• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38 
39 #include <stdio.h>
40 #include "assembler.h"
41 #include "constants-mips.h"
42 #include "serialize.h"
43 
44 namespace v8 {
45 namespace internal {
46 
47 // CPU Registers.
48 //
49 // 1) We would prefer to use an enum, but enum values are assignment-
50 // compatible with int, which has caused code-generation bugs.
51 //
52 // 2) We would prefer to use a class instead of a struct but we don't like
53 // the register initialization to depend on the particular initialization
54 // order (which appears to be different on OS X, Linux, and Windows for the
55 // installed versions of C++ we tried). Using a struct permits C-style
56 // "initialization". Also, the Register objects cannot be const as this
57 // forces initialization stubs in MSVC, making us dependent on initialization
58 // order.
59 //
60 // 3) By not using an enum, we are possibly preventing the compiler from
61 // doing certain constant folds, which may significantly reduce the
62 // code generated for some assembly instructions (because they boil down
63 // to a few constants). If this is a problem, we could change the code
64 // such that we use an enum in optimized mode, and the struct in debug
65 // mode. This way we get the compile-time error checking in debug mode
66 // and best performance in optimized code.
67 
68 
69 // -----------------------------------------------------------------------------
70 // Implementation of Register and FPURegister.
71 
72 // Core register.
73 struct Register {
74   static const int kNumRegisters = v8::internal::kNumRegisters;
75   static const int kNumAllocatableRegisters = 14;  // v0 through t7.
76   static const int kSizeInBytes = 4;
77 
ToAllocationIndexRegister78   static int ToAllocationIndex(Register reg) {
79     return reg.code() - 2;  // zero_reg and 'at' are skipped.
80   }
81 
FromAllocationIndexRegister82   static Register FromAllocationIndex(int index) {
83     ASSERT(index >= 0 && index < kNumAllocatableRegisters);
84     return from_code(index + 2);  // zero_reg and 'at' are skipped.
85   }
86 
AllocationIndexToStringRegister87   static const char* AllocationIndexToString(int index) {
88     ASSERT(index >= 0 && index < kNumAllocatableRegisters);
89     const char* const names[] = {
90       "v0",
91       "v1",
92       "a0",
93       "a1",
94       "a2",
95       "a3",
96       "t0",
97       "t1",
98       "t2",
99       "t3",
100       "t4",
101       "t5",
102       "t6",
103       "t7",
104     };
105     return names[index];
106   }
107 
from_codeRegister108   static Register from_code(int code) {
109     Register r = { code };
110     return r;
111   }
112 
is_validRegister113   bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
isRegister114   bool is(Register reg) const { return code_ == reg.code_; }
codeRegister115   int code() const {
116     ASSERT(is_valid());
117     return code_;
118   }
bitRegister119   int bit() const {
120     ASSERT(is_valid());
121     return 1 << code_;
122   }
123 
124   // Unfortunately we can't make this private in a struct.
125   int code_;
126 };
127 
128 #define REGISTER(N, C) \
129   const int kRegister_ ## N ## _Code = C; \
130   const Register N = { C }
131 
132 REGISTER(no_reg, -1);
133 // Always zero.
134 REGISTER(zero_reg, 0);
135 // at: Reserved for synthetic instructions.
136 REGISTER(at, 1);
137 // v0, v1: Used when returning multiple values from subroutines.
138 REGISTER(v0, 2);
139 REGISTER(v1, 3);
140 // a0 - a4: Used to pass non-FP parameters.
141 REGISTER(a0, 4);
142 REGISTER(a1, 5);
143 REGISTER(a2, 6);
144 REGISTER(a3, 7);
145 // t0 - t9: Can be used without reservation, act as temporary registers and are
146 // allowed to be destroyed by subroutines.
147 REGISTER(t0, 8);
148 REGISTER(t1, 9);
149 REGISTER(t2, 10);
150 REGISTER(t3, 11);
151 REGISTER(t4, 12);
152 REGISTER(t5, 13);
153 REGISTER(t6, 14);
154 REGISTER(t7, 15);
155 // s0 - s7: Subroutine register variables. Subroutines that write to these
156 // registers must restore their values before exiting so that the caller can
157 // expect the values to be preserved.
