164 /// is called. PrevCtx holds the context in which the arguments themselves
165 /// should be evaluated; multiple calling contexts can be chained together
166 /// by the lock_returned attribute.
167 struct CallingContext {
168 const NamedDecl* AttrDecl; // The decl to which the attribute is attached.
169 const Expr* SelfArg; // Implicit object argument -- e.g. 'this'
170 bool SelfArrow; // is Self referred to with -> or .?
171 unsigned NumArgs; // Number of funArgs
172 const Expr* const* FunArgs; // Function arguments
173 CallingContext* PrevCtx; // The previous context; or 0 if none.
174
CallingContext__anond7afc2f90111::SExpr::CallingContext175 CallingContext(const NamedDecl *D = 0, const Expr *S = 0,
176 unsigned N = 0, const Expr* const *A = 0,
177 CallingContext *P = 0)
178 : AttrDecl(D), SelfArg(S), SelfArrow(false),
179 NumArgs(N), FunArgs(A), PrevCtx(P)
180 { }
181 };
182
183 typedef SmallVector<SExprNode, 4> NodeVector;
184
185 private:
186 // A SExpr is a list of SExprNodes in prefix order. The Size field allows
187 // the list to be traversed as a tree.
188 NodeVector NodeVec;
189
190 private:
makeNop()191 unsigned makeNop() {
192 NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
193 return NodeVec.size()-1;
194 }
195
makeWildcard()196 unsigned makeWildcard() {
197 NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
198 return NodeVec.size()-1;
199 }
200
makeUniversal()201 unsigned makeUniversal() {
202 NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
203 return NodeVec.size()-1;
204 }
205
makeNamedVar(const NamedDecl * D)206 unsigned makeNamedVar(const NamedDecl *D) {
207 NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
208 return NodeVec.size()-1;
209 }
210
makeLocalVar(const NamedDecl * D)211 unsigned makeLocalVar(const NamedDecl *D) {
212 NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
213 return NodeVec.size()-1;
214 }
215
makeThis()216 unsigned makeThis() {
217 NodeVec.push_back(SExprNode(EOP_This, 0, 0));
218 return NodeVec.size()-1;
219 }
220
makeDot(const NamedDecl * D,bool Arrow)221 unsigned makeDot(const NamedDecl *D, bool Arrow) {
222 NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
223 return NodeVec.size()-1;
224 }
225
makeCall(unsigned NumArgs,const NamedDecl * D)226 unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
227 NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
228 return NodeVec.size()-1;
229 }
230
231 // Grab the very first declaration of virtual method D
getFirstVirtualDecl(const CXXMethodDecl * D)232 const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
233 while (true) {
234 D = D->getCanonicalDecl();
235 CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
236 E = D->end_overridden_methods();
237 if (I == E)
238 return D; // Method does not override anything
239 D = *I; // FIXME: this does not work with multiple inheritance.
240 }
241 return 0;
242 }
243
makeMCall(unsigned NumArgs,const CXXMethodDecl * D)244 unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) {
245 NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, getFirstVirtualDecl(D)));
246 return NodeVec.size()-1;
247 }
248
makeIndex()249 unsigned makeIndex() {
250 NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
251 return NodeVec.size()-1;
252 }
253
makeUnary()254 unsigned makeUnary() {
255 NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
256 return NodeVec.size()-1;
257 }
258
makeBinary()259 unsigned makeBinary() {
260 NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
261 return NodeVec.size()-1;
262 }
263
makeUnknown(unsigned Arity)264 unsigned makeUnknown(unsigned Arity) {
265 NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
266 return NodeVec.size()-1;
267 }
268
269 /// Build an SExpr from the given C++ expression.
270 /// Recursive function that terminates on DeclRefExpr.
271 /// Note: this function merely creates a SExpr; it does not check to
272 /// ensure that the original expression is a valid mutex expression.
273 ///
274 /// NDeref returns the number of Derefence and AddressOf operations
275 /// preceeding the Expr; this is used to decide whether to pretty-print
276 /// SExprs with . or ->.
buildSExpr(const Expr * Exp,CallingContext * CallCtx,int * NDeref=0)277 unsigned buildSExpr(const Expr *Exp, CallingContext* CallCtx,
278 int* NDeref = 0) {
279 if (!Exp)
280 return 0;
281
282 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
283 const NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
284 const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
285 if (PV) {
286 const FunctionDecl *FD =
287 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
288 unsigned i = PV->getFunctionScopeIndex();
289
290 if (CallCtx && CallCtx->FunArgs &&
291 FD == CallCtx->AttrDecl->getCanonicalDecl()) {
292 // Substitute call arguments for references to function parameters
293 assert(i < CallCtx->NumArgs);
294 return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
295 }
296 // Map the param back to the param of the original function declaration.
297 makeNamedVar(FD->getParamDecl(i));
298 return 1;
299 }
300 // Not a function parameter -- just store the reference.
301 makeNamedVar(ND);
302 return 1;
303 } else if (isa<CXXThisExpr>(Exp)) {
304 // Substitute parent for 'this'
305 if (CallCtx && CallCtx->SelfArg) {
306 if (!CallCtx->SelfArrow && NDeref)
307 // 'this' is a pointer, but self is not, so need to take address.
308 --(*NDeref);
309 return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
310 }
311 else {
312 makeThis();
313 return 1;
314 }
315 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
316 const NamedDecl *ND = ME->getMemberDecl();
317 int ImplicitDeref = ME->isArrow() ? 1 : 0;
318 unsigned Root = makeDot(ND, false);
319 unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
320 NodeVec[Root].setArrow(ImplicitDeref > 0);
321 NodeVec[Root].setSize(Sz + 1);
322 return Sz + 1;
323 } else if (const CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
324 // When calling a function with a lock_returned attribute, replace
325 // the function call with the expression in lock_returned.
326 const CXXMethodDecl* MD =
327 cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl());
328 if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
329 CallingContext LRCallCtx(CMCE->getMethodDecl());
330 LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
331 LRCallCtx.SelfArrow =
332 dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
333 LRCallCtx.NumArgs = CMCE->getNumArgs();
334 LRCallCtx.FunArgs = CMCE->getArgs();
335 LRCallCtx.PrevCtx = CallCtx;
336 return buildSExpr(At->getArg(), &LRCallCtx);
337 }
338 // Hack to treat smart pointers and iterators as pointers;
339 // ignore any method named get().
340 if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
341 CMCE->getNumArgs() == 0) {
342 if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
343 ++(*NDeref);
344 return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
345 }
346 unsigned NumCallArgs = CMCE->getNumArgs();
347 unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl());
348 unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
349 const Expr* const* CallArgs = CMCE->getArgs();
350 for (unsigned i = 0; i < NumCallArgs; ++i) {
351 Sz += buildSExpr(CallArgs[i], CallCtx);
352 }
353 NodeVec[Root].setSize(Sz + 1);
354 return Sz + 1;
355 } else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
356 const FunctionDecl* FD =
357 cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl());
358 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
359 CallingContext LRCallCtx(CE->getDirectCallee());
360 LRCallCtx.NumArgs = CE->getNumArgs();
361 LRCallCtx.FunArgs = CE->getArgs();
362 LRCallCtx.PrevCtx = CallCtx;
363 return buildSExpr(At->getArg(), &LRCallCtx);
364 }
365 // Treat smart pointers and iterators as pointers;
366 // ignore the * and -> operators.
367 if (const CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
368 OverloadedOperatorKind k = OE->getOperator();
369 if (k == OO_Star) {
370 if (NDeref) ++(*NDeref);
371 return buildSExpr(OE->getArg(0), CallCtx, NDeref);
372 }
373 else if (k == OO_Arrow) {
374 return buildSExpr(OE->getArg(0), CallCtx, NDeref);
375 }
376 }
377 unsigned NumCallArgs = CE->getNumArgs();
378 unsigned Root = makeCall(NumCallArgs, 0);
379 unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
380 const Expr* const* CallArgs = CE->getArgs();
381 for (unsigned i = 0; i < NumCallArgs; ++i) {
382 Sz += buildSExpr(CallArgs[i], CallCtx);
383 }
384 NodeVec[Root].setSize(Sz+1);
385 return Sz+1;
386 } else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
387 unsigned Root = makeBinary();
388 unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
389 Sz += buildSExpr(BOE->getRHS(), CallCtx);
390 NodeVec[Root].setSize(Sz);
391 return Sz;
392 } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
393 // Ignore & and * operators -- they're no-ops.
394 // However, we try to figure out whether the expression is a pointer,
395 // so we can use . and -> appropriately in error messages.
396 if (UOE->getOpcode() == UO_Deref) {
397 if (NDeref) ++(*NDeref);
398 return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
399 }
400 if (UOE->getOpcode() == UO_AddrOf) {
401 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
402 if (DRE->getDecl()->isCXXInstanceMember()) {
403 // This is a pointer-to-member expression, e.g. &MyClass::mu_.
404 // We interpret this syntax specially, as a wildcard.
405 unsigned Root = makeDot(DRE->getDecl(), false);
406 makeWildcard();
407 NodeVec[Root].setSize(2);
408 return 2;
409 }
410 }
411 if (NDeref) --(*NDeref);
412 return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
413 }
414 unsigned Root = makeUnary();
415 unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
416 NodeVec[Root].setSize(Sz);
417 return Sz;
418 } else if (const ArraySubscriptExpr *ASE =
419 dyn_cast<ArraySubscriptExpr>(Exp)) {
420 unsigned Root = makeIndex();
421 unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
422 Sz += buildSExpr(ASE->getIdx(), CallCtx);
423 NodeVec[Root].setSize(Sz);
424 return Sz;
425 } else if (const AbstractConditionalOperator *CE =
426 dyn_cast<AbstractConditionalOperator>(Exp)) {
427 unsigned Root = makeUnknown(3);
428 unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
429 Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
430 Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
431 NodeVec[Root].setSize(Sz);
432 return Sz;
433 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
434 unsigned Root = makeUnknown(3);
435 unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
436 Sz += buildSExpr(CE->getLHS(), CallCtx);
437 Sz += buildSExpr(CE->getRHS(), CallCtx);
438 NodeVec[Root].setSize(Sz);
439 return Sz;
440 } else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
441 return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
442 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
443 return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
444 } else if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
445 return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
446 } else if (const CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
447 return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
448 } else if (isa<CharacterLiteral>(Exp) ||
449 isa<CXXNullPtrLiteralExpr>(Exp) ||
450 isa<GNUNullExpr>(Exp) ||
451 isa<CXXBoolLiteralExpr>(Exp) ||
452 isa<FloatingLiteral>(Exp) ||
453 isa<ImaginaryLiteral>(Exp) ||
454 isa<IntegerLiteral>(Exp) ||
455 isa<StringLiteral>(Exp) ||
456 isa<ObjCStringLiteral>(Exp)) {
457 makeNop();
458 return 1; // FIXME: Ignore literals for now
459 } else {
460 makeNop();
461 return 1; // Ignore. FIXME: mark as invalid expression?
