• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the target machine instruction set to the code generator.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
15 #define LLVM_TARGET_TARGETINSTRINFO_H
16 
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/CodeGen/DFAPacketizer.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/MC/MCInstrInfo.h"
21 
22 namespace llvm {
23 
24 class InstrItineraryData;
25 class LiveVariables;
26 class MCAsmInfo;
27 class MachineMemOperand;
28 class MachineRegisterInfo;
29 class MDNode;
30 class MCInst;
31 class MCSchedModel;
32 class SDNode;
33 class ScheduleHazardRecognizer;
34 class SelectionDAG;
35 class ScheduleDAG;
36 class TargetRegisterClass;
37 class TargetRegisterInfo;
38 class BranchProbability;
39 
40 template<class T> class SmallVectorImpl;
41 
42 
43 //---------------------------------------------------------------------------
44 ///
45 /// TargetInstrInfo - Interface to description of machine instruction set
46 ///
47 class TargetInstrInfo : public MCInstrInfo {
48   TargetInstrInfo(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
49   void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
50 public:
51   TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
CallFrameSetupOpcode(CFSetupOpcode)52     : CallFrameSetupOpcode(CFSetupOpcode),
53       CallFrameDestroyOpcode(CFDestroyOpcode) {
54   }
55 
56   virtual ~TargetInstrInfo();
57 
58   /// getRegClass - Givem a machine instruction descriptor, returns the register
59   /// class constraint for OpNum, or NULL.
60   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
61                                          unsigned OpNum,
62                                          const TargetRegisterInfo *TRI,
63                                          const MachineFunction &MF) const;
64 
65   /// isTriviallyReMaterializable - Return true if the instruction is trivially
66   /// rematerializable, meaning it has no side effects and requires no operands
67   /// that aren't always available.
68   bool isTriviallyReMaterializable(const MachineInstr *MI,
69                                    AliasAnalysis *AA = 0) const {
70     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
71            (MI->getDesc().isRematerializable() &&
72             (isReallyTriviallyReMaterializable(MI, AA) ||
73              isReallyTriviallyReMaterializableGeneric(MI, AA)));
74   }
75 
76 protected:
77   /// isReallyTriviallyReMaterializable - For instructions with opcodes for
78   /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
79   /// specify whether the instruction is actually trivially rematerializable,
80   /// taking into consideration its operands. This predicate must return false
81   /// if the instruction has any side effects other than producing a value, or
82   /// if it requres any address registers that are not always available.
isReallyTriviallyReMaterializable(const MachineInstr * MI,AliasAnalysis * AA)83   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
84                                                  AliasAnalysis *AA) const {
85     return false;
86   }
87 
88 private:
89   /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
90   /// for which the M_REMATERIALIZABLE flag is set and the target hook
91   /// isReallyTriviallyReMaterializable returns false, this function does
92   /// target-independent tests to determine if the instruction is really
93   /// trivially rematerializable.
94   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
95                                                 AliasAnalysis *AA) const;
96 
97 public:
98   /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
99   /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
100   /// targets use pseudo instructions in order to abstract away the difference
101   /// between operating with a frame pointer and operating without, through the
102   /// use of these two instructions.
103   ///
getCallFrameSetupOpcode()104   int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
getCallFrameDestroyOpcode()105   int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
106 
107   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
108   /// extension instruction. That is, it's like a copy where it's legal for the
109   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
110   /// true, then it's expected the pre-extension value is available as a subreg
111   /// of the result register. This also returns the sub-register index in
112   /// SubIdx.
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx)113   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
114                                      unsigned &SrcReg, unsigned &DstReg,
115                                      unsigned &SubIdx) const {
116     return false;
117   }
118 
119   /// isLoadFromStackSlot - If the specified machine instruction is a direct
120   /// load from a stack slot, return the virtual or physical register number of
121   /// the destination along with the FrameIndex of the loaded stack slot.  If
122   /// not, return 0.  This predicate must return 0 if the instruction has
123   /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex)124   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
125                                        int &FrameIndex) const {
126     return 0;
127   }
128 
129   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
130   /// stack locations as well.  This uses a heuristic so it isn't
131   /// reliable for correctness.
isLoadFromStackSlotPostFE(const MachineInstr * MI,int & FrameIndex)132   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
133                                              int &FrameIndex) const {
134     return 0;
135   }
136 
137   /// hasLoadFromStackSlot - If the specified machine instruction has
138   /// a load from a stack slot, return true along with the FrameIndex
139   /// of the loaded stack slot and the machine mem operand containing
140   /// the reference.  If not, return false.  Unlike
141   /// isLoadFromStackSlot, this returns true for any instructions that
142   /// loads from the stack.  This is just a hint, as some cases may be
143   /// missed.