158 REGISTER(s0, 16);
159 REGISTER(s1, 17);
160 REGISTER(s2, 18);
161 REGISTER(s3, 19);
162 REGISTER(s4, 20);
163 REGISTER(s5, 21);
164 REGISTER(s6, 22);
165 REGISTER(s7, 23);
166 REGISTER(t8, 24);
167 REGISTER(t9, 25);
168 // k0, k1: Reserved for system calls and interrupt handlers.
169 REGISTER(k0, 26);
170 REGISTER(k1, 27);
171 // gp: Reserved.
172 REGISTER(gp, 28);
173 // sp: Stack pointer.
174 REGISTER(sp, 29);
175 // fp: Frame pointer.
176 REGISTER(fp, 30);
177 // ra: Return address pointer.
178 REGISTER(ra, 31);
179 
180 #undef REGISTER
181 
182 
183 int ToNumber(Register reg);
184 
185 Register ToRegister(int num);
186 
187 // Coprocessor register.
188 struct FPURegister {
189   static const int kNumRegisters = v8::internal::kNumFPURegisters;
190 
191   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
192   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
193   // number of Double regs (64-bit regs, or FPU-reg-pairs).
194 
195   // A few double registers are reserved: one as a scratch register and one to
196   // hold 0.0.
197   //  f28: 0.0
198   //  f30: scratch register.
199   static const int kNumReservedRegisters = 2;
200   static const int kNumAllocatableRegisters = kNumRegisters / 2 -
201       kNumReservedRegisters;
202 
203 
204   inline static int ToAllocationIndex(FPURegister reg);
205 
FromAllocationIndexFPURegister206   static FPURegister FromAllocationIndex(int index) {
207     ASSERT(index >= 0 && index < kNumAllocatableRegisters);
208     return from_code(index * 2);
209   }
210 
AllocationIndexToStringFPURegister211   static const char* AllocationIndexToString(int index) {
212     ASSERT(index >= 0 && index < kNumAllocatableRegisters);
213     const char* const names[] = {
214       "f0",
215       "f2",
216       "f4",
217       "f6",
218       "f8",
219       "f10",
220       "f12",
221       "f14",
222       "f16",
223       "f18",
224       "f20",
225       "f22",
226       "f24",
227       "f26"
228     };
229     return names[index];
230   }
231 
from_codeFPURegister232   static FPURegister from_code(int code) {
233     FPURegister r = { code };
234     return r;
235   }
236 
is_validFPURegister237   bool is_valid() const { return 0 <= code_ && code_ < kNumFPURegisters ; }
isFPURegister238   bool is(FPURegister creg) const { return code_ == creg.code_; }
lowFPURegister239   FPURegister low() const {
240     // Find low reg of a Double-reg pair, which is the reg itself.
241     ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
242     FPURegister reg;
243     reg.code_ = code_;
244     ASSERT(reg.is_valid());
245     return reg;
246   }
highFPURegister247   FPURegister high() const {
248     // Find high reg of a Doubel-reg pair, which is reg + 1.
249     ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
250     FPURegister reg;
251     reg.code_ = code_ + 1;
252     ASSERT(reg.is_valid());
253     return reg;
254   }
255 
codeFPURegister256   int code() const {
257     ASSERT(is_valid());
258     return code_;
259   }
bitFPURegister260   int bit() const {
261     ASSERT(is_valid());
262     return 1 << code_;
263   }
setcodeFPURegister264   void setcode(int f) {
265     code_ = f;
266     ASSERT(is_valid());
267   }
268   // Unfortunately we can't make this private in a struct.
269   int code_;
270 };
271 
272 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
273 // 32-bit registers, f0 through f31. When used as 'double' they are used
274 // in pairs, starting with the even numbered register. So a double operation
275 // on f0 really uses f0 and f1.
276 // (Modern mips hardware also supports 32 64-bit registers, via setting
277 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
278 // but it is not in common use. Someday we will want to support this in v8.)
279 
280 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
281 typedef FPURegister DoubleRegister;
282 typedef FPURegister FloatRegister;
283 
284 const FPURegister no_freg = { -1 };
285 
286 const FPURegister f0 = { 0 };  // Return value in hard float mode.