462 }
463 }
464
465 /// \brief Construct a SExpr from an expression.
466 /// \param MutexExp The original mutex expression within an attribute
467 /// \param DeclExp An expression involving the Decl on which the attribute
468 /// occurs.
469 /// \param D The declaration to which the lock/unlock attribute is attached.
buildSExprFromExpr(const Expr * MutexExp,const Expr * DeclExp,const NamedDecl * D,VarDecl * SelfDecl=0)470 void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp,
471 const NamedDecl *D, VarDecl *SelfDecl = 0) {
472 CallingContext CallCtx(D);
473
474 if (MutexExp) {
475 if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
476 if (SLit->getString() == StringRef("*"))
477 // The "*" expr is a universal lock, which essentially turns off
478 // checks until it is removed from the lockset.
479 makeUniversal();
480 else
481 // Ignore other string literals for now.
482 makeNop();
483 return;
484 }
485 }
486
487 // If we are processing a raw attribute expression, with no substitutions.
488 if (DeclExp == 0) {
489 buildSExpr(MutexExp, 0);
490 return;
491 }
492
493 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
494 // for formal parameters when we call buildMutexID later.
495 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
496 CallCtx.SelfArg = ME->getBase();
497 CallCtx.SelfArrow = ME->isArrow();
498 } else if (const CXXMemberCallExpr *CE =
499 dyn_cast<CXXMemberCallExpr>(DeclExp)) {
500 CallCtx.SelfArg = CE->getImplicitObjectArgument();
501 CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
502 CallCtx.NumArgs = CE->getNumArgs();
503 CallCtx.FunArgs = CE->getArgs();
504 } else if (const CallExpr *CE =
505 dyn_cast<CallExpr>(DeclExp)) {
506 CallCtx.NumArgs = CE->getNumArgs();
507 CallCtx.FunArgs = CE->getArgs();
508 } else if (const CXXConstructExpr *CE =
509 dyn_cast<CXXConstructExpr>(DeclExp)) {
510 CallCtx.SelfArg = 0; // Will be set below
511 CallCtx.NumArgs = CE->getNumArgs();
512 CallCtx.FunArgs = CE->getArgs();
513 } else if (D && isa<CXXDestructorDecl>(D)) {
514 // There's no such thing as a "destructor call" in the AST.
515 CallCtx.SelfArg = DeclExp;
516 }
517
518 // Hack to handle constructors, where self cannot be recovered from
519 // the expression.
520 if (SelfDecl && !CallCtx.SelfArg) {
521 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
522 SelfDecl->getLocation());
523 CallCtx.SelfArg = &SelfDRE;
524
525 // If the attribute has no arguments, then assume the argument is "this".
526 if (MutexExp == 0)
527 buildSExpr(CallCtx.SelfArg, 0);
528 else // For most attributes.
529 buildSExpr(MutexExp, &CallCtx);
530 return;
531 }
532
533 // If the attribute has no arguments, then assume the argument is "this".
534 if (MutexExp == 0)
535 buildSExpr(CallCtx.SelfArg, 0);
536 else // For most attributes.
537 buildSExpr(MutexExp, &CallCtx);
538 }
539
540 /// \brief Get index of next sibling of node i.
getNextSibling(unsigned i) const541 unsigned getNextSibling(unsigned i) const {
542 return i + NodeVec[i].size();
543 }
544
545 public:
SExpr(clang::Decl::EmptyShell e)546 explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
547
548 /// \param MutexExp The original mutex expression within an attribute
549 /// \param DeclExp An expression involving the Decl on which the attribute
550 /// occurs.
551 /// \param D The declaration to which the lock/unlock attribute is attached.
552 /// Caller must check isValid() after construction.
SExpr(const Expr * MutexExp,const Expr * DeclExp,const NamedDecl * D,VarDecl * SelfDecl=0)553 SExpr(const Expr* MutexExp, const Expr *DeclExp, const NamedDecl* D,
554 VarDecl *SelfDecl=0) {
555 buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl);
556 }
557
558 /// Return true if this is a valid decl sequence.
559 /// Caller must call this by hand after construction to handle errors.
isValid() const560 bool isValid() const {
561 return !NodeVec.empty();
562 }
563
shouldIgnore() const564 bool shouldIgnore() const {
565 // Nop is a mutex that we have decided to deliberately ignore.
566 assert(NodeVec.size() > 0 && "Invalid Mutex");
567 return NodeVec[0].kind() == EOP_Nop;
568 }
569
isUniversal() const570 bool isUniversal() const {
571 assert(NodeVec.size() > 0 && "Invalid Mutex");
572 return NodeVec[0].kind() == EOP_Universal;
573 }
574
575 /// Issue a warning about an invalid lock expression
warnInvalidLock(ThreadSafetyHandler & Handler,const Expr * MutexExp,const Expr * DeclExp,const NamedDecl * D)576 static void warnInvalidLock(ThreadSafetyHandler &Handler,
577 const Expr *MutexExp,
578 const Expr *DeclExp, const NamedDecl* D) {
579 SourceLocation Loc;
580 if (DeclExp)
581 Loc = DeclExp->getExprLoc();
582
583 // FIXME: add a note about the attribute location in MutexExp or D
584 if (Loc.isValid())
585 Handler.handleInvalidLockExp(Loc);
586 }
587
operator ==(const SExpr & other) const588 bool operator==(const SExpr &other) const {
589 return NodeVec == other.NodeVec;
590 }
591
operator !=(const SExpr & other) const592 bool operator!=(const SExpr &other) const {
593 return !(*this == other);
594 }
595
matches(const SExpr & Other,unsigned i=0,unsigned j=0) const596 bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
597 if (NodeVec[i].matches(Other.NodeVec[j])) {
598 unsigned ni = NodeVec[i].arity();
599 unsigned nj = Other.NodeVec[j].arity();
600 unsigned n = (ni < nj) ? ni : nj;
601 bool Result = true;
602 unsigned ci = i+1; // first child of i
603 unsigned cj = j+1; // first child of j
604 for (unsigned k = 0; k < n;
605 ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
606 Result = Result && matches(Other, ci, cj);
607 }
608 return Result;
609 }
610 return false;
611 }
612
613 // A partial match between a.mu and b.mu returns true a and b have the same
614 // type (and thus mu refers to the same mutex declaration), regardless of
615 // whether a and b are different objects or not.
partiallyMatches(const SExpr & Other) const616 bool partiallyMatches(const SExpr &Other) const {
617 if (NodeVec[0].kind() == EOP_Dot)
618 return NodeVec[0].matches(Other.NodeVec[0]);
619 return false;
620 }
621
622 /// \brief Pretty print a lock expression for use in error messages.
toString(unsigned i=0) const623 std::string toString(unsigned i = 0) const {
624 assert(isValid());
625 if (i >= NodeVec.size())
626 return "";
627
628 const SExprNode* N = &NodeVec[i];
629 switch (N->kind()) {
630 case EOP_Nop:
631 return "_";
632 case EOP_Wildcard:
633 return "(?)";
634 case EOP_Universal:
635 return "*";
636 case EOP_This:
637 return "this";
638 case EOP_NVar:
639 case EOP_LVar: {
640 return N->getNamedDecl()->getNameAsString();
641 }
642 case EOP_Dot: {
643 if (NodeVec[i+1].kind() == EOP_Wildcard) {
644 std::string S = "&";
645 S += N->getNamedDecl()->getQualifiedNameAsString();
646 return S;
647 }
648 std::string FieldName = N->getNamedDecl()->getNameAsString();
649 if (NodeVec[i+1].kind() == EOP_This)
650 return FieldName;
651
652 std::string S = toString(i+1);
653 if (N->isArrow())
654 return S + "->" + FieldName;
655 else
656 return S + "." + FieldName;
657 }
658 case EOP_Call: {
659 std::string S = toString(i+1) + "(";
660 unsigned NumArgs = N->arity()-1;
661 unsigned ci = getNextSibling(i+1);
662 for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
663 S += toString(ci);
664 if (k+1 < NumArgs) S += ",";
665 }
666 S += ")";
667 return S;
668 }
669 case EOP_MCall: {
670 std::string S = "";
671 if (NodeVec[i+1].kind() != EOP_This)
672 S = toString(i+1) + ".";
673 if (const NamedDecl *D = N->getFunctionDecl())
674 S += D->getNameAsString() + "(";
675 else
676 S += "#(";
677 unsigned NumArgs = N->arity()-1;
678 unsigned ci = getNextSibling(i+1);
679 for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
680 S += toString(ci);
681 if (k+1 < NumArgs) S += ",";
682 }
683 S += ")";
684 return S;
685 }
686 case EOP_Index: {
687 std::string S1 = toString(i+1);
688 std::string S2 = toString(i+1 + NodeVec[i+1].size());
689 return S1 + "[" + S2 + "]";
690 }
691 case EOP_Unary: {
692 std::string S = toString(i+1);
693 return "#" + S;
694 }
695 case EOP_Binary: {
696 std::string S1 = toString(i+1);
697 std::string S2 = toString(i+1 + NodeVec[i+1].size());
698 return "(" + S1 + "#" + S2 + ")";
699 }
700 case EOP_Unknown: {
701 unsigned NumChildren = N->arity();
702 if (NumChildren == 0)
703 return "(...)";
704 std::string S = "(";
705 unsigned ci = i+1;
706 for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
707 S += toString(ci);
708 if (j+1 < NumChildren) S += "#";
709 }
710 S += ")";
711 return S;
712 }
713 }
714 return "";
715 }
716 };
717
718
719
720 /// \brief A short list of SExprs
721 class MutexIDList : public SmallVector<SExpr, 3> {
722 public:
723 /// \brief Return true if the list contains the specified SExpr
724 /// Performs a linear search, because these lists are almost always very small.
contains(const SExpr & M)725 bool contains(const SExpr& M) {
726 for (iterator I=begin(),E=end(); I != E; ++I)
727 if ((*I) == M) return true;
728 return false;
729 }
730
731 /// \brief Push M onto list, bud discard duplicates
push_back_nodup(const SExpr & M)732 void push_back_nodup(const SExpr& M) {
733 if (!contains(M)) push_back(M);
734 }
735 };
736
737
738
739 /// \brief This is a helper class that stores info about the most recent
740 /// accquire of a Lock.
