1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 */
17
18 #include <testUtil.h>
19
20 #include <assert.h>
21 #include <errno.h>
22 #include <math.h>
23 #include <stdarg.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <time.h>
28
29 #include <sys/time.h>
30 #include <sys/wait.h>
31
32 #include <cutils/log.h>
33
34 #define ALEN(a) (sizeof(a) / sizeof(a [0])) // Array length
35 typedef unsigned int bool_t;
36 #define true (0 == 0)
37 #define false (!true)
38
39 #define MAXSTR 200
40
41 static const char *logCatTag;
42 static const unsigned int uSecsPerSec = 1000000;
43 static const unsigned int nSecsPerSec = 1000000000;
44
45 // struct timespec to double
ts2double(const struct timespec * val)46 double ts2double(const struct timespec *val)
47 {
48 double rv;
49
50 rv = val->tv_sec;
51 rv += (double) val->tv_nsec / nSecsPerSec;
52
53 return rv;
54 }
55
56 // struct timeval to double
tv2double(const struct timeval * val)57 double tv2double(const struct timeval *val)
58 {
59 double rv;
60
61 rv = val->tv_sec;
62 rv += (double) val->tv_usec / uSecsPerSec;
63
64 return rv;
65 }
66
67 // double to struct timespec
double2ts(double amt)68 struct timespec double2ts(double amt)
69 {
70 struct timespec rv;
71
72 rv.tv_sec = floor(amt);
73 rv.tv_nsec = (amt - rv.tv_sec) * nSecsPerSec;
74 // TODO: Handle cases where amt is negative
75 while ((unsigned) rv.tv_nsec >= nSecsPerSec) {
76 rv.tv_nsec -= nSecsPerSec;
77 rv.tv_sec++;
78 }
79
80 return rv;
81 }
82
83 // double to struct timeval
double2tv(double amt)84 struct timeval double2tv(double amt)
85 {
86 struct timeval rv;
87
88 rv.tv_sec = floor(amt);
89 rv.tv_usec = (amt - rv.tv_sec) * uSecsPerSec;
90 // TODO: Handle cases where amt is negative
91 while ((unsigned) rv.tv_usec >= uSecsPerSec) {
92 rv.tv_usec -= uSecsPerSec;
93 rv.tv_sec++;
94 }
95
96 return rv;
97 }
98
99 // Delta (difference) between two struct timespec.
100 // It is expected that the time given by the structure pointed to by
101 // second, is later than the time pointed to by first.
tsDelta(const struct timespec * first,const struct timespec * second)102 struct timespec tsDelta(const struct timespec *first,
103 const struct timespec *second)
104 {
105 struct timespec rv;
106
107 assert(first != NULL);
108 assert(second != NULL);
109 assert(first->tv_nsec >= 0 && first->tv_nsec < nSecsPerSec);
110 assert(second->tv_nsec >= 0 && second->tv_nsec < nSecsPerSec);
111 rv.tv_sec = second->tv_sec - first->tv_sec;
112 if (second->tv_nsec >= first->tv_nsec) {
113 rv.tv_nsec = second->tv_nsec - first->tv_nsec;
114 } else {
115 rv.tv_nsec = (second->tv_nsec + nSecsPerSec) - first->tv_nsec;
116 rv.tv_sec--;
117 }
118
119 return rv;
120 }
121
122 // Delta (difference) between two struct timeval.
123 // It is expected that the time given by the structure pointed to by
124 // second, is later than the time pointed to by first.
tvDelta(const struct timeval * first,const struct timeval * second)125 struct timeval tvDelta(const struct timeval *first,
126 const struct timeval *second)
127 {
128 struct timeval rv;
129
130 assert(first != NULL);
131 assert(second != NULL);
132 assert(first->tv_usec >= 0 && first->tv_usec < uSecsPerSec);
133 assert(second->tv_usec >= 0 && second->tv_usec < uSecsPerSec);
134 rv.tv_sec = second->tv_sec - first->tv_sec;
135 if (second->tv_usec >= first->tv_usec) {
136 rv.tv_usec = second->tv_usec - first->tv_usec;
137 } else {
138 rv.tv_usec = (second->tv_usec + uSecsPerSec) - first->tv_usec;
139 rv.tv_sec--;
140 }
141
142 return rv;
143 }
144
testPrint(FILE * stream,const char * fmt,...)145 void testPrint(FILE *stream, const char *fmt, ...)