287 const FPURegister f1 = { 1 };
288 const FPURegister f2 = { 2 };
289 const FPURegister f3 = { 3 };
290 const FPURegister f4 = { 4 };
291 const FPURegister f5 = { 5 };
292 const FPURegister f6 = { 6 };
293 const FPURegister f7 = { 7 };
294 const FPURegister f8 = { 8 };
295 const FPURegister f9 = { 9 };
296 const FPURegister f10 = { 10 };
297 const FPURegister f11 = { 11 };
298 const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
299 const FPURegister f13 = { 13 };
300 const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
301 const FPURegister f15 = { 15 };
302 const FPURegister f16 = { 16 };
303 const FPURegister f17 = { 17 };
304 const FPURegister f18 = { 18 };
305 const FPURegister f19 = { 19 };
306 const FPURegister f20 = { 20 };
307 const FPURegister f21 = { 21 };
308 const FPURegister f22 = { 22 };
309 const FPURegister f23 = { 23 };
310 const FPURegister f24 = { 24 };
311 const FPURegister f25 = { 25 };
312 const FPURegister f26 = { 26 };
313 const FPURegister f27 = { 27 };
314 const FPURegister f28 = { 28 };
315 const FPURegister f29 = { 29 };
316 const FPURegister f30 = { 30 };
317 const FPURegister f31 = { 31 };
318 
319 // Register aliases.
320 // cp is assumed to be a callee saved register.
321 static const Register& kLithiumScratchReg = s3;  // Scratch register.
322 static const Register& kLithiumScratchReg2 = s4;  // Scratch register.
323 static const Register& kRootRegister = s6;  // Roots array pointer.
324 static const Register& cp = s7;     // JavaScript context pointer.
325 static const DoubleRegister& kLithiumScratchDouble = f30;
326 static const FPURegister& kDoubleRegZero = f28;
327 
328 // FPU (coprocessor 1) control registers.
329 // Currently only FCSR (#31) is implemented.
330 struct FPUControlRegister {
is_validFPUControlRegister331   bool is_valid() const { return code_ == kFCSRRegister; }
isFPUControlRegister332   bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
codeFPUControlRegister333   int code() const {
334     ASSERT(is_valid());
335     return code_;
336   }
bitFPUControlRegister337   int bit() const {
338     ASSERT(is_valid());
339     return 1 << code_;
340   }
setcodeFPUControlRegister341   void setcode(int f) {
342     code_ = f;
343     ASSERT(is_valid());
344   }
345   // Unfortunately we can't make this private in a struct.
346   int code_;
347 };
348 
349 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
350 const FPUControlRegister FCSR = { kFCSRRegister };
351 
352 
353 // -----------------------------------------------------------------------------
354 // Machine instruction Operands.
355 
356 // Class Operand represents a shifter operand in data processing instructions.
357 class Operand BASE_EMBEDDED {
358  public:
359   // Immediate.
360   INLINE(explicit Operand(int32_t immediate,
361          RelocInfo::Mode rmode = RelocInfo::NONE));
362   INLINE(explicit Operand(const ExternalReference& f));
363   INLINE(explicit Operand(const char* s));
364   INLINE(explicit Operand(Object** opp));
365   INLINE(explicit Operand(Context** cpp));
366   explicit Operand(Handle<Object> handle);
367   INLINE(explicit Operand(Smi* value));
368 
369   // Register.
370   INLINE(explicit Operand(Register rm));
371 
372   // Return true if this is a register operand.
373   INLINE(bool is_reg() const);
374 
rm()375   Register rm() const { return rm_; }
376 
377  private:
378   Register rm_;
379   int32_t imm32_;  // Valid if rm_ == no_reg.
380   RelocInfo::Mode rmode_;
381 
382   friend class Assembler;
383   friend class MacroAssembler;
384 };
385 
386 
387 // On MIPS we have only one adressing mode with base_reg + offset.
388 // Class MemOperand represents a memory operand in load and store instructions.
389 class MemOperand : public Operand {
390  public:
391   explicit MemOperand(Register rn, int32_t offset = 0);
offset()392   int32_t offset() const { return offset_; }
393 
OffsetIsInt16Encodable()394   bool OffsetIsInt16Encodable() const {
395     return is_int16(offset_);
396   }
397 
398  private:
399   int32_t offset_;
400 
401   friend class Assembler;
402 };
403 
404 
405 // CpuFeatures keeps track of which features are supported by the target CPU.
406 // Supported features must be enabled by a Scope before use.