741 ///
742 /// The main body of the analysis maps MutexIDs to LockDatas.
743 struct LockData {
744 SourceLocation AcquireLoc;
745
746 /// \brief LKind stores whether a lock is held shared or exclusively.
747 /// Note that this analysis does not currently support either re-entrant
748 /// locking or lock "upgrading" and "downgrading" between exclusive and
749 /// shared.
750 ///
751 /// FIXME: add support for re-entrant locking and lock up/downgrading
752 LockKind LKind;
753 bool Managed; // for ScopedLockable objects
754 SExpr UnderlyingMutex; // for ScopedLockable objects
755
LockData__anond7afc2f90111::LockData756 LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
757 : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
758 UnderlyingMutex(Decl::EmptyShell())
759 {}
760
LockData__anond7afc2f90111::LockData761 LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
762 : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
763 UnderlyingMutex(Mu)
764 {}
765
operator ==__anond7afc2f90111::LockData766 bool operator==(const LockData &other) const {
767 return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
768 }
769
operator !=__anond7afc2f90111::LockData770 bool operator!=(const LockData &other) const {
771 return !(*this == other);
772 }
773
Profile__anond7afc2f90111::LockData774 void Profile(llvm::FoldingSetNodeID &ID) const {
775 ID.AddInteger(AcquireLoc.getRawEncoding());
776 ID.AddInteger(LKind);
777 }
778
isAtLeast__anond7afc2f90111::LockData779 bool isAtLeast(LockKind LK) {
780 return (LK == LK_Shared) || (LKind == LK_Exclusive);
781 }
782 };
783
784
785 /// \brief A FactEntry stores a single fact that is known at a particular point
786 /// in the program execution. Currently, this is information regarding a lock
787 /// that is held at that point.
788 struct FactEntry {
789 SExpr MutID;
790 LockData LDat;
791
FactEntry__anond7afc2f90111::FactEntry792 FactEntry(const SExpr& M, const LockData& L)
793 : MutID(M), LDat(L)
794 { }
795 };
796
797
798 typedef unsigned short FactID;
799
800 /// \brief FactManager manages the memory for all facts that are created during
801 /// the analysis of a single routine.
802 class FactManager {
803 private:
804 std::vector<FactEntry> Facts;
805
806 public:
newLock(const SExpr & M,const LockData & L)807 FactID newLock(const SExpr& M, const LockData& L) {
808 Facts.push_back(FactEntry(M,L));
809 return static_cast<unsigned short>(Facts.size() - 1);
810 }
811
operator [](FactID F) const812 const FactEntry& operator[](FactID F) const { return Facts[F]; }
operator [](FactID F)813 FactEntry& operator[](FactID F) { return Facts[F]; }
814 };
815
816
817 /// \brief A FactSet is the set of facts that are known to be true at a
818 /// particular program point. FactSets must be small, because they are
819 /// frequently copied, and are thus implemented as a set of indices into a
820 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2
821 /// locks, so we can get away with doing a linear search for lookup. Note
822 /// that a hashtable or map is inappropriate in this case, because lookups
823 /// may involve partial pattern matches, rather than exact matches.
824 class FactSet {
825 private:
826 typedef SmallVector<FactID, 4> FactVec;
827
828 FactVec FactIDs;
829
830 public:
831 typedef FactVec::iterator iterator;
832 typedef FactVec::const_iterator const_iterator;
833
begin()834 iterator begin() { return FactIDs.begin(); }
begin() const835 const_iterator begin() const { return FactIDs.begin(); }
836
end()837 iterator end() { return FactIDs.end(); }
end() const838 const_iterator end() const { return FactIDs.end(); }
839
isEmpty() const840 bool isEmpty() const { return FactIDs.size() == 0; }
841
addLock(FactManager & FM,const SExpr & M,const LockData & L)842 FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
843 FactID F = FM.newLock(M, L);
844 FactIDs.push_back(F);
845 return F;
846 }
847
removeLock(FactManager & FM,const SExpr & M)848 bool removeLock(FactManager& FM, const SExpr& M) {
849 unsigned n = FactIDs.size();
850 if (n == 0)
851 return false;
852
853 for (unsigned i = 0; i < n-1; ++i) {
854 if (FM[FactIDs[i]].MutID.matches(M)) {
855 FactIDs[i] = FactIDs[n-1];
856 FactIDs.pop_back();
857 return true;
858 }
859 }
860 if (FM[FactIDs[n-1]].MutID.matches(M)) {
861 FactIDs.pop_back();
862 return true;
863 }
864 return false;
865 }
866
findLock(FactManager & FM,const SExpr & M) const867 LockData* findLock(FactManager &FM, const SExpr &M) const {
868 for (const_iterator I = begin(), E = end(); I != E; ++I) {
869 const SExpr &Exp = FM[*I].MutID;
870 if (Exp.matches(M))
871 return &FM[*I].LDat;
872 }
873 return 0;
874 }
875
findLockUniv(FactManager & FM,const SExpr & M) const876 LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
877 for (const_iterator I = begin(), E = end(); I != E; ++I) {
878 const SExpr &Exp = FM[*I].MutID;
879 if (Exp.matches(M) || Exp.isUniversal())
880 return &FM[*I].LDat;
881 }
882 return 0;
883 }
884
findPartialMatch(FactManager & FM,const SExpr & M) const885 FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
886 for (const_iterator I=begin(), E=end(); I != E; ++I) {
887 const SExpr& Exp = FM[*I].MutID;
888 if (Exp.partiallyMatches(M)) return &FM[*I];
889 }
890 return 0;
891 }
892 };
893
894
895
896 /// A Lockset maps each SExpr (defined above) to information about how it has
897 /// been locked.
898 typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
899 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
900
901 class LocalVariableMap;
902
903 /// A side (entry or exit) of a CFG node.
904 enum CFGBlockSide { CBS_Entry, CBS_Exit };
905
906 /// CFGBlockInfo is a struct which contains all the information that is
907 /// maintained for each block in the CFG. See LocalVariableMap for more
908 /// information about the contexts.
909 struct CFGBlockInfo {
910 FactSet EntrySet; // Lockset held at entry to block
911 FactSet ExitSet; // Lockset held at exit from block
912 LocalVarContext EntryContext; // Context held at entry to block
913 LocalVarContext ExitContext; // Context held at exit from block
914 SourceLocation EntryLoc; // Location of first statement in block
915 SourceLocation ExitLoc; // Location of last statement in block.
916 unsigned EntryIndex; // Used to replay contexts later
917 bool Reachable; // Is this block reachable?
918
getSet__anond7afc2f90111::CFGBlockInfo919 const FactSet &getSet(CFGBlockSide Side) const {
920 return Side == CBS_Entry ? EntrySet : ExitSet;
921 }
getLocation__anond7afc2f90111::CFGBlockInfo922 SourceLocation getLocation(CFGBlockSide Side) const {
923 return Side == CBS_Entry ? EntryLoc : ExitLoc;
924 }
925
926 private:
CFGBlockInfo__anond7afc2f90111::CFGBlockInfo927 CFGBlockInfo(LocalVarContext EmptyCtx)
928 : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
929 { }
930
931 public:
932 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
933 };
934
935
936
937 // A LocalVariableMap maintains a map from local variables to their currently
938 // valid definitions. It provides SSA-like functionality when traversing the
939 // CFG. Like SSA, each definition or assignment to a variable is assigned a
940 // unique name (an integer), which acts as the SSA name for that definition.
941 // The total set of names is shared among all CFG basic blocks.
942 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
943 // with their SSA-names. Instead, we compute a Context for each point in the
944 // code, which maps local variables to the appropriate SSA-name. This map
945 // changes with each assignment.
946 //
947 // The map is computed in a single pass over the CFG. Subsequent analyses can
948 // then query the map to find the appropriate Context for a statement, and use
949 // that Context to look up the definitions of variables.
950 class LocalVariableMap {
951 public:
952 typedef LocalVarContext Context;
953
954 /// A VarDefinition consists of an expression, representing the value of the
955 /// variable, along with the context in which that expression should be
956 /// interpreted. A reference VarDefinition does not itself contain this
957 /// information, but instead contains a pointer to a previous VarDefinition.
958 struct VarDefinition {
959 public:
960 friend class LocalVariableMap;
961
962 const NamedDecl *Dec; // The original declaration for this variable.
963 const Expr *Exp; // The expression for this variable, OR
964 unsigned Ref; // Reference to another VarDefinition
965 Context Ctx; // The map with which Exp should be interpreted.
966
isReference__anond7afc2f90111::LocalVariableMap::VarDefinition967 bool isReference() { return !Exp; }
968
969 private:
970 // Create ordinary variable definition
VarDefinition__anond7afc2f90111::LocalVariableMap::VarDefinition971 VarDefinition(const NamedDecl *D, const Expr *E, Context C)
972 : Dec(D), Exp(E), Ref(0), Ctx(C)
973 { }
974
975 // Create reference to previous definition
VarDefinition__anond7afc2f90111::LocalVariableMap::VarDefinition976 VarDefinition(const NamedDecl *D, unsigned R, Context C)
977 : Dec(D), Exp(0), Ref(R), Ctx(C)
978 { }
979 };
980
981 private:
982 Context::Factory ContextFactory;
983 std::vector<VarDefinition> VarDefinitions;
984 std::vector<unsigned> CtxIndices;
985 std::vector<std::pair<Stmt*, Context> > SavedContexts;
986
987 public:
LocalVariableMap()988 LocalVariableMap() {
989 // index 0 is a placeholder for undefined variables (aka phi-nodes).