144   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
145                                     const MachineMemOperand *&MMO,
146                                     int &FrameIndex) const;
147 
148   /// isStoreToStackSlot - If the specified machine instruction is a direct
149   /// store to a stack slot, return the virtual or physical register number of
150   /// the source reg along with the FrameIndex of the loaded stack slot.  If
151   /// not, return 0.  This predicate must return 0 if the instruction has
152   /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex)153   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
154                                       int &FrameIndex) const {
155     return 0;
156   }
157 
158   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
159   /// stack locations as well.  This uses a heuristic so it isn't
160   /// reliable for correctness.
isStoreToStackSlotPostFE(const MachineInstr * MI,int & FrameIndex)161   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
162                                             int &FrameIndex) const {
163     return 0;
164   }
165 
166   /// hasStoreToStackSlot - If the specified machine instruction has a
167   /// store to a stack slot, return true along with the FrameIndex of
168   /// the loaded stack slot and the machine mem operand containing the
169   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
170   /// this returns true for any instructions that stores to the
171   /// stack.  This is just a hint, as some cases may be missed.
172   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
173                                    const MachineMemOperand *&MMO,
174                                    int &FrameIndex) const;
175 
176   /// reMaterialize - Re-issue the specified 'original' instruction at the
177   /// specific location targeting a new destination register.
178   /// The register in Orig->getOperand(0).getReg() will be substituted by
179   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
180   /// SubIdx.
181   virtual void reMaterialize(MachineBasicBlock &MBB,
182                              MachineBasicBlock::iterator MI,
183                              unsigned DestReg, unsigned SubIdx,
184                              const MachineInstr *Orig,
185                              const TargetRegisterInfo &TRI) const;
186 
187   /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
188   /// MachineFunction::CloneMachineInstr(), but the target may update operands
189   /// that are required to be unique.
190   ///
191   /// The instruction must be duplicable as indicated by isNotDuplicable().
192   virtual MachineInstr *duplicate(MachineInstr *Orig,
193                                   MachineFunction &MF) const;
194 
195   /// convertToThreeAddress - This method must be implemented by targets that
196   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
197   /// may be able to convert a two-address instruction into one or more true
198   /// three-address instructions on demand.  This allows the X86 target (for
199   /// example) to convert ADD and SHL instructions into LEA instructions if they
200   /// would require register copies due to two-addressness.
201   ///
202   /// This method returns a null pointer if the transformation cannot be
203   /// performed, otherwise it returns the last new instruction.
204   ///
205   virtual MachineInstr *
convertToThreeAddress(MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV)206   convertToThreeAddress(MachineFunction::iterator &MFI,
207                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
208     return 0;
209   }
210 
211   /// commuteInstruction - If a target has any instructions that are
212   /// commutable but require converting to different instructions or making
213   /// non-trivial changes to commute them, this method can overloaded to do
214   /// that.  The default implementation simply swaps the commutable operands.
215   /// If NewMI is false, MI is modified in place and returned; otherwise, a
216   /// new machine instruction is created and returned.  Do not call this
217   /// method for a non-commutable instruction, but there may be some cases
218   /// where this method fails and returns null.
219   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
220                                            bool NewMI = false) const;
221 
222   /// findCommutedOpIndices - If specified MI is commutable, return the two
223   /// operand indices that would swap value. Return false if the instruction
224   /// is not in a form which this routine understands.
225   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
226                                      unsigned &SrcOpIdx2) const;
227 
228   /// produceSameValue - Return true if two machine instructions would produce
229   /// identical values. By default, this is only true when the two instructions
230   /// are deemed identical except for defs. If this function is called when the
231   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
232   /// aggressive checks.
233   virtual bool produceSameValue(const MachineInstr *MI0,
234                                 const MachineInstr *MI1,
235                                 const MachineRegisterInfo *MRI = 0) const;
236 
237   /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
238   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
239   /// implemented for a target).  Upon success, this returns false and returns
240   /// with the following information in various cases:
241   ///
242   /// 1. If this block ends with no branches (it just falls through to its succ)
243   ///    just return false, leaving TBB/FBB null.
244   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
245   ///    the destination block.
246   /// 3. If this block ends with a conditional branch and it falls through to a
247   ///    successor block, it sets TBB to be the branch destination block and a
248   ///    list of operands that evaluate the condition. These operands can be
249   ///    passed to other TargetInstrInfo methods to create new branches.
250   /// 4. If this block ends with a conditional branch followed by an
251   ///    unconditional branch, it returns the 'true' destination in TBB, the
252   ///    'false' destination in FBB, and a list of operands that evaluate the
253   ///    condition.  These operands can be passed to other TargetInstrInfo
254   ///    methods to create new branches.
255   ///
256   /// Note that RemoveBranch and InsertBranch must be implemented to support
257   /// cases where this method returns success.
258   ///
259   /// If AllowModify is true, then this routine is allowed to modify the basic
260   /// block (e.g. delete instructions after the unconditional branch).
261   ///
262   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
263                              MachineBasicBlock *&FBB,
264                              SmallVectorImpl<MachineOperand> &Cond,
265                              bool AllowModify = false) const {
266     return true;
267   }
268 
269   /// RemoveBranch - Remove the branching code at the end of the specific MBB.