407 class CpuFeatures : public AllStatic {
408  public:
409   // Detect features of the target CPU. Set safe defaults if the serializer
410   // is enabled (snapshots must be portable).
411   static void Probe();
412 
413   // Check whether a feature is supported by the target CPU.
IsSupported(CpuFeature f)414   static bool IsSupported(CpuFeature f) {
415     ASSERT(initialized_);
416     if (f == FPU && !FLAG_enable_fpu) return false;
417     return (supported_ & (1u << f)) != 0;
418   }
419 
420 
421 #ifdef DEBUG
422   // Check whether a feature is currently enabled.
IsEnabled(CpuFeature f)423   static bool IsEnabled(CpuFeature f) {
424     ASSERT(initialized_);
425     Isolate* isolate = Isolate::UncheckedCurrent();
426     if (isolate == NULL) {
427       // When no isolate is available, work as if we're running in
428       // release mode.
429       return IsSupported(f);
430     }
431     unsigned enabled = static_cast<unsigned>(isolate->enabled_cpu_features());
432     return (enabled & (1u << f)) != 0;
433   }
434 #endif
435 
436   // Enable a specified feature within a scope.
437   class Scope BASE_EMBEDDED {
438 #ifdef DEBUG
439 
440    public:
Scope(CpuFeature f)441     explicit Scope(CpuFeature f) {
442       unsigned mask = 1u << f;
443       ASSERT(CpuFeatures::IsSupported(f));
444       ASSERT(!Serializer::enabled() ||
445              (CpuFeatures::found_by_runtime_probing_ & mask) == 0);
446       isolate_ = Isolate::UncheckedCurrent();
447       old_enabled_ = 0;
448       if (isolate_ != NULL) {
449         old_enabled_ = static_cast<unsigned>(isolate_->enabled_cpu_features());
450         isolate_->set_enabled_cpu_features(old_enabled_ | mask);
451       }
452     }
~Scope()453     ~Scope() {
454       ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_);
455       if (isolate_ != NULL) {
456         isolate_->set_enabled_cpu_features(old_enabled_);
457       }
458     }
459 
460  private:
461     Isolate* isolate_;
462     unsigned old_enabled_;
463 #else
464 
465  public:
466     explicit Scope(CpuFeature f) {}
467 #endif
468   };
469 
470   class TryForceFeatureScope BASE_EMBEDDED {
471    public:
TryForceFeatureScope(CpuFeature f)472     explicit TryForceFeatureScope(CpuFeature f)
473         : old_supported_(CpuFeatures::supported_) {
474       if (CanForce()) {
475         CpuFeatures::supported_ |= (1u << f);
476       }
477     }
478 
~TryForceFeatureScope()479     ~TryForceFeatureScope() {
480       if (CanForce()) {
481         CpuFeatures::supported_ = old_supported_;
482       }
483     }
484 
485    private:
CanForce()486     static bool CanForce() {
487       // It's only safe to temporarily force support of CPU features
488       // when there's only a single isolate, which is guaranteed when
489       // the serializer is enabled.
490       return Serializer::enabled();
491     }
492 
493     const unsigned old_supported_;
494   };
495 
496  private:
497 #ifdef DEBUG
498   static bool initialized_;
499 #endif
500   static unsigned supported_;
501   static unsigned found_by_runtime_probing_;
502 
503   DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
504 };
505 
506 
507 class Assembler : public AssemblerBase {
508  public:
509   // Create an assembler. Instructions and relocation information are emitted
510   // into a buffer, with the instructions starting from the beginning and the
511   // relocation information starting from the end of the buffer. See CodeDesc
512   // for a detailed comment on the layout (globals.h).
513   //
514   // If the provided buffer is NULL, the assembler allocates and grows its own
515   // buffer, and buffer_size determines the initial buffer size. The buffer is
516   // owned by the assembler and deallocated upon destruction of the assembler.
517   //
518   // If the provided buffer is not NULL, the assembler uses the provided buffer
519   // for code generation and assumes its size to be buffer_size. If the buffer
520   // is too small, a fatal error occurs. No deallocation of the buffer is done
521   // upon destruction of the assembler.
522   Assembler(Isolate* isolate, void* buffer, int buffer_size);
523   ~Assembler();
524 
525   // Overrides the default provided by FLAG_debug_code.
set_emit_debug_code(bool value)526   void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
527 
528   // GetCode emits any pending (non-emitted) code and fills the descriptor
529   // desc. GetCode() is idempotent; it returns the same result if no other
530   // Assembler functions are invoked in between GetCode() calls.