990 VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
991 }
992
993 /// Look up a definition, within the given context.
lookup(const NamedDecl * D,Context Ctx)994 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
995 const unsigned *i = Ctx.lookup(D);
996 if (!i)
997 return 0;
998 assert(*i < VarDefinitions.size());
999 return &VarDefinitions[*i];
1000 }
1001
1002 /// Look up the definition for D within the given context. Returns
1003 /// NULL if the expression is not statically known. If successful, also
1004 /// modifies Ctx to hold the context of the return Expr.
lookupExpr(const NamedDecl * D,Context & Ctx)1005 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
1006 const unsigned *P = Ctx.lookup(D);
1007 if (!P)
1008 return 0;
1009
1010 unsigned i = *P;
1011 while (i > 0) {
1012 if (VarDefinitions[i].Exp) {
1013 Ctx = VarDefinitions[i].Ctx;
1014 return VarDefinitions[i].Exp;
1015 }
1016 i = VarDefinitions[i].Ref;
1017 }
1018 return 0;
1019 }
1020
getEmptyContext()1021 Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
1022
1023 /// Return the next context after processing S. This function is used by
1024 /// clients of the class to get the appropriate context when traversing the
1025 /// CFG. It must be called for every assignment or DeclStmt.
getNextContext(unsigned & CtxIndex,Stmt * S,Context C)1026 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
1027 if (SavedContexts[CtxIndex+1].first == S) {
1028 CtxIndex++;
1029 Context Result = SavedContexts[CtxIndex].second;
1030 return Result;
1031 }
1032 return C;
1033 }
1034
dumpVarDefinitionName(unsigned i)1035 void dumpVarDefinitionName(unsigned i) {
1036 if (i == 0) {
1037 llvm::errs() << "Undefined";
1038 return;
1039 }
1040 const NamedDecl *Dec = VarDefinitions[i].Dec;
1041 if (!Dec) {
1042 llvm::errs() << "<<NULL>>";
1043 return;
1044 }
1045 Dec->printName(llvm::errs());
1046 llvm::errs() << "." << i << " " << ((const void*) Dec);
1047 }
1048
1049 /// Dumps an ASCII representation of the variable map to llvm::errs()
dump()1050 void dump() {
1051 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
1052 const Expr *Exp = VarDefinitions[i].Exp;
1053 unsigned Ref = VarDefinitions[i].Ref;
1054
1055 dumpVarDefinitionName(i);
1056 llvm::errs() << " = ";
1057 if (Exp) Exp->dump();
1058 else {
1059 dumpVarDefinitionName(Ref);
1060 llvm::errs() << "\n";
1061 }
1062 }
1063 }
1064
1065 /// Dumps an ASCII representation of a Context to llvm::errs()
dumpContext(Context C)1066 void dumpContext(Context C) {
1067 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1068 const NamedDecl *D = I.getKey();
1069 D->printName(llvm::errs());
1070 const unsigned *i = C.lookup(D);
1071 llvm::errs() << " -> ";
1072 dumpVarDefinitionName(*i);
1073 llvm::errs() << "\n";
1074 }
1075 }
1076
1077 /// Builds the variable map.
1078 void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
1079 std::vector<CFGBlockInfo> &BlockInfo);
1080
1081 protected:
1082 // Get the current context index
getContextIndex()1083 unsigned getContextIndex() { return SavedContexts.size()-1; }
1084
1085 // Save the current context for later replay
saveContext(Stmt * S,Context C)1086 void saveContext(Stmt *S, Context C) {
1087 SavedContexts.push_back(std::make_pair(S,C));
1088 }
1089
1090 // Adds a new definition to the given context, and returns a new context.
1091 // This method should be called when declaring a new variable.
addDefinition(const NamedDecl * D,Expr * Exp,Context Ctx)1092 Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1093 assert(!Ctx.contains(D));
1094 unsigned newID = VarDefinitions.size();
1095 Context NewCtx = ContextFactory.add(Ctx, D, newID);
1096 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1097 return NewCtx;
1098 }
1099
1100 // Add a new reference to an existing definition.
addReference(const NamedDecl * D,unsigned i,Context Ctx)1101 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
1102 unsigned newID = VarDefinitions.size();
1103 Context NewCtx = ContextFactory.add(Ctx, D, newID);
1104 VarDefinitions.push_back(VarDefinition(D, i, Ctx));
1105 return NewCtx;
1106 }
1107
1108 // Updates a definition only if that definition is already in the map.
1109 // This method should be called when assigning to an existing variable.
updateDefinition(const NamedDecl * D,Expr * Exp,Context Ctx)1110 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1111 if (Ctx.contains(D)) {
1112 unsigned newID = VarDefinitions.size();
1113 Context NewCtx = ContextFactory.remove(Ctx, D);
1114 NewCtx = ContextFactory.add(NewCtx, D, newID);
1115 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1116 return NewCtx;
1117 }
1118 return Ctx;
1119 }
1120
1121 // Removes a definition from the context, but keeps the variable name
1122 // as a valid variable. The index 0 is a placeholder for cleared definitions.
clearDefinition(const NamedDecl * D,Context Ctx)1123 Context clearDefinition(const NamedDecl *D, Context Ctx) {
1124 Context NewCtx = Ctx;
1125 if (NewCtx.contains(D)) {
1126 NewCtx = ContextFactory.remove(NewCtx, D);
1127 NewCtx = ContextFactory.add(NewCtx, D, 0);
1128 }
1129 return NewCtx;
1130 }
1131
1132 // Remove a definition entirely frmo the context.
removeDefinition(const NamedDecl * D,Context Ctx)1133 Context removeDefinition(const NamedDecl *D, Context Ctx) {
1134 Context NewCtx = Ctx;
1135 if (NewCtx.contains(D)) {
1136 NewCtx = ContextFactory.remove(NewCtx, D);
1137 }
1138 return NewCtx;
1139 }
1140
1141 Context intersectContexts(Context C1, Context C2);
1142 Context createReferenceContext(Context C);
1143 void intersectBackEdge(Context C1, Context C2);
1144
1145 friend class VarMapBuilder;
1146 };
1147
1148
1149 // This has to be defined after LocalVariableMap.
getEmptyBlockInfo(LocalVariableMap & M)1150 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
1151 return CFGBlockInfo(M.getEmptyContext());
1152 }
1153
1154
1155 /// Visitor which builds a LocalVariableMap
1156 class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
1157 public:
1158 LocalVariableMap* VMap;
1159 LocalVariableMap::Context Ctx;
1160
VarMapBuilder(LocalVariableMap * VM,LocalVariableMap::Context C)1161 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
1162 : VMap(VM), Ctx(C) {}
1163
1164 void VisitDeclStmt(DeclStmt *S);
1165 void VisitBinaryOperator(BinaryOperator *BO);
1166 };
1167
1168
1169 // Add new local variables to the variable map
VisitDeclStmt(DeclStmt * S)1170 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
1171 bool modifiedCtx = false;
1172 DeclGroupRef DGrp = S->getDeclGroup();
1173 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1174 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
1175 Expr *E = VD->getInit();
1176
1177 // Add local variables with trivial type to the variable map
1178 QualType T = VD->getType();
1179 if (T.isTrivialType(VD->getASTContext())) {
1180 Ctx = VMap->addDefinition(VD, E, Ctx);
1181 modifiedCtx = true;
1182 }
1183 }
1184 }
1185 if (modifiedCtx)
1186 VMap->saveContext(S, Ctx);
1187 }
1188
1189 // Update local variable definitions in variable map
VisitBinaryOperator(BinaryOperator * BO)1190 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
1191 if (!BO->isAssignmentOp())
1192 return;
1193
1194 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1195
1196 // Update the variable map and current context.
1197 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
1198 ValueDecl *VDec = DRE->getDecl();
1199 if (Ctx.lookup(VDec)) {
1200 if (BO->getOpcode() == BO_Assign)
1201 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
1202 else
1203 // FIXME -- handle compound assignment operators
1204 Ctx = VMap->clearDefinition(VDec, Ctx);
1205 VMap->saveContext(BO, Ctx);
1206 }
1207 }
1208 }
1209
1210
1211 // Computes the intersection of two contexts. The intersection is the
1212 // set of variables which have the same definition in both contexts;
1213 // variables with different definitions are discarded.
1214 LocalVariableMap::Context
intersectContexts(Context C1,Context C2)1215 LocalVariableMap::intersectContexts(Context C1, Context C2) {
1216 Context Result = C1;
1217 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1218 const NamedDecl *Dec = I.getKey();
1219 unsigned i1 = I.getData();
1220 const unsigned *i2 = C2.lookup(Dec);
1221 if (!i2) // variable doesn't exist on second path
1222 Result = removeDefinition(Dec, Result);
1223 else if (*i2 != i1) // variable exists, but has different definition
1224 Result = clearDefinition(Dec, Result);
1225 }
1226 return Result;
1227 }
1228
1229 // For every variable in C, create a new variable that refers to the
1230 // definition in C. Return a new context that contains these new variables.
1231 // (We use this for a naive implementation of SSA on loop back-edges.)
createReferenceContext(Context C)1232 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
1233 Context Result = getEmptyContext();
1234 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1235 const NamedDecl *Dec = I.getKey();
1236 unsigned i = I.getData();
1237 Result = addReference(Dec, i, Result);
1238 }
1239 return Result;
1240 }
1241
1242 // This routine also takes the intersection of C1 and C2, but it does so by
1243 // altering the VarDefinitions. C1 must be the result of an earlier call to
1244 // createReferenceContext.
intersectBackEdge(Context C1,Context C2)1245 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
1246 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1247 const NamedDecl *Dec = I.getKey();
1248 unsigned i1 = I.getData();
1249 VarDefinition *VDef = &VarDefinitions[i1];
1250 assert(VDef->isReference());
1251
1252 const unsigned *i2 = C2.lookup(Dec);
1253 if (!i2 || (*i2 != i1))
1254 VDef->Ref = 0; // Mark this variable as undefined
1255 }
1256 }
1257
1258
1259 // Traverse the CFG in topological order, so all predecessors of a block
1260 // (excluding back-edges) are visited before the block itself. At
1261 // each point in the code, we calculate a Context, which holds the set of
1262 // variable definitions which are visible at that point in execution.
1263 // Visible variables are mapped to their definitions using an array that
1264 // contains all definitions.
1265 //
1266 // At join points in the CFG, the set is computed as the intersection of
1267 // the incoming sets along each edge, E.g.
1268 //
1269 // { Context | VarDefinitions }
1270 // int x = 0; { x -> x1 | x1 = 0 }
1271 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
1272 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
1273 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
1274 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
1275 //
1276 // This is essentially a simpler and more naive version of the standard SSA
1277 // algorithm. Those definitions that remain in the intersection are from blocks
1278 // that strictly dominate the current block. We do not bother to insert proper
1279 // phi nodes, because they are not used in our analysis; instead, wherever
1280 // a phi node would be required, we simply remove that definition from the
1281 // context (E.g. x above).