270   /// This is only invoked in cases where AnalyzeBranch returns success. It
271   /// returns the number of instructions that were removed.
RemoveBranch(MachineBasicBlock & MBB)272   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
273     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
274   }
275 
276   /// InsertBranch - Insert branch code into the end of the specified
277   /// MachineBasicBlock.  The operands to this method are the same as those
278   /// returned by AnalyzeBranch.  This is only invoked in cases where
279   /// AnalyzeBranch returns success. It returns the number of instructions
280   /// inserted.
281   ///
282   /// It is also invoked by tail merging to add unconditional branches in
283   /// cases where AnalyzeBranch doesn't apply because there was no original
284   /// branch to analyze.  At least this much must be implemented, else tail
285   /// merging needs to be disabled.
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL)286   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
287                                 MachineBasicBlock *FBB,
288                                 const SmallVectorImpl<MachineOperand> &Cond,
289                                 DebugLoc DL) const {
290     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
291   }
292 
293   /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
294   /// after it, replacing it with an unconditional branch to NewDest. This is
295   /// used by the tail merging pass.
296   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
297                                        MachineBasicBlock *NewDest) const;
298 
299   /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
300   /// block at the specified instruction (i.e. instruction would be the start
301   /// of a new basic block).
isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)302   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
303                                    MachineBasicBlock::iterator MBBI) const {
304     return true;
305   }
306 
307   /// isProfitableToIfCvt - Return true if it's profitable to predicate
308   /// instructions with accumulated instruction latency of "NumCycles"
309   /// of the specified basic block, where the probability of the instructions
310   /// being executed is given by Probability, and Confidence is a measure
311   /// of our confidence that it will be properly predicted.
312   virtual
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,const BranchProbability & Probability)313   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
314                            unsigned ExtraPredCycles,
315                            const BranchProbability &Probability) const {
316     return false;
317   }
318 
319   /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
320   /// checks for the case where two basic blocks from true and false path
321   /// of a if-then-else (diamond) are predicated on mutally exclusive
322   /// predicates, where the probability of the true path being taken is given
323   /// by Probability, and Confidence is a measure of our confidence that it
324   /// will be properly predicted.
325   virtual bool
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,const BranchProbability & Probability)326   isProfitableToIfCvt(MachineBasicBlock &TMBB,
327                       unsigned NumTCycles, unsigned ExtraTCycles,
328                       MachineBasicBlock &FMBB,
329                       unsigned NumFCycles, unsigned ExtraFCycles,
330                       const BranchProbability &Probability) const {
331     return false;
332   }
333 
334   /// isProfitableToDupForIfCvt - Return true if it's profitable for
335   /// if-converter to duplicate instructions of specified accumulated
336   /// instruction latencies in the specified MBB to enable if-conversion.
337   /// The probability of the instructions being executed is given by
338   /// Probability, and Confidence is a measure of our confidence that it
339   /// will be properly predicted.
340   virtual bool
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,const BranchProbability & Probability)341   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
342                             const BranchProbability &Probability) const {
343     return false;
344   }
345 
346   /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
347   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
348   /// exclusive predicates.
349   /// e.g.
350   ///   subeq  r0, r1, #1
351   ///   addne  r0, r1, #1
352   /// =>
353   ///   sub    r0, r1, #1
354   ///   addne  r0, r1, #1
355   ///
356   /// This may be profitable is conditional instructions are always executed.
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)357   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
358                                          MachineBasicBlock &FMBB) const {
359     return false;
360   }
361 
362   /// canInsertSelect - Return true if it is possible to insert a select
363   /// instruction that chooses between TrueReg and FalseReg based on the
364   /// condition code in Cond.
365   ///
366   /// When successful, also return the latency in cycles from TrueReg,
367   /// FalseReg, and Cond to the destination register. The Cond latency should
368   /// compensate for a conditional branch being removed. For example, if a
369   /// conditional branch has a 3 cycle latency from the condition code read,
370   /// and a cmov instruction has a 2 cycle latency from the condition code
371   /// read, CondCycles should be returned as -1.
372   ///
373   /// @param MBB         Block where select instruction would be inserted.
374   /// @param Cond        Condition returned by AnalyzeBranch.
375   /// @param TrueReg     Virtual register to select when Cond is true.
376   /// @param FalseReg    Virtual register to select when Cond is false.
377   /// @param CondCycles  Latency from Cond+Branch to select output.
378   /// @param TrueCycles  Latency from TrueReg to select output.
379   /// @param FalseCycles Latency from FalseReg to select output.
canInsertSelect(const MachineBasicBlock & MBB,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)380   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
381                                const SmallVectorImpl<MachineOperand> &Cond,
382                                unsigned TrueReg, unsigned FalseReg,
383                                int &CondCycles,
384                                int &TrueCycles, int &FalseCycles) const {
385     return false;
386   }
387 
388   /// insertSelect - Insert a select instruction into MBB before I that will
389   /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
390   /// Cond is false.