146 {
147 char line[MAXSTR];
148 va_list args;
149
150 va_start(args, fmt);
151 vsnprintf(line, sizeof(line), fmt, args);
152 if (stream == stderr) {
153 ALOG(LOG_ERROR, logCatTag, "%s", line);
154 } else {
155 ALOG(LOG_INFO, logCatTag, "%s", line);
156 }
157 vfprintf(stream, fmt, args);
158 fputc('\n', stream);
159 }
160
161 // Set tag used while logging to the logcat error interface
testSetLogCatTag(const char * tag)162 void testSetLogCatTag(const char *tag)
163 {
164 logCatTag = tag;
165 }
166
167 // Obtain pointer to current log to logcat error interface tag
testGetLogCatTag(void)168 const char * testGetLogCatTag(void)
169 {
170 return logCatTag;
171 }
172
173 /*
174 * Random
175 *
176 * Returns a pseudo random number in the range [0:2^32-1].
177 *
178 * Precondition: srand48() called to set the seed of
179 * the pseudo random number generator.
180 */
testRand(void)181 uint32_t testRand(void)
182 {
183 uint32_t val;
184
185 // Use lrand48() to obtain 31 bits worth
186 // of randomness.
187 val = lrand48();
188
189 // Make an additional lrand48() call and merge
190 // the randomness into the most significant bits.
191 val ^= lrand48() << 1;
192
193 return val;
194 }
195
196 /*
197 * Random Modulus
198 *
199 * Pseudo randomly returns unsigned integer in the range [0, mod).
200 *
201 * Precondition: srand48() called to set the seed of
202 * the pseudo random number generator.
203 */
testRandMod(uint32_t mod)204 uint32_t testRandMod(uint32_t mod)
205 {
206 // Obtain the random value
207 // Use lrand48() when it would produce a sufficient
208 // number of random bits, otherwise use testRand().
209 const uint32_t lrand48maxVal = ((uint32_t) 1 << 31) - 1;
210 uint32_t val = (mod <= lrand48maxVal) ? (uint32_t) lrand48() : testRand();
211
212 /*
213 * The contents of individual bytes tend to be less than random
214 * across different seeds. For example, srand48(x) and
215 * srand48(x + n * 4) cause lrand48() to return the same sequence of
216 * least significant bits. For small mod values this can produce
217 * noticably non-random sequnces. For mod values of less than 2
218 * bytes, will use the randomness from all the bytes.
219 */
220 if (mod <= 0x10000) {
221 val = (val & 0xffff) ^ (val >> 16);
222
223 // If mod less than a byte, can further combine down to
224 // a single byte.
225 if (mod <= 0x100) {
226 val = (val & 0xff) ^ (val >> 8);
227 }
228 }
229
230 return val % mod;
231 }
232
233 /*
234 * Random Boolean
235 *
236 * Pseudo randomly returns 0 (false) or 1 (true).
237 *
238 * Precondition: srand48() called to set the seed of
239 * the pseudo random number generator.
240 */
testRandBool(void)241 int testRandBool(void)
242 {
243 return (testRandMod(2));
244 }
245
246 /*
247 * Random Fraction
248 *
249 * Pseudo randomly return a value in the range [0.0, 1.0).
250 *
251 * Precondition: srand48() called to set the seed of
252 * the pseudo random number generator.
253 */
testRandFract(void)254 double testRandFract(void)
255 {
256 return drand48();
257 }
258
259 // Delays for the number of seconds specified by amt or a greater amount.
260 // The amt variable is of type float and thus non-integer amounts
261 // of time can be specified. This function automatically handles cases
262 // where nanosleep(2) returns early due to reception of a signal.
testDelay(float amt)263 void testDelay(float amt)
264 {
265 struct timespec start, current, delta;
266 struct timespec remaining;
267
268 // Get the time at which we started
269 clock_gettime(CLOCK_MONOTONIC, &start);
270
271 do {
272 // Get current time
273 clock_gettime(CLOCK_MONOTONIC, ¤t);
274
275 // How much time is left
276 delta = tsDelta(&start, ¤t);
277 if (ts2double(&delta) > amt) { break; }
278
279 // Request to sleep for the remaining time
280 remaining = double2ts(amt - ts2double(&delta));
281 (void) nanosleep(&remaining, NULL);
282 } while (true);
283 }
284
285 // Delay spins for the number of seconds specified by amt or a greater
286 // amount. The amt variable is of type float and thus non-integer amounts
287 // of time can be specified. Differs from testDelay() in that
288 // testDelaySpin() performs a spin loop, instead of using nanosleep().
testDelaySpin(float amt)289 void testDelaySpin(float amt)
290 {
291 struct timespec start, current, delta;
292
293 // Get the time at which we started
294 clock_gettime(CLOCK_MONOTONIC, &start);
295
296 do {
297 // Get current time
298 clock_gettime(CLOCK_MONOTONIC, ¤t);
299
300 // How much time is left
301 delta = tsDelta(&start, ¤t);
302 if (ts2double(&delta) > amt) { break; }
303 } while (true);
304 }
305
306 /*
307 * Hex Dump
308 *
309 * Displays in hex the contents of the memory starting at the location
310 * pointed to by buf, for the number of bytes given by size.