1282 //
1283 // The initial traversal does not capture back-edges, so those need to be
1284 // handled on a separate pass. Whenever the first pass encounters an
1285 // incoming back edge, it duplicates the context, creating new definitions
1286 // that refer back to the originals. (These correspond to places where SSA
1287 // might have to insert a phi node.) On the second pass, these definitions are
1288 // set to NULL if the variable has changed on the back-edge (i.e. a phi
1289 // node was actually required.) E.g.
1290 //
1291 // { Context | VarDefinitions }
1292 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
1293 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
1294 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
1295 // ... { y -> y1 | x3 = 2, x2 = 1, ... }
1296 //
traverseCFG(CFG * CFGraph,PostOrderCFGView * SortedGraph,std::vector<CFGBlockInfo> & BlockInfo)1297 void LocalVariableMap::traverseCFG(CFG *CFGraph,
1298 PostOrderCFGView *SortedGraph,
1299 std::vector<CFGBlockInfo> &BlockInfo) {
1300 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1301
1302 CtxIndices.resize(CFGraph->getNumBlockIDs());
1303
1304 for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1305 E = SortedGraph->end(); I!= E; ++I) {
1306 const CFGBlock *CurrBlock = *I;
1307 int CurrBlockID = CurrBlock->getBlockID();
1308 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1309
1310 VisitedBlocks.insert(CurrBlock);
1311
1312 // Calculate the entry context for the current block
1313 bool HasBackEdges = false;
1314 bool CtxInit = true;
1315 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1316 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
1317 // if *PI -> CurrBlock is a back edge, so skip it
1318 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
1319 HasBackEdges = true;
1320 continue;
1321 }
1322
1323 int PrevBlockID = (*PI)->getBlockID();
1324 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1325
1326 if (CtxInit) {
1327 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
1328 CtxInit = false;
1329 }
1330 else {
1331 CurrBlockInfo->EntryContext =
1332 intersectContexts(CurrBlockInfo->EntryContext,
1333 PrevBlockInfo->ExitContext);
1334 }
1335 }
1336
1337 // Duplicate the context if we have back-edges, so we can call
1338 // intersectBackEdges later.
1339 if (HasBackEdges)
1340 CurrBlockInfo->EntryContext =
1341 createReferenceContext(CurrBlockInfo->EntryContext);
1342
1343 // Create a starting context index for the current block
1344 saveContext(0, CurrBlockInfo->EntryContext);
1345 CurrBlockInfo->EntryIndex = getContextIndex();
1346
1347 // Visit all the statements in the basic block.
1348 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
1349 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1350 BE = CurrBlock->end(); BI != BE; ++BI) {
1351 switch (BI->getKind()) {
1352 case CFGElement::Statement: {
1353 CFGStmt CS = BI->castAs<CFGStmt>();
1354 VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
1355 break;
1356 }
1357 default:
1358 break;
1359 }
1360 }
1361 CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
1362
1363 // Mark variables on back edges as "unknown" if they've been changed.
1364 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1365 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
1366 // if CurrBlock -> *SI is *not* a back edge
1367 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1368 continue;
1369
1370 CFGBlock *FirstLoopBlock = *SI;
1371 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
1372 Context LoopEnd = CurrBlockInfo->ExitContext;
1373 intersectBackEdge(LoopBegin, LoopEnd);
1374 }
1375 }
1376
1377 // Put an extra entry at the end of the indexed context array
1378 unsigned exitID = CFGraph->getExit().getBlockID();
1379 saveContext(0, BlockInfo[exitID].ExitContext);
1380 }
1381
1382 /// Find the appropriate source locations to use when producing diagnostics for
1383 /// each block in the CFG.
findBlockLocations(CFG * CFGraph,PostOrderCFGView * SortedGraph,std::vector<CFGBlockInfo> & BlockInfo)1384 static void findBlockLocations(CFG *CFGraph,
1385 PostOrderCFGView *SortedGraph,
1386 std::vector<CFGBlockInfo> &BlockInfo) {
1387 for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1388 E = SortedGraph->end(); I!= E; ++I) {
1389 const CFGBlock *CurrBlock = *I;
1390 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
1391
1392 // Find the source location of the last statement in the block, if the
1393 // block is not empty.
1394 if (const Stmt *S = CurrBlock->getTerminator()) {
1395 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
1396 } else {
1397 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
1398 BE = CurrBlock->rend(); BI != BE; ++BI) {
1399 // FIXME: Handle other CFGElement kinds.
1400 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
1401 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
1402 break;
1403 }
1404 }
1405 }
1406
1407 if (!CurrBlockInfo->ExitLoc.isInvalid()) {
1408 // This block contains at least one statement. Find the source location
1409 // of the first statement in the block.
1410 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1411 BE = CurrBlock->end(); BI != BE; ++BI) {
1412 // FIXME: Handle other CFGElement kinds.
1413 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
1414 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
1415 break;
1416 }
1417 }
1418 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
1419 CurrBlock != &CFGraph->getExit()) {
1420 // The block is empty, and has a single predecessor. Use its exit
1421 // location.
1422 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
1423 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
1424 }
1425 }
1426 }
1427
1428 /// \brief Class which implements the core thread safety analysis routines.
1429 class ThreadSafetyAnalyzer {
1430 friend class BuildLockset;
1431
1432 ThreadSafetyHandler &Handler;
1433 LocalVariableMap LocalVarMap;
1434 FactManager FactMan;
1435 std::vector<CFGBlockInfo> BlockInfo;
1436
1437 public:
ThreadSafetyAnalyzer(ThreadSafetyHandler & H)1438 ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
1439
1440 void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
1441 void removeLock(FactSet &FSet, const SExpr &Mutex,
1442 SourceLocation UnlockLoc, bool FullyRemove=false);
1443
1444 template <typename AttrType>
1445 void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1446 const NamedDecl *D, VarDecl *SelfDecl=0);
1447
1448 template <class AttrType>
1449 void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1450 const NamedDecl *D,
1451 const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1452 Expr *BrE, bool Neg);
1453
1454 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1455 bool &Negate);
1456
1457 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1458 const CFGBlock* PredBlock,
1459 const CFGBlock *CurrBlock);
1460
1461 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1462 SourceLocation JoinLoc,
1463 LockErrorKind LEK1, LockErrorKind LEK2,
1464 bool Modify=true);
1465
intersectAndWarn(FactSet & FSet1,const FactSet & FSet2,SourceLocation JoinLoc,LockErrorKind LEK1,bool Modify=true)1466 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1467 SourceLocation JoinLoc, LockErrorKind LEK1,
1468 bool Modify=true) {
1469 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1470 }
1471
1472 void runAnalysis(AnalysisDeclContext &AC);
1473 };
1474
1475
1476 /// \brief Add a new lock to the lockset, warning if the lock is already there.
1477 /// \param Mutex -- the Mutex expression for the lock
1478 /// \param LDat -- the LockData for the lock
addLock(FactSet & FSet,const SExpr & Mutex,const LockData & LDat)1479 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
1480 const LockData &LDat) {
1481 // FIXME: deal with acquired before/after annotations.
1482 // FIXME: Don't always warn when we have support for reentrant locks.
1483 if (Mutex.shouldIgnore())
1484 return;
1485
1486 if (FSet.findLock(FactMan, Mutex)) {
1487 Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
1488 } else {
1489 FSet.addLock(FactMan, Mutex, LDat);
1490 }
1491 }
1492
1493
1494 /// \brief Remove a lock from the lockset, warning if the lock is not there.
1495 /// \param Mutex The lock expression corresponding to the lock to be removed
1496 /// \param UnlockLoc The source location of the unlock (only used in error msg)
removeLock(FactSet & FSet,const SExpr & Mutex,SourceLocation UnlockLoc,bool FullyRemove)1497 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
1498 const SExpr &Mutex,
1499 SourceLocation UnlockLoc,
1500 bool FullyRemove) {
1501 if (Mutex.shouldIgnore())
1502 return;
1503
1504 const LockData *LDat = FSet.findLock(FactMan, Mutex);
1505 if (!LDat) {
1506 Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
1507 return;
1508 }
1509
1510 if (LDat->UnderlyingMutex.isValid()) {
1511 // This is scoped lockable object, which manages the real mutex.
1512 if (FullyRemove) {
1513 // We're destroying the managing object.
1514 // Remove the underlying mutex if it exists; but don't warn.
1515 if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
1516 FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1517 } else {
1518 // We're releasing the underlying mutex, but not destroying the
1519 // managing object. Warn on dual release.
1520 if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
1521 Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
1522 UnlockLoc);
1523 }
1524 FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1525 return;
1526 }
1527 }
1528 FSet.removeLock(FactMan, Mutex);
1529 }
1530
1531
1532 /// \brief Extract the list of mutexIDs from the attribute on an expression,
1533 /// and push them onto Mtxs, discarding any duplicates.
1534 template <typename AttrType>
getMutexIDs(MutexIDList & Mtxs,AttrType * Attr,Expr * Exp,const NamedDecl * D,VarDecl * SelfDecl)1535 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1536 Expr *Exp, const NamedDecl *D,
1537 VarDecl *SelfDecl) {
1538 typedef typename AttrType::args_iterator iterator_type;
1539
1540 if (Attr->args_size() == 0) {
1541 // The mutex held is the "this" object.
1542 SExpr Mu(0, Exp, D, SelfDecl);
1543 if (!Mu.isValid())
1544 SExpr::warnInvalidLock(Handler, 0, Exp, D);
1545 else
1546 Mtxs.push_back_nodup(Mu);
1547 return;
1548 }
1549
1550 for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1551 SExpr Mu(*I, Exp, D, SelfDecl);
1552 if (!Mu.isValid())
1553 SExpr::warnInvalidLock(Handler, *I, Exp, D);
1554 else
1555 Mtxs.push_back_nodup(Mu);
1556 }
1557 }
1558
1559
1560 /// \brief Extract the list of mutexIDs from a trylock attribute. If the
1561 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1562 /// any duplicates.