391   ///
392   /// This function can only be called after canInsertSelect() returned true.
393   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
394   /// that the same flags or registers required by Cond are available at the
395   /// insertion point.
396   ///
397   /// @param MBB      Block where select instruction should be inserted.
398   /// @param I        Insertion point.
399   /// @param DL       Source location for debugging.
400   /// @param DstReg   Virtual register to be defined by select instruction.
401   /// @param Cond     Condition as computed by AnalyzeBranch.
402   /// @param TrueReg  Virtual register to copy when Cond is true.
403   /// @param FalseReg Virtual register to copy when Cons is false.
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DstReg,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg)404   virtual void insertSelect(MachineBasicBlock &MBB,
405                             MachineBasicBlock::iterator I, DebugLoc DL,
406                             unsigned DstReg,
407                             const SmallVectorImpl<MachineOperand> &Cond,
408                             unsigned TrueReg, unsigned FalseReg) const {
409     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
410   }
411 
412   /// analyzeSelect - Analyze the given select instruction, returning true if
413   /// it cannot be understood. It is assumed that MI->isSelect() is true.
414   ///
415   /// When successful, return the controlling condition and the operands that
416   /// determine the true and false result values.
417   ///
418   ///   Result = SELECT Cond, TrueOp, FalseOp
419   ///
420   /// Some targets can optimize select instructions, for example by predicating
421   /// the instruction defining one of the operands. Such targets should set
422   /// Optimizable.
423   ///
424   /// @param         MI Select instruction to analyze.
425   /// @param Cond    Condition controlling the select.
426   /// @param TrueOp  Operand number of the value selected when Cond is true.
427   /// @param FalseOp Operand number of the value selected when Cond is false.
428   /// @param Optimizable Returned as true if MI is optimizable.
429   /// @returns False on success.
analyzeSelect(const MachineInstr * MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)430   virtual bool analyzeSelect(const MachineInstr *MI,
431                              SmallVectorImpl<MachineOperand> &Cond,
432                              unsigned &TrueOp, unsigned &FalseOp,
433                              bool &Optimizable) const {
434     assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
435     return true;
436   }
437 
438   /// optimizeSelect - Given a select instruction that was understood by
439   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
440   /// merging it with one of its operands. Returns NULL on failure.
441   ///
442   /// When successful, returns the new select instruction. The client is
443   /// responsible for deleting MI.
444   ///
445   /// If both sides of the select can be optimized, PreferFalse is used to pick
446   /// a side.
447   ///
448   /// @param MI          Optimizable select instruction.
449   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
450   /// @returns Optimized instruction or NULL.
451   virtual MachineInstr *optimizeSelect(MachineInstr *MI,
452                                        bool PreferFalse = false) const {
453     // This function must be implemented if Optimizable is ever set.
454     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
455   }
456 
457   /// copyPhysReg - Emit instructions to copy a pair of physical registers.
458   ///
459   /// This function should support copies within any legal register class as
460   /// well as any cross-class copies created during instruction selection.
461   ///
462   /// The source and destination registers may overlap, which may require a
463   /// careful implementation when multiple copy instructions are required for
464   /// large registers. See for example the ARM target.
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc)465   virtual void copyPhysReg(MachineBasicBlock &MBB,
466                            MachineBasicBlock::iterator MI, DebugLoc DL,
467                            unsigned DestReg, unsigned SrcReg,
468                            bool KillSrc) const {
469     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
470   }
471 
472   /// storeRegToStackSlot - Store the specified register of the given register
473   /// class to the specified stack frame index. The store instruction is to be
474   /// added to the given machine basic block before the specified machine
475   /// instruction. If isKill is true, the register operand is the last use and
476   /// must be marked kill.
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)477   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
478                                    MachineBasicBlock::iterator MI,
479                                    unsigned SrcReg, bool isKill, int FrameIndex,
480                                    const TargetRegisterClass *RC,
481                                    const TargetRegisterInfo *TRI) const {
482     llvm_unreachable("Target didn't implement "
483                      "TargetInstrInfo::storeRegToStackSlot!");
484   }
485 
486   /// loadRegFromStackSlot - Load the specified register of the given register
487   /// class from the specified stack frame index. The load instruction is to be
488   /// added to the given machine basic block before the specified machine
489   /// instruction.