531   void GetCode(CodeDesc* desc);
532 
533   // Label operations & relative jumps (PPUM Appendix D).
534   //
535   // Takes a branch opcode (cc) and a label (L) and generates
536   // either a backward branch or a forward branch and links it
537   // to the label fixup chain. Usage:
538   //
539   // Label L;    // unbound label
540   // j(cc, &L);  // forward branch to unbound label
541   // bind(&L);   // bind label to the current pc
542   // j(cc, &L);  // backward branch to bound label
543   // bind(&L);   // illegal: a label may be bound only once
544   //
545   // Note: The same Label can be used for forward and backward branches
546   // but it may be bound only once.
547   void bind(Label* L);  // Binds an unbound label L to current code position.
548   // Determines if Label is bound and near enough so that branch instruction
549   // can be used to reach it, instead of jump instruction.
550   bool is_near(Label* L);
551 
552   // Returns the branch offset to the given label from the current code
553   // position. Links the label to the current position if it is still unbound.
554   // Manages the jump elimination optimization if the second parameter is true.
555   int32_t branch_offset(Label* L, bool jump_elimination_allowed);
shifted_branch_offset(Label * L,bool jump_elimination_allowed)556   int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
557     int32_t o = branch_offset(L, jump_elimination_allowed);
558     ASSERT((o & 3) == 0);   // Assert the offset is aligned.
559     return o >> 2;
560   }
561   uint32_t jump_address(Label* L);
562 
563   // Puts a labels target address at the given position.
564   // The high 8 bits are set to zero.
565   void label_at_put(Label* L, int at_offset);
566 
567   // Read/Modify the code target address in the branch/call instruction at pc.
568   static Address target_address_at(Address pc);
569   static void set_target_address_at(Address pc, Address target);
570 
571   static void JumpLabelToJumpRegister(Address pc);
572 
573   static void QuietNaN(HeapObject* nan);
574 
575   // This sets the branch destination (which gets loaded at the call address).
576   // This is for calls and branches within generated code.  The serializer
577   // has already deserialized the lui/ori instructions etc.
deserialization_set_special_target_at(Address instruction_payload,Address target)578   inline static void deserialization_set_special_target_at(
579       Address instruction_payload, Address target) {
580     set_target_address_at(
581         instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
582         target);
583   }
584 
585   // This sets the branch destination.
586   // This is for calls and branches to runtime code.
set_external_target_at(Address instruction_payload,Address target)587   inline static void set_external_target_at(Address instruction_payload,
588                                             Address target) {
589     set_target_address_at(instruction_payload, target);
590   }
591 
592   // Size of an instruction.
593   static const int kInstrSize = sizeof(Instr);
594 
595   // Difference between address of current opcode and target address offset.
596   static const int kBranchPCOffset = 4;
597 
598   // Here we are patching the address in the LUI/ORI instruction pair.
599   // These values are used in the serialization process and must be zero for
600   // MIPS platform, as Code, Embedded Object or External-reference pointers
601   // are split across two consecutive instructions and don't exist separately
602   // in the code, so the serializer should not step forwards in memory after
603   // a target is resolved and written.
604   static const int kSpecialTargetSize = 0;
605 
606   // Number of consecutive instructions used to store 32bit constant.
607   // Before jump-optimizations, this constant was used in
608   // RelocInfo::target_address_address() function to tell serializer address of
609   // the instruction that follows LUI/ORI instruction pair. Now, with new jump
610   // optimization, where jump-through-register instruction that usually
611   // follows LUI/ORI pair is substituted with J/JAL, this constant equals
612   // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
613   static const int kInstructionsFor32BitConstant = 3;
614 
615   // Distance between the instruction referring to the address of the call
616   // target and the return address.
617   static const int kCallTargetAddressOffset = 4 * kInstrSize;
618 
619   // Distance between start of patched return sequence and the emitted address
620   // to jump to.
621   static const int kPatchReturnSequenceAddressOffset = 0;
622 
623   // Distance between start of patched debug break slot and the emitted address
624   // to jump to.
625   static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
626 
627   // Difference between address of current opcode and value read from pc
628   // register.