1563 template <class AttrType>
getMutexIDs(MutexIDList & Mtxs,AttrType * Attr,Expr * Exp,const NamedDecl * D,const CFGBlock * PredBlock,const CFGBlock * CurrBlock,Expr * BrE,bool Neg)1564 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1565 Expr *Exp, const NamedDecl *D,
1566 const CFGBlock *PredBlock,
1567 const CFGBlock *CurrBlock,
1568 Expr *BrE, bool Neg) {
1569 // Find out which branch has the lock
1570 bool branch = 0;
1571 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1572 branch = BLE->getValue();
1573 }
1574 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1575 branch = ILE->getValue().getBoolValue();
1576 }
1577 int branchnum = branch ? 0 : 1;
1578 if (Neg) branchnum = !branchnum;
1579
1580 // If we've taken the trylock branch, then add the lock
1581 int i = 0;
1582 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1583 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1584 if (*SI == CurrBlock && i == branchnum) {
1585 getMutexIDs(Mtxs, Attr, Exp, D);
1586 }
1587 }
1588 }
1589
1590
getStaticBooleanValue(Expr * E,bool & TCond)1591 bool getStaticBooleanValue(Expr* E, bool& TCond) {
1592 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1593 TCond = false;
1594 return true;
1595 } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1596 TCond = BLE->getValue();
1597 return true;
1598 } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1599 TCond = ILE->getValue().getBoolValue();
1600 return true;
1601 } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1602 return getStaticBooleanValue(CE->getSubExpr(), TCond);
1603 }
1604 return false;
1605 }
1606
1607
1608 // If Cond can be traced back to a function call, return the call expression.
1609 // The negate variable should be called with false, and will be set to true
1610 // if the function call is negated, e.g. if (!mu.tryLock(...))
getTrylockCallExpr(const Stmt * Cond,LocalVarContext C,bool & Negate)1611 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1612 LocalVarContext C,
1613 bool &Negate) {
1614 if (!Cond)
1615 return 0;
1616
1617 if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1618 return CallExp;
1619 }
1620 else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1621 return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1622 }
1623 else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1624 return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1625 }
1626 else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
1627 return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1628 }
1629 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1630 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1631 return getTrylockCallExpr(E, C, Negate);
1632 }
1633 else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1634 if (UOP->getOpcode() == UO_LNot) {
1635 Negate = !Negate;
1636 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1637 }
1638 return 0;
1639 }
1640 else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1641 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1642 if (BOP->getOpcode() == BO_NE)
1643 Negate = !Negate;
1644
1645 bool TCond = false;
1646 if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1647 if (!TCond) Negate = !Negate;
1648 return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1649 }
1650 else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1651 if (!TCond) Negate = !Negate;
1652 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1653 }
1654 return 0;
1655 }
1656 return 0;
1657 }
1658 // FIXME -- handle && and || as well.
1659 return 0;
1660 }
1661
1662
1663 /// \brief Find the lockset that holds on the edge between PredBlock
1664 /// and CurrBlock. The edge set is the exit set of PredBlock (passed
1665 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
getEdgeLockset(FactSet & Result,const FactSet & ExitSet,const CFGBlock * PredBlock,const CFGBlock * CurrBlock)1666 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1667 const FactSet &ExitSet,
1668 const CFGBlock *PredBlock,
1669 const CFGBlock *CurrBlock) {
1670 Result = ExitSet;
1671
1672 if (!PredBlock->getTerminatorCondition())
1673 return;
1674
1675 bool Negate = false;
1676 const Stmt *Cond = PredBlock->getTerminatorCondition();
1677 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1678 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1679
1680 CallExpr *Exp =
1681 const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1682 if (!Exp)
1683 return;
1684
1685 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1686 if(!FunDecl || !FunDecl->hasAttrs())
1687 return;
1688
1689
1690 MutexIDList ExclusiveLocksToAdd;
1691 MutexIDList SharedLocksToAdd;
1692
1693 // If the condition is a call to a Trylock function, then grab the attributes
1694 AttrVec &ArgAttrs = FunDecl->getAttrs();
1695 for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1696 Attr *Attr = ArgAttrs[i];
1697 switch (Attr->getKind()) {
1698 case attr::ExclusiveTrylockFunction: {
1699 ExclusiveTrylockFunctionAttr *A =
1700 cast<ExclusiveTrylockFunctionAttr>(Attr);
1701 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1702 PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1703 break;
1704 }
1705 case attr::SharedTrylockFunction: {
1706 SharedTrylockFunctionAttr *A =
1707 cast<SharedTrylockFunctionAttr>(Attr);
1708 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1709 PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1710 break;
1711 }
1712 default:
1713 break;
1714 }
1715 }
1716
1717 // Add and remove locks.
1718 SourceLocation Loc = Exp->getExprLoc();
1719 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1720 addLock(Result, ExclusiveLocksToAdd[i],
1721 LockData(Loc, LK_Exclusive));
1722 }
1723 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1724 addLock(Result, SharedLocksToAdd[i],
1725 LockData(Loc, LK_Shared));
1726 }
1727 }
1728
1729
1730 /// \brief We use this class to visit different types of expressions in
1731 /// CFGBlocks, and build up the lockset.
1732 /// An expression may cause us to add or remove locks from the lockset, or else
1733 /// output error messages related to missing locks.
1734 /// FIXME: In future, we may be able to not inherit from a visitor.
1735 class BuildLockset : public StmtVisitor<BuildLockset> {
1736 friend class ThreadSafetyAnalyzer;
1737
1738 ThreadSafetyAnalyzer *Analyzer;
1739 FactSet FSet;
1740 LocalVariableMap::Context LVarCtx;
1741 unsigned CtxIndex;
1742
1743 // Helper functions
1744 const ValueDecl *getValueDecl(const Expr *Exp);
1745
1746 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1747 Expr *MutexExp, ProtectedOperationKind POK);
1748 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp);
1749
1750 void checkAccess(const Expr *Exp, AccessKind AK);
1751 void checkPtAccess(const Expr *Exp, AccessKind AK);
1752
1753 void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
1754
1755 public:
BuildLockset(ThreadSafetyAnalyzer * Anlzr,CFGBlockInfo & Info)1756 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1757 : StmtVisitor<BuildLockset>(),
1758 Analyzer(Anlzr),
1759 FSet(Info.EntrySet),
1760 LVarCtx(Info.EntryContext),
1761 CtxIndex(Info.EntryIndex)
1762 {}
1763
1764 void VisitUnaryOperator(UnaryOperator *UO);
1765 void VisitBinaryOperator(BinaryOperator *BO);
1766 void VisitCastExpr(CastExpr *CE);
1767 void VisitCallExpr(CallExpr *Exp);
1768 void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1769 void VisitDeclStmt(DeclStmt *S);
1770 };
1771
1772
1773 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
getValueDecl(const Expr * Exp)1774 const ValueDecl *BuildLockset::getValueDecl(const Expr *Exp) {
1775 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Exp))
1776 return getValueDecl(CE->getSubExpr());
1777
1778 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1779 return DR->getDecl();
1780
1781 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1782 return ME->getMemberDecl();
1783
1784 return 0;
1785 }
1786
1787 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
1788 /// of at least the passed in AccessKind.
warnIfMutexNotHeld(const NamedDecl * D,const Expr * Exp,AccessKind AK,Expr * MutexExp,ProtectedOperationKind POK)1789 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1790 AccessKind AK, Expr *MutexExp,
1791 ProtectedOperationKind POK) {
1792 LockKind LK = getLockKindFromAccessKind(AK);
1793
1794 SExpr Mutex(MutexExp, Exp, D);
1795 if (!Mutex.isValid()) {
1796 SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1797 return;
1798 } else if (Mutex.shouldIgnore()) {
1799 return;
1800 }
1801
1802 LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
1803 bool NoError = true;
1804 if (!LDat) {
1805 // No exact match found. Look for a partial match.
1806 FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
1807 if (FEntry) {
1808 // Warn that there's no precise match.
1809 LDat = &FEntry->LDat;
1810 std::string PartMatchStr = FEntry->MutID.toString();
1811 StringRef PartMatchName(PartMatchStr);
1812 Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1813 Exp->getExprLoc(), &PartMatchName);
1814 } else {
1815 // Warn that there's no match at all.
1816 Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1817 Exp->getExprLoc());
1818 }
1819 NoError = false;
1820 }
1821 // Make sure the mutex we found is the right kind.
1822 if (NoError && LDat && !LDat->isAtLeast(LK))
1823 Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1824 Exp->getExprLoc());
1825 }
1826
1827 /// \brief Warn if the LSet contains the given lock.
warnIfMutexHeld(const NamedDecl * D,const Expr * Exp,Expr * MutexExp)1828 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr* Exp,
1829 Expr *MutexExp) {
1830 SExpr Mutex(MutexExp, Exp, D);
1831 if (!Mutex.isValid()) {
1832 SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1833 return;
1834 }
1835
1836 LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
1837 if (LDat) {
1838 std::string DeclName = D->getNameAsString();
1839 StringRef DeclNameSR (DeclName);
1840 Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(),
1841 Exp->getExprLoc());
1842 }
1843 }
1844
1845
1846 /// \brief Checks guarded_by and pt_guarded_by attributes.
1847 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1848 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1849 /// Similarly, we check if the access is to an expression that dereferences
1850 /// a pointer marked with pt_guarded_by.
checkAccess(const Expr * Exp,AccessKind AK)1851 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) {
1852 Exp = Exp->IgnoreParenCasts();
1853
1854 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
1855 // For dereferences
1856 if (UO->getOpcode() == clang::UO_Deref)
1857 checkPtAccess(UO->getSubExpr(), AK);
1858 return;
1859 }
1860
1861 if (Analyzer->Handler.issueBetaWarnings()) {
1862 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
1863 if (ME->isArrow())
1864 checkPtAccess(ME->getBase(), AK);
1865 else
1866 checkAccess(ME->getBase(), AK);
1867 }
1868 }
1869
1870 const ValueDecl *D = getValueDecl(Exp);
1871 if (!D || !D->hasAttrs())
1872 return;
1873
1874 if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
1875 Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1876 Exp->getExprLoc());
1877
1878 const AttrVec &ArgAttrs = D->getAttrs();
1879 for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1880 if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1881 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1882 }
1883
1884 /// \brief Checks pt_guarded_by and pt_guarded_var attributes.
checkPtAccess(const Expr * Exp,AccessKind AK)1885 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
1886 Exp = Exp->IgnoreParenCasts();
1887
1888 const ValueDecl *D = getValueDecl(Exp);
1889 if (!D || !D->hasAttrs())
1890 return;
1891
1892 if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
1893 Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1894 Exp->getExprLoc());
1895
1896 const AttrVec &ArgAttrs = D->getAttrs();
1897 for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1898 if (PtGuardedByAttr *GBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1899 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarDereference);
1900 }
1901
1902
1903 /// \brief Process a function call, method call, constructor call,
1904 /// or destructor call. This involves looking at the attributes on the
1905 /// corresponding function/method/constructor/destructor, issuing warnings,
1906 /// and updating the locksets accordingly.