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)490   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
491                                     MachineBasicBlock::iterator MI,
492                                     unsigned DestReg, int FrameIndex,
493                                     const TargetRegisterClass *RC,
494                                     const TargetRegisterInfo *TRI) const {
495     llvm_unreachable("Target didn't implement "
496                      "TargetInstrInfo::loadRegFromStackSlot!");
497   }
498 
499   /// expandPostRAPseudo - This function is called for all pseudo instructions
500   /// that remain after register allocation. Many pseudo instructions are
501   /// created to help register allocation. This is the place to convert them
502   /// into real instructions. The target can edit MI in place, or it can insert
503   /// new instructions and erase MI. The function should return true if
504   /// anything was changed.
expandPostRAPseudo(MachineBasicBlock::iterator MI)505   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
506     return false;
507   }
508 
509   /// emitFrameIndexDebugValue - Emit a target-dependent form of
510   /// DBG_VALUE encoding the address of a frame index.  Addresses would
511   /// normally be lowered the same way as other addresses on the target,
512   /// e.g. in load instructions.  For targets that do not support this
513   /// the debug info is simply lost.
514   /// If you add this for a target you should handle this DBG_VALUE in the
515   /// target-specific AsmPrinter code as well; you will probably get invalid
516   /// assembly output if you don't.
emitFrameIndexDebugValue(MachineFunction & MF,int FrameIx,uint64_t Offset,const MDNode * MDPtr,DebugLoc dl)517   virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
518                                                  int FrameIx,
519                                                  uint64_t Offset,
520                                                  const MDNode *MDPtr,
521                                                  DebugLoc dl) const {
522     return 0;
523   }
524 
525   /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
526   /// slot into the specified machine instruction for the specified operand(s).
527   /// If this is possible, a new instruction is returned with the specified
528   /// operand folded, otherwise NULL is returned.
529   /// The new instruction is inserted before MI, and the client is responsible
530   /// for removing the old instruction.
531   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
532                                   const SmallVectorImpl<unsigned> &Ops,
533                                   int FrameIndex) const;
534 
535   /// foldMemoryOperand - Same as the previous version except it allows folding
536   /// of any load and store from / to any address, not just from a specific
537   /// stack slot.
538   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
539                                   const SmallVectorImpl<unsigned> &Ops,
540                                   MachineInstr* LoadMI) const;
541 
542 protected:
543   /// foldMemoryOperandImpl - Target-dependent implementation for
544   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
545   /// take care of adding a MachineMemOperand to the newly created instruction.
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops,int FrameIndex)546   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
547                                           MachineInstr* MI,
548                                           const SmallVectorImpl<unsigned> &Ops,
549                                           int FrameIndex) const {
550     return 0;
551   }
552 
553   /// foldMemoryOperandImpl - Target-dependent implementation for
554   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
555   /// take care of adding a MachineMemOperand to the newly created instruction.
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops,MachineInstr * LoadMI)556   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
557                                               MachineInstr* MI,
558                                           const SmallVectorImpl<unsigned> &Ops,
559                                               MachineInstr* LoadMI) const {
560     return 0;
561   }
562 
563 public:
564   /// canFoldMemoryOperand - Returns true for the specified load / store if
565   /// folding is possible.
566   virtual
567   bool canFoldMemoryOperand(const MachineInstr *MI,
568                             const SmallVectorImpl<unsigned> &Ops) const;
569 
570   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
571   /// a store or a load and a store into two or more instruction. If this is
572   /// possible, returns true as well as the new instructions by reference.
unfoldMemoryOperand(MachineFunction & MF,MachineInstr * MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)573   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
574                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
575                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
576     return false;
577   }
578 
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)579   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
580                                    SmallVectorImpl<SDNode*> &NewNodes) const {
581     return false;
582   }
583 
584   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
585   /// instruction after load / store are unfolded from an instruction of the
586   /// specified opcode. It returns zero if the specified unfolding is not
587   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
588   /// index of the operand which will hold the register holding the loaded
589   /// value.
590   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
591                                       bool UnfoldLoad, bool UnfoldStore,
592                                       unsigned *LoadRegIndex = 0) const {
593     return 0;
594   }
595 
596   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
597   /// to determine if two loads are loading from the same base address. It
598   /// should only return true if the base pointers are the same and the
599   /// only differences between the two addresses are the offset. It also returns
600   /// the offsets by reference.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)601   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
602                                     int64_t &Offset1, int64_t &Offset2) const {
603     return false;
604   }
605 
606   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
607   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
608   /// be scheduled togther. On some targets if two loads are loading from
609   /// addresses in the same cache line, it's better if they are scheduled
610   /// together. This function takes two integers that represent the load offsets
611   /// from the common base address. It returns true if it decides it's desirable
612   /// to schedule the two loads together. "NumLoads" is the number of loads that
613   /// have already been scheduled after Load1.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)614   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
615                                        int64_t Offset1, int64_t Offset2,
616                                        unsigned NumLoads) const {
617     return false;
618   }
619 
620   /// \brief Get the base register and byte offset of a load/store instr.
getLdStBaseRegImmOfs(MachineInstr * LdSt,unsigned & BaseReg,unsigned & Offset,const TargetRegisterInfo * TRI)621   virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
622                                     unsigned &BaseReg, unsigned &Offset,
623                                     const TargetRegisterInfo *TRI) const {
624     return false;
625   }
626 
shouldClusterLoads(MachineInstr * FirstLdSt,MachineInstr * SecondLdSt,unsigned NumLoads)627   virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
628                                   MachineInstr *SecondLdSt,
629                                   unsigned NumLoads) const {
630     return false;
631   }
632 
633   /// \brief Can this target fuse the given instructions if they are scheduled
634   /// adjacent.
shouldScheduleAdjacent(MachineInstr * First,MachineInstr * Second)635   virtual bool shouldScheduleAdjacent(MachineInstr* First,
636                                       MachineInstr *Second) const {
637     return false;
638   }
639 
640   /// ReverseBranchCondition - Reverses the branch condition of the specified
641   /// condition list, returning false on success and true if it cannot be
642   /// reversed.