311 * Each line of output is indented by a number of spaces that
312 * can be set by calling xDumpSetIndent(). It is also possible
313 * to offset the displayed address by an amount set by calling
314 * xDumpSetOffset.
315 */
316 static uint8_t xDumpIndent;
317 static uint64_t xDumpOffset;
318 void
testXDump(const void * buf,size_t size)319 testXDump(const void *buf, size_t size)
320 {
321 const unsigned int bytesPerLine = 16;
322 int rv;
323 char line[MAXSTR];
324 const unsigned char *ptr = buf, *start = buf;
325 size_t num = size;
326 char *linep = line;
327
328 while (num) {
329 if (((ptr - start) % bytesPerLine) == 0) {
330 if (linep != line) {
331 testPrintE("%s", line);
332 }
333 linep = line;
334 rv = snprintf(linep, ALEN(line) - (linep - line),
335 "%*s%06llx:", xDumpIndent, "",
336 (long long) (ptr - start) + xDumpOffset);
337 linep += rv;
338 }
339
340 // Check that there is at least room for 4
341 // more characters. The 4 characters being
342 // a space, 2 hex digits and the terminating
343 // '\0'.
344 assert((ALEN(line) - 4) >= (linep - line));
345 rv = snprintf(linep, ALEN(line) - (linep - line),
346 " %02x", *ptr++);
347 linep += rv;
348 num--;
349 }
350 if (linep != line) {
351 testPrintE("%s", line);
352 }
353 }
354
355 // Set an indent of spaces for each line of hex dump output
356 void
testXDumpSetIndent(uint8_t indent)357 testXDumpSetIndent(uint8_t indent)
358 {
359 xDumpIndent = indent;
360 }
361
362 // Obtain the current hex dump indent amount
363 uint8_t
testXDumpGetIndent(void)364 testXDumpGetIndent(void)
365 {
366 return xDumpIndent;
367 }
368
369 // Set the hex dump address offset amount
370 void
testXDumpSetOffset(uint64_t offset)371 testXDumpSetOffset(uint64_t offset)
372 {
373 xDumpOffset = offset;
374 }
375
376 // Get the current hex dump address offset amount
377 uint64_t
testXDumpGetOffset(void)378 testXDumpGetOffset(void)
379 {
380 return xDumpOffset;
381 }
382
383 /*
384 * Execute Command
385 *
386 * Executes the command pointed to by cmd. Output from the
387 * executed command is captured and sent to LogCat Info. Once
388 * the command has finished execution, it's exit status is captured
389 * and checked for an exit status of zero. Any other exit status
390 * causes diagnostic information to be printed and an immediate
391 * testcase failure.
392 */
testExecCmd(const char * cmd)393 void testExecCmd(const char *cmd)
394 {
395 FILE *fp;
396 int rv;
397 int status;
398 char str[MAXSTR];
399
400 // Display command to be executed
401 testPrintI("cmd: %s", cmd);
402
403 // Execute the command
404 fflush(stdout);
405 if ((fp = popen(cmd, "r")) == NULL) {
406 testPrintE("execCmd popen failed, errno: %i", errno);
407 exit(100);
408 }
409
410 // Obtain and display each line of output from the executed command
411 while (fgets(str, sizeof(str), fp) != NULL) {
412 if ((strlen(str) > 1) && (str[strlen(str) - 1] == '\n')) {
413 str[strlen(str) - 1] = '\0';
414 }
415 testPrintI(" out: %s", str);
416 }
417
418 // Obtain and check return status of executed command.
419 // Fail on non-zero exit status
420 status = pclose(fp);
421 if (!(WIFEXITED(status) && (WEXITSTATUS(status) == 0))) {
422 testPrintE("Unexpected command failure");
423 testPrintE(" status: %#x", status);
424 if (WIFEXITED(status)) {
425 testPrintE("WEXITSTATUS: %i", WEXITSTATUS(status));
426 }
427 if (WIFSIGNALED(status)) {
428 testPrintE("WTERMSIG: %i", WTERMSIG(status));
429 }
430 exit(101);
431 }
432 }
433