1907 ///
1908 /// FIXME: For classes annotated with one of the guarded annotations, we need
1909 /// to treat const method calls as reads and non-const method calls as writes,
1910 /// and check that the appropriate locks are held. Non-const method calls with
1911 /// the same signature as const method calls can be also treated as reads.
1912 ///
handleCall(Expr * Exp,const NamedDecl * D,VarDecl * VD)1913 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1914 const AttrVec &ArgAttrs = D->getAttrs();
1915 MutexIDList ExclusiveLocksToAdd;
1916 MutexIDList SharedLocksToAdd;
1917 MutexIDList LocksToRemove;
1918
1919 for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1920 Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1921 switch (At->getKind()) {
1922 // When we encounter an exclusive lock function, we need to add the lock
1923 // to our lockset with kind exclusive.
1924 case attr::ExclusiveLockFunction: {
1925 ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
1926 Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D, VD);
1927 break;
1928 }
1929
1930 // When we encounter a shared lock function, we need to add the lock
1931 // to our lockset with kind shared.
1932 case attr::SharedLockFunction: {
1933 SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
1934 Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D, VD);
1935 break;
1936 }
1937
1938 // When we encounter an unlock function, we need to remove unlocked
1939 // mutexes from the lockset, and flag a warning if they are not there.
1940 case attr::UnlockFunction: {
1941 UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
1942 Analyzer->getMutexIDs(LocksToRemove, A, Exp, D, VD);
1943 break;
1944 }
1945
1946 case attr::ExclusiveLocksRequired: {
1947 ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
1948
1949 for (ExclusiveLocksRequiredAttr::args_iterator
1950 I = A->args_begin(), E = A->args_end(); I != E; ++I)
1951 warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1952 break;
1953 }
1954
1955 case attr::SharedLocksRequired: {
1956 SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
1957
1958 for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
1959 E = A->args_end(); I != E; ++I)
1960 warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1961 break;
1962 }
1963
1964 case attr::LocksExcluded: {
1965 LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
1966
1967 for (LocksExcludedAttr::args_iterator I = A->args_begin(),
1968 E = A->args_end(); I != E; ++I) {
1969 warnIfMutexHeld(D, Exp, *I);
1970 }
1971 break;
1972 }
1973
1974 // Ignore other (non thread-safety) attributes
1975 default:
1976 break;
1977 }
1978 }
1979
1980 // Figure out if we're calling the constructor of scoped lockable class
1981 bool isScopedVar = false;
1982 if (VD) {
1983 if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1984 const CXXRecordDecl* PD = CD->getParent();
1985 if (PD && PD->getAttr<ScopedLockableAttr>())
1986 isScopedVar = true;
1987 }
1988 }
1989
1990 // Add locks.
1991 SourceLocation Loc = Exp->getExprLoc();
1992 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1993 Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
1994 LockData(Loc, LK_Exclusive, isScopedVar));
1995 }
1996 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1997 Analyzer->addLock(FSet, SharedLocksToAdd[i],
1998 LockData(Loc, LK_Shared, isScopedVar));
1999 }
2000
2001 // Add the managing object as a dummy mutex, mapped to the underlying mutex.
2002 // FIXME -- this doesn't work if we acquire multiple locks.
2003 if (isScopedVar) {
2004 SourceLocation MLoc = VD->getLocation();
2005 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
2006 SExpr SMutex(&DRE, 0, 0);
2007
2008 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2009 Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
2010 ExclusiveLocksToAdd[i]));
2011 }
2012 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2013 Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
2014 SharedLocksToAdd[i]));
2015 }
2016 }
2017
2018 // Remove locks.
2019 // FIXME -- should only fully remove if the attribute refers to 'this'.
2020 bool Dtor = isa<CXXDestructorDecl>(D);
2021 for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
2022 Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
2023 }
2024 }
2025
2026
2027 /// \brief For unary operations which read and write a variable, we need to
2028 /// check whether we hold any required mutexes. Reads are checked in
2029 /// VisitCastExpr.
VisitUnaryOperator(UnaryOperator * UO)2030 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
2031 switch (UO->getOpcode()) {
2032 case clang::UO_PostDec:
2033 case clang::UO_PostInc:
2034 case clang::UO_PreDec:
2035 case clang::UO_PreInc: {
2036 checkAccess(UO->getSubExpr(), AK_Written);
2037 break;
2038 }
2039 default:
2040 break;
2041 }
2042 }
2043
2044 /// For binary operations which assign to a variable (writes), we need to check
2045 /// whether we hold any required mutexes.
2046 /// FIXME: Deal with non-primitive types.
VisitBinaryOperator(BinaryOperator * BO)2047 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
2048 if (!BO->isAssignmentOp())
2049 return;
2050
2051 // adjust the context
2052 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2053
2054 checkAccess(BO->getLHS(), AK_Written);
2055 }
2056
2057 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2058 /// need to ensure we hold any required mutexes.
2059 /// FIXME: Deal with non-primitive types.
VisitCastExpr(CastExpr * CE)2060 void BuildLockset::VisitCastExpr(CastExpr *CE) {
2061 if (CE->getCastKind() != CK_LValueToRValue)
2062 return;
2063 checkAccess(CE->getSubExpr(), AK_Read);
2064 }
2065
2066
VisitCallExpr(CallExpr * Exp)2067 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
2068 if (Analyzer->Handler.issueBetaWarnings()) {
2069 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2070 MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
2071 // ME can be null when calling a method pointer
2072 CXXMethodDecl *MD = CE->getMethodDecl();
2073
2074 if (ME && MD) {
2075 if (ME->isArrow()) {
2076 if (MD->isConst()) {
2077 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2078 } else { // FIXME -- should be AK_Written
2079 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2080 }
2081 } else {
2082 if (MD->isConst())
2083 checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2084 else // FIXME -- should be AK_Written
2085 checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2086 }
2087 }
2088 } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2089 switch (OE->getOperator()) {
2090 case OO_Equal: {
2091 const Expr *Target = OE->getArg(0);
2092 const Expr *Source = OE->getArg(1);
2093 checkAccess(Target, AK_Written);
2094 checkAccess(Source, AK_Read);
2095 break;
2096 }
2097 default: {
2098 const Expr *Source = OE->getArg(0);
2099 checkAccess(Source, AK_Read);
2100 break;
2101 }
2102 }
2103 }
2104 }
2105 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2106 if(!D || !D->hasAttrs())
2107 return;
2108 handleCall(Exp, D);
2109 }
2110
VisitCXXConstructExpr(CXXConstructExpr * Exp)2111 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
2112 if (Analyzer->Handler.issueBetaWarnings()) {
2113 const CXXConstructorDecl *D = Exp->getConstructor();
2114 if (D && D->isCopyConstructor()) {
2115 const Expr* Source = Exp->getArg(0);
2116 checkAccess(Source, AK_Read);
2117 }
2118 }
2119 // FIXME -- only handles constructors in DeclStmt below.
2120 }
2121
VisitDeclStmt(DeclStmt * S)2122 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
2123 // adjust the context
2124 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2125
2126 DeclGroupRef DGrp = S->getDeclGroup();
2127 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
2128 Decl *D = *I;
2129 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
2130 Expr *E = VD->getInit();
2131 // handle constructors that involve temporaries
2132 if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
2133 E = EWC->getSubExpr();
2134
2135 if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
2136 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2137 if (!CtorD || !CtorD->hasAttrs())
2138 return;
2139 handleCall(CE, CtorD, VD);
2140 }
2141 }
2142 }
2143 }
2144
2145
2146
2147 /// \brief Compute the intersection of two locksets and issue warnings for any
2148 /// locks in the symmetric difference.
2149 ///
2150 /// This function is used at a merge point in the CFG when comparing the lockset
2151 /// of each branch being merged. For example, given the following sequence:
2152 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2153 /// are the same. In the event of a difference, we use the intersection of these
2154 /// two locksets at the start of D.
2155 ///
2156 /// \param FSet1 The first lockset.
2157 /// \param FSet2 The second lockset.
2158 /// \param JoinLoc The location of the join point for error reporting
2159 /// \param LEK1 The error message to report if a mutex is missing from LSet1
2160 /// \param LEK2 The error message to report if a mutex is missing from Lset2
intersectAndWarn(FactSet & FSet1,const FactSet & FSet2,SourceLocation JoinLoc,LockErrorKind LEK1,LockErrorKind LEK2,bool Modify)2161 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2162 const FactSet &FSet2,
2163 SourceLocation JoinLoc,
2164 LockErrorKind LEK1,
2165 LockErrorKind LEK2,
2166 bool Modify) {
2167 FactSet FSet1Orig = FSet1;
2168
2169 for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
2170 I != E; ++I) {
2171 const SExpr &FSet2Mutex = FactMan[*I].MutID;
2172 const LockData &LDat2 = FactMan[*I].LDat;
2173
2174 if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
2175 if (LDat1->LKind != LDat2.LKind) {
2176 Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
2177 LDat2.AcquireLoc,
2178 LDat1->AcquireLoc);
2179 if (Modify && LDat1->LKind != LK_Exclusive) {
2180 FSet1.removeLock(FactMan, FSet2Mutex);
2181 FSet1.addLock(FactMan, FSet2Mutex, LDat2);
2182 }
2183 }
2184 } else {
2185 if (LDat2.UnderlyingMutex.isValid()) {
2186 if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
2187 // If this is a scoped lock that manages another mutex, and if the
2188 // underlying mutex is still held, then warn about the underlying
2189 // mutex.
2190 Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
2191 LDat2.AcquireLoc,
2192 JoinLoc, LEK1);
2193 }
2194 }
2195 else if (!LDat2.Managed && !FSet2Mutex.isUniversal())
2196 Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
2197 LDat2.AcquireLoc,
2198 JoinLoc, LEK1);
2199 }
2200 }
2201
2202 for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
2203 I != E; ++I) {
2204 const SExpr &FSet1Mutex = FactMan[*I].MutID;
2205 const LockData &LDat1 = FactMan[*I].LDat;
2206
2207 if (!FSet2.findLock(FactMan, FSet1Mutex)) {
2208 if (LDat1.UnderlyingMutex.isValid()) {
2209 if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
2210 // If this is a scoped lock that manages another mutex, and if the
2211 // underlying mutex is still held, then warn about the underlying
2212 // mutex.