643   virtual
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)644   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
645     return true;
646   }
647 
648   /// insertNoop - Insert a noop into the instruction stream at the specified
649   /// point.
650   virtual void insertNoop(MachineBasicBlock &MBB,
651                           MachineBasicBlock::iterator MI) const;
652 
653 
654   /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
getNoopForMachoTarget(MCInst & NopInst)655   virtual void getNoopForMachoTarget(MCInst &NopInst) const {
656     // Default to just using 'nop' string.
657   }
658 
659 
660   /// isPredicated - Returns true if the instruction is already predicated.
661   ///
isPredicated(const MachineInstr * MI)662   virtual bool isPredicated(const MachineInstr *MI) const {
663     return false;
664   }
665 
666   /// isUnpredicatedTerminator - Returns true if the instruction is a
667   /// terminator instruction that has not been predicated.
668   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
669 
670   /// PredicateInstruction - Convert the instruction into a predicated
671   /// instruction. It returns true if the operation was successful.
672   virtual
673   bool PredicateInstruction(MachineInstr *MI,
674                         const SmallVectorImpl<MachineOperand> &Pred) const;
675 
676   /// SubsumesPredicate - Returns true if the first specified predicate
677   /// subsumes the second, e.g. GE subsumes GT.
678   virtual
SubsumesPredicate(const SmallVectorImpl<MachineOperand> & Pred1,const SmallVectorImpl<MachineOperand> & Pred2)679   bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
680                          const SmallVectorImpl<MachineOperand> &Pred2) const {
681     return false;
682   }
683 
684   /// DefinesPredicate - If the specified instruction defines any predicate
685   /// or condition code register(s) used for predication, returns true as well
686   /// as the definition predicate(s) by reference.
DefinesPredicate(MachineInstr * MI,std::vector<MachineOperand> & Pred)687   virtual bool DefinesPredicate(MachineInstr *MI,
688                                 std::vector<MachineOperand> &Pred) const {
689     return false;
690   }
691 
692   /// isPredicable - Return true if the specified instruction can be predicated.
693   /// By default, this returns true for every instruction with a
694   /// PredicateOperand.
isPredicable(MachineInstr * MI)695   virtual bool isPredicable(MachineInstr *MI) const {
696     return MI->getDesc().isPredicable();
697   }
698 
699   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
700   /// instruction that defines the specified register class.
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)701   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
702     return true;
703   }
704 
705   /// isSchedulingBoundary - Test if the given instruction should be
706   /// considered a scheduling boundary. This primarily includes labels and
707   /// terminators.
708   virtual bool isSchedulingBoundary(const MachineInstr *MI,
709                                     const MachineBasicBlock *MBB,
710                                     const MachineFunction &MF) const;
711 
712   /// Measure the specified inline asm to determine an approximation of its
713   /// length.
714   virtual unsigned getInlineAsmLength(const char *Str,
715                                       const MCAsmInfo &MAI) const;
716 
717   /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
718   /// use for this target when scheduling the machine instructions before
719   /// register allocation.
720   virtual ScheduleHazardRecognizer*
721   CreateTargetHazardRecognizer(const TargetMachine *TM,
722                                const ScheduleDAG *DAG) const;
723 
724   /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
725   /// to use for this target when scheduling the machine instructions before
726   /// register allocation.
727   virtual ScheduleHazardRecognizer*
728   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
729                                  const ScheduleDAG *DAG) const;
730 
731   /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
732   /// recognizer to use for this target when scheduling the machine instructions
733   /// after register allocation.
734   virtual ScheduleHazardRecognizer*
735   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
736                                      const ScheduleDAG *DAG) const;
737 
738   /// Provide a global flag for disabling the PreRA hazard recognizer that
739   /// targets may choose to honor.
740   bool usePreRAHazardRecognizer() const;
741 
742   /// analyzeCompare - For a comparison instruction, return the source registers
743   /// in SrcReg and SrcReg2 if having two register operands, and the value it
744   /// compares against in CmpValue. Return true if the comparison instruction
745   /// can be analyzed.