2213 Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
2214 LDat1.AcquireLoc,
2215 JoinLoc, LEK1);
2216 }
2217 }
2218 else if (!LDat1.Managed && !FSet1Mutex.isUniversal())
2219 Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
2220 LDat1.AcquireLoc,
2221 JoinLoc, LEK2);
2222 if (Modify)
2223 FSet1.removeLock(FactMan, FSet1Mutex);
2224 }
2225 }
2226 }
2227
2228
2229 // Return true if block B never continues to its successors.
neverReturns(const CFGBlock * B)2230 inline bool neverReturns(const CFGBlock* B) {
2231 if (B->hasNoReturnElement())
2232 return true;
2233 if (B->empty())
2234 return false;
2235
2236 CFGElement Last = B->back();
2237 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2238 if (isa<CXXThrowExpr>(S->getStmt()))
2239 return true;
2240 }
2241 return false;
2242 }
2243
2244
2245 /// \brief Check a function's CFG for thread-safety violations.
2246 ///
2247 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2248 /// at the end of each block, and issue warnings for thread safety violations.
2249 /// Each block in the CFG is traversed exactly once.
runAnalysis(AnalysisDeclContext & AC)2250 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2251 CFG *CFGraph = AC.getCFG();
2252 if (!CFGraph) return;
2253 const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
2254
2255 // AC.dumpCFG(true);
2256
2257 if (!D)
2258 return; // Ignore anonymous functions for now.
2259 if (D->getAttr<NoThreadSafetyAnalysisAttr>())
2260 return;
2261 // FIXME: Do something a bit more intelligent inside constructor and
2262 // destructor code. Constructors and destructors must assume unique access
2263 // to 'this', so checks on member variable access is disabled, but we should
2264 // still enable checks on other objects.
2265 if (isa<CXXConstructorDecl>(D))
2266 return; // Don't check inside constructors.
2267 if (isa<CXXDestructorDecl>(D))
2268 return; // Don't check inside destructors.
2269
2270 BlockInfo.resize(CFGraph->getNumBlockIDs(),
2271 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2272
2273 // We need to explore the CFG via a "topological" ordering.
2274 // That way, we will be guaranteed to have information about required
2275 // predecessor locksets when exploring a new block.
2276 PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
2277 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2278
2279 // Mark entry block as reachable
2280 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2281
2282 // Compute SSA names for local variables
2283 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2284
2285 // Fill in source locations for all CFGBlocks.
2286 findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2287
2288 // Add locks from exclusive_locks_required and shared_locks_required
2289 // to initial lockset. Also turn off checking for lock and unlock functions.
2290 // FIXME: is there a more intelligent way to check lock/unlock functions?
2291 if (!SortedGraph->empty() && D->hasAttrs()) {
2292 const CFGBlock *FirstBlock = *SortedGraph->begin();
2293 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2294 const AttrVec &ArgAttrs = D->getAttrs();
2295
2296 MutexIDList ExclusiveLocksToAdd;
2297 MutexIDList SharedLocksToAdd;
2298
2299 SourceLocation Loc = D->getLocation();
2300 for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
2301 Attr *Attr = ArgAttrs[i];
2302 Loc = Attr->getLocation();
2303 if (ExclusiveLocksRequiredAttr *A
2304 = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
2305 getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2306 } else if (SharedLocksRequiredAttr *A
2307 = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
2308 getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
2309 } else if (isa<UnlockFunctionAttr>(Attr)) {
2310 // Don't try to check unlock functions for now
2311 return;
2312 } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
2313 // Don't try to check lock functions for now
2314 return;
2315 } else if (isa<SharedLockFunctionAttr>(Attr)) {
2316 // Don't try to check lock functions for now
2317 return;
2318 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2319 // Don't try to check trylock functions for now
2320 return;
2321 } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2322 // Don't try to check trylock functions for now
2323 return;
2324 }
2325 }
2326
2327 // FIXME -- Loc can be wrong here.
2328 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2329 addLock(InitialLockset, ExclusiveLocksToAdd[i],
2330 LockData(Loc, LK_Exclusive));
2331 }
2332 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2333 addLock(InitialLockset, SharedLocksToAdd[i],
2334 LockData(Loc, LK_Shared));
2335 }
2336 }
2337
2338 for (PostOrderCFGView::iterator I = SortedGraph->begin(),
2339 E = SortedGraph->end(); I!= E; ++I) {
2340 const CFGBlock *CurrBlock = *I;
2341 int CurrBlockID = CurrBlock->getBlockID();
2342 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2343
2344 // Use the default initial lockset in case there are no predecessors.
2345 VisitedBlocks.insert(CurrBlock);
2346
2347 // Iterate through the predecessor blocks and warn if the lockset for all
2348 // predecessors is not the same. We take the entry lockset of the current
2349 // block to be the intersection of all previous locksets.
2350 // FIXME: By keeping the intersection, we may output more errors in future
2351 // for a lock which is not in the intersection, but was in the union. We
2352 // may want to also keep the union in future. As an example, let's say
2353 // the intersection contains Mutex L, and the union contains L and M.
2354 // Later we unlock M. At this point, we would output an error because we
2355 // never locked M; although the real error is probably that we forgot to
2356 // lock M on all code paths. Conversely, let's say that later we lock M.
2357 // In this case, we should compare against the intersection instead of the
2358 // union because the real error is probably that we forgot to unlock M on
2359 // all code paths.
2360 bool LocksetInitialized = false;
2361 SmallVector<CFGBlock *, 8> SpecialBlocks;
2362 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2363 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
2364
2365 // if *PI -> CurrBlock is a back edge
2366 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
2367 continue;
2368
2369 int PrevBlockID = (*PI)->getBlockID();
2370 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2371
2372 // Ignore edges from blocks that can't return.
2373 if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2374 continue;
2375
2376 // Okay, we can reach this block from the entry.
2377 CurrBlockInfo->Reachable = true;
2378
2379 // If the previous block ended in a 'continue' or 'break' statement, then
2380 // a difference in locksets is probably due to a bug in that block, rather
2381 // than in some other predecessor. In that case, keep the other
2382 // predecessor's lockset.
2383 if (const Stmt *Terminator = (*PI)->getTerminator()) {
2384 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2385 SpecialBlocks.push_back(*PI);
2386 continue;
2387 }
2388 }
2389
2390 FactSet PrevLockset;
2391 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2392
2393 if (!LocksetInitialized) {
2394 CurrBlockInfo->EntrySet = PrevLockset;
2395 LocksetInitialized = true;
2396 } else {
2397 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2398 CurrBlockInfo->EntryLoc,
2399 LEK_LockedSomePredecessors);
2400 }
2401 }
2402
2403 // Skip rest of block if it's not reachable.
2404 if (!CurrBlockInfo->Reachable)
2405 continue;
2406
2407 // Process continue and break blocks. Assume that the lockset for the
2408 // resulting block is unaffected by any discrepancies in them.
2409 for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
2410 SpecialI < SpecialN; ++SpecialI) {
2411 CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
2412 int PrevBlockID = PrevBlock->getBlockID();
2413 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2414
2415 if (!LocksetInitialized) {
2416 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2417 LocksetInitialized = true;
2418 } else {
2419 // Determine whether this edge is a loop terminator for diagnostic
2420 // purposes. FIXME: A 'break' statement might be a loop terminator, but
2421 // it might also be part of a switch. Also, a subsequent destructor
2422 // might add to the lockset, in which case the real issue might be a
2423 // double lock on the other path.
2424 const Stmt *Terminator = PrevBlock->getTerminator();
2425 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2426
2427 FactSet PrevLockset;
2428 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2429 PrevBlock, CurrBlock);
2430
2431 // Do not update EntrySet.
2432 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2433 PrevBlockInfo->ExitLoc,
2434 IsLoop ? LEK_LockedSomeLoopIterations
2435 : LEK_LockedSomePredecessors,
2436 false);
2437 }
2438 }
2439
2440 BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2441
2442 // Visit all the statements in the basic block.
2443 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2444 BE = CurrBlock->end(); BI != BE; ++BI) {
2445 switch (BI->getKind()) {
2446 case CFGElement::Statement: {
2447 CFGStmt CS = BI->castAs<CFGStmt>();
2448 LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
2449 break;
2450 }
2451 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2452 case CFGElement::AutomaticObjectDtor: {
2453 CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
2454 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
2455 AD.getDestructorDecl(AC.getASTContext()));
2456 if (!DD->hasAttrs())
2457 break;
2458
2459 // Create a dummy expression,
2460 VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
2461 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
2462 AD.getTriggerStmt()->getLocEnd());
2463 LocksetBuilder.handleCall(&DRE, DD);
2464 break;
2465 }
2466 default:
2467 break;
2468 }
2469 }
2470 CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2471
2472 // For every back edge from CurrBlock (the end of the loop) to another block
2473 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2474 // the one held at the beginning of FirstLoopBlock. We can look up the
2475 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2476 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2477 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
2478
2479 // if CurrBlock -> *SI is *not* a back edge
2480 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
2481 continue;
2482
2483 CFGBlock *FirstLoopBlock = *SI;
2484 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2485 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2486 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2487 PreLoop->EntryLoc,
2488 LEK_LockedSomeLoopIterations,
2489 false);
2490 }
2491 }
2492
2493 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2494 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
2495
2496 // Skip the final check if the exit block is unreachable.
2497 if (!Final->Reachable)
2498 return;
2499
2500 // FIXME: Should we call this function for all blocks which exit the function?
2501 intersectAndWarn(Initial->EntrySet, Final->ExitSet,
2502 Final->ExitLoc,
2503 LEK_LockedAtEndOfFunction,
2504 LEK_NotLockedAtEndOfFunction,
2505 false);
2506 }
2507
2508 } // end anonymous namespace
2509
2510
2511 namespace clang {
2512 namespace thread_safety {
2513
2514 /// \brief Check a function's CFG for thread-safety violations.
2515 ///
2516 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2517 /// at the end of each block, and issue warnings for thread safety violations.
2518 /// Each block in the CFG is traversed exactly once.
runThreadSafetyAnalysis(AnalysisDeclContext & AC,ThreadSafetyHandler & Handler)2519 void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2520 ThreadSafetyHandler &Handler) {
2521 ThreadSafetyAnalyzer Analyzer(Handler);
2522 Analyzer.runAnalysis(AC);
2523 }
2524
2525 /// \brief Helper function that returns a LockKind required for the given level
2526 /// of access.
getLockKindFromAccessKind(AccessKind AK)2527 LockKind getLockKindFromAccessKind(AccessKind AK) {
2528 switch (AK) {
2529 case AK_Read :
2530 return LK_Shared;
2531 case AK_Written :
2532 return LK_Exclusive;
2533 }
2534 llvm_unreachable("Unknown AccessKind");
2535 }
2536
2537 }} // end namespace clang::thread_safety
2538