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value)746   virtual bool analyzeCompare(const MachineInstr *MI,
747                               unsigned &SrcReg, unsigned &SrcReg2,
748                               int &Mask, int &Value) const {
749     return false;
750   }
751 
752   /// optimizeCompareInstr - See if the comparison instruction can be converted
753   /// into something more efficient. E.g., on ARM most instructions can set the
754   /// flags register, obviating the need for a separate CMP.
optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI)755   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
756                                     unsigned SrcReg, unsigned SrcReg2,
757                                     int Mask, int Value,
758                                     const MachineRegisterInfo *MRI) const {
759     return false;
760   }
761 
762   /// optimizeLoadInstr - Try to remove the load by folding it to a register
763   /// operand at the use. We fold the load instructions if and only if the
764   /// def and use are in the same BB. We only look at one load and see
765   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
766   /// defined by the load we are trying to fold. DefMI returns the machine
767   /// instruction that defines FoldAsLoadDefReg, and the function returns
768   /// the machine instruction generated due to folding.
optimizeLoadInstr(MachineInstr * MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI)769   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
770                         const MachineRegisterInfo *MRI,
771                         unsigned &FoldAsLoadDefReg,
772                         MachineInstr *&DefMI) const {
773     return 0;
774   }
775 
776   /// FoldImmediate - 'Reg' is known to be defined by a move immediate
777   /// instruction, try to fold the immediate into the use instruction.
FoldImmediate(MachineInstr * UseMI,MachineInstr * DefMI,unsigned Reg,MachineRegisterInfo * MRI)778   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
779                              unsigned Reg, MachineRegisterInfo *MRI) const {
780     return false;
781   }
782 
783   /// getNumMicroOps - Return the number of u-operations the given machine
784   /// instruction will be decoded to on the target cpu. The itinerary's
785   /// IssueWidth is the number of microops that can be dispatched each
786   /// cycle. An instruction with zero microops takes no dispatch resources.
787   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
788                                   const MachineInstr *MI) const;
789 
790   /// isZeroCost - Return true for pseudo instructions that don't consume any
791   /// machine resources in their current form. These are common cases that the
792   /// scheduler should consider free, rather than conservatively handling them
793   /// as instructions with no itinerary.
isZeroCost(unsigned Opcode)794   bool isZeroCost(unsigned Opcode) const {
795     return Opcode <= TargetOpcode::COPY;
796   }
797 
798   virtual int getOperandLatency(const InstrItineraryData *ItinData,
799                                 SDNode *DefNode, unsigned DefIdx,
800                                 SDNode *UseNode, unsigned UseIdx) const;
801 
802   /// getOperandLatency - Compute and return the use operand latency of a given
803   /// pair of def and use.
804   /// In most cases, the static scheduling itinerary was enough to determine the
805   /// operand latency. But it may not be possible for instructions with variable
806   /// number of defs / uses.
807   ///
808   /// This is a raw interface to the itinerary that may be directly overriden by
809   /// a target. Use computeOperandLatency to get the best estimate of latency.
810   virtual int getOperandLatency(const InstrItineraryData *ItinData,
811                                 const MachineInstr *DefMI, unsigned DefIdx,
812                                 const MachineInstr *UseMI,
813                                 unsigned UseIdx) const;
814 
815   /// computeOperandLatency - Compute and return the latency of the given data
816   /// dependent def and use when the operand indices are already known.
817   ///
818   /// FindMin may be set to get the minimum vs. expected latency.
819   unsigned computeOperandLatency(const InstrItineraryData *ItinData,
820                                  const MachineInstr *DefMI, unsigned DefIdx,
821                                  const MachineInstr *UseMI, unsigned UseIdx,
822                                  bool FindMin = false) const;
823 
824   /// getInstrLatency - Compute the instruction latency of a given instruction.
825   /// If the instruction has higher cost when predicated, it's returned via
826   /// PredCost.
827   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
828                                    const MachineInstr *MI,
829                                    unsigned *PredCost = 0) const;
830 
831   virtual int getInstrLatency(const InstrItineraryData *ItinData,
832                               SDNode *Node) const;
833 
834   /// Return the default expected latency for a def based on it's opcode.
835   unsigned defaultDefLatency(const MCSchedModel *SchedModel,
836                              const MachineInstr *DefMI) const;
837 
838   int computeDefOperandLatency(const InstrItineraryData *ItinData,
839                                const MachineInstr *DefMI, bool FindMin) const;
840 
841   /// isHighLatencyDef - Return true if this opcode has high latency to its
842   /// result.
isHighLatencyDef(int opc)843   virtual bool isHighLatencyDef(int opc) const { return false; }
844 
845   /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
846   /// and an use in the current loop, return true if the target considered
847   /// it 'high'. This is used by optimization passes such as machine LICM to
848   /// determine whether it makes sense to hoist an instruction out even in
849   /// high register pressure situation.
850   virtual
hasHighOperandLatency(const InstrItineraryData * ItinData,const MachineRegisterInfo * MRI,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx)851   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
852                              const MachineRegisterInfo *MRI,
853                              const MachineInstr *DefMI, unsigned DefIdx,
854                              const MachineInstr *UseMI, unsigned UseIdx) const {
855     return false;
856   }
857 
858   /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
859   /// if the target considered it 'low'.
860   virtual
861   bool hasLowDefLatency(const InstrItineraryData *ItinData,
862                         const MachineInstr *DefMI, unsigned DefIdx) const;
863 
864   /// verifyInstruction - Perform target specific instruction verification.
865   virtual
verifyInstruction(const MachineInstr * MI,StringRef & ErrInfo)866   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
867     return true;
868   }
869 
870   /// getExecutionDomain - Return the current execution domain and bit mask of
871   /// possible domains for instruction.
872   ///
873   /// Some micro-architectures have multiple execution domains, and multiple
874   /// opcodes that perform the same operation in different domains.  For
875   /// example, the x86 architecture provides the por, orps, and orpd
876   /// instructions that all do the same thing.  There is a latency penalty if a
877   /// register is written in one domain and read in another.
878   ///
879   /// This function returns a pair (domain, mask) containing the execution
880   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
881   /// function can be used to change the opcode to one of the domains in the
882   /// bit mask.  Instructions whose execution domain can't be changed should
883   /// return a 0 mask.
884   ///
885   /// The execution domain numbers don't have any special meaning except domain
886   /// 0 is used for instructions that are not associated with any interesting
887   /// execution domain.
888   ///
889   virtual std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr * MI)890   getExecutionDomain(const MachineInstr *MI) const {
891     return std::make_pair(0, 0);
892   }
893 
894   /// setExecutionDomain - Change the opcode of MI to execute in Domain.
895   ///
896   /// The bit (1 << Domain) must be set in the mask returned from
897   /// getExecutionDomain(MI).
898   ///
setExecutionDomain(MachineInstr * MI,unsigned Domain)899   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
900 
901 
902   /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
903   /// before an instruction with an unwanted partial register update.
904   ///
905   /// Some instructions only write part of a register, and implicitly need to
906   /// read the other parts of the register.  This may cause unwanted stalls
907   /// preventing otherwise unrelated instructions from executing in parallel in
908   /// an out-of-order CPU.
909   ///
910   /// For example, the x86 instruction cvtsi2ss writes its result to bits
911   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
912   /// the instruction needs to wait for the old value of the register to become
913   /// available:
914   ///
915   ///   addps %xmm1, %xmm0
916   ///   movaps %xmm0, (%rax)
917   ///   cvtsi2ss %rbx, %xmm0
918   ///
919   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
920   /// instruction before it can issue, even though the high bits of %xmm0
921   /// probably aren't needed.
922   ///
923   /// This hook returns the preferred clearance before MI, measured in
924   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
925   /// instructions before MI.  It should only return a positive value for
926   /// unwanted dependencies.  If the old bits of the defined register have
927   /// useful values, or if MI is determined to otherwise read the dependency,
928   /// the hook should return 0.
929   ///
930   /// The unwanted dependency may be handled by:
931   ///
932   /// 1. Allocating the same register for an MI def and use.  That makes the
933   ///    unwanted dependency identical to a required dependency.
934   ///
935   /// 2. Allocating a register for the def that has no defs in the previous N
936   ///    instructions.
937   ///
938   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
939   ///    allows the target to insert a dependency breaking instruction.
940   ///
941   virtual unsigned
getPartialRegUpdateClearance(const MachineInstr * MI,unsigned OpNum,const TargetRegisterInfo * TRI)942   getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
943                                const TargetRegisterInfo *TRI) const {
944     // The default implementation returns 0 for no partial register dependency.
945     return 0;
946   }
947 
948   /// breakPartialRegDependency - Insert a dependency-breaking instruction
949   /// before MI to eliminate an unwanted dependency on OpNum.
950   ///
951   /// If it wasn't possible to avoid a def in the last N instructions before MI
952   /// (see getPartialRegUpdateClearance), this hook will be called to break the
953   /// unwanted dependency.
954   ///
955   /// On x86, an xorps instruction can be used as a dependency breaker:
956   ///
957   ///   addps %xmm1, %xmm0
958   ///   movaps %xmm0, (%rax)
959   ///   xorps %xmm0, %xmm0
960   ///   cvtsi2ss %rbx, %xmm0
961   ///
962   /// An <imp-kill> operand should be added to MI if an instruction was
963   /// inserted.  This ties the instructions together in the post-ra scheduler.
964   ///
965   virtual void
breakPartialRegDependency(MachineBasicBlock::iterator MI,unsigned OpNum,const TargetRegisterInfo * TRI)966   breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
967                             const TargetRegisterInfo *TRI) const {}
968 
969   /// Create machine specific model for scheduling.
970   virtual DFAPacketizer*
CreateTargetScheduleState(const TargetMachine *,const ScheduleDAG *)971     CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
972     return NULL;
973   }
974 
975 private:
976   int CallFrameSetupOpcode, CallFrameDestroyOpcode;
977 };
978 
979 } // End llvm namespace
980 
981 #endif
982