629   static const int kPcLoadDelta = 4;
630 
631   // Number of instructions used for the JS return sequence. The constant is
632   // used by the debugger to patch the JS return sequence.
633   static const int kJSReturnSequenceInstructions = 7;
634   static const int kDebugBreakSlotInstructions = 4;
635   static const int kDebugBreakSlotLength =
636       kDebugBreakSlotInstructions * kInstrSize;
637 
638 
639   // ---------------------------------------------------------------------------
640   // Code generation.
641 
642   // Insert the smallest number of nop instructions
643   // possible to align the pc offset to a multiple
644   // of m. m must be a power of 2 (>= 4).
645   void Align(int m);
646   // Aligns code to something that's optimal for a jump target for the platform.
647   void CodeTargetAlign();
648 
649   // Different nop operations are used by the code generator to detect certain
650   // states of the generated code.
651   enum NopMarkerTypes {
652     NON_MARKING_NOP = 0,
653     DEBUG_BREAK_NOP,
654     // IC markers.
655     PROPERTY_ACCESS_INLINED,
656     PROPERTY_ACCESS_INLINED_CONTEXT,
657     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
658     // Helper values.
659     LAST_CODE_MARKER,
660     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
661   };
662 
663   // Type == 0 is the default non-marking type.
664   void nop(unsigned int type = 0) {
665     ASSERT(type < 32);
666     sll(zero_reg, zero_reg, type, true);
667   }
668 
669 
670   // --------Branch-and-jump-instructions----------
671   // We don't use likely variant of instructions.
672   void b(int16_t offset);
b(Label * L)673   void b(Label* L) { b(branch_offset(L, false)>>2); }
674   void bal(int16_t offset);
bal(Label * L)675   void bal(Label* L) { bal(branch_offset(L, false)>>2); }
676 
677   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)678   void beq(Register rs, Register rt, Label* L) {
679     beq(rs, rt, branch_offset(L, false) >> 2);
680   }
681   void bgez(Register rs, int16_t offset);
682   void bgezal(Register rs, int16_t offset);
683   void bgtz(Register rs, int16_t offset);
684   void blez(Register rs, int16_t offset);
685   void bltz(Register rs, int16_t offset);
686   void bltzal(Register rs, int16_t offset);
687   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)688   void bne(Register rs, Register rt, Label* L) {
689     bne(rs, rt, branch_offset(L, false)>>2);
690   }
691 
692   // Never use the int16_t b(l)cond version with a branch offset
693   // instead of using the Label* version.
694 
695   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
696   void j(int32_t target);
697   void jal(int32_t target);
698   void jalr(Register rs, Register rd = ra);
699   void jr(Register target);
700   void j_or_jr(int32_t target, Register rs);
701   void jal_or_jalr(int32_t target, Register rs);
702 
703 
704   //-------Data-processing-instructions---------
705 
706   // Arithmetic.
707   void addu(Register rd, Register rs, Register rt);
708   void subu(Register rd, Register rs, Register rt);
709   void mult(Register rs, Register rt);
710   void multu(Register rs, Register rt);
711   void div(Register rs, Register rt);
712   void divu(Register rs, Register rt);
713   void mul(Register rd, Register rs, Register rt);
714 
715   void addiu(Register rd, Register rs, int32_t j);
716 
717   // Logical.
718   void and_(Register rd, Register rs, Register rt);
719   void or_(Register rd, Register rs, Register rt);
720   void xor_(Register rd, Register rs, Register rt);
721   void nor(Register rd, Register rs, Register rt);
722 
723   void andi(Register rd, Register rs, int32_t j);
724   void ori(Register rd, Register rs, int32_t j);
725   void xori(Register rd, Register rs, int32_t j);
726   void lui(Register rd, int32_t j);
727 
728   // Shifts.
729   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
730   // and may cause problems in normal code. coming_from_nop makes sure this
731   // doesn't happen.
732   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
733   void sllv(Register rd, Register rt, Register rs);
734   void srl(Register rd, Register rt, uint16_t sa);
735   void srlv(Register rd, Register rt, Register rs);
736   void sra(Register rt, Register rd, uint16_t sa);
737   void srav(Register rt, Register rd, Register rs);
738   void rotr(Register rd, Register rt, uint16_t sa);
739   void rotrv(Register rd, Register rt, Register rs);
740 
741 
742   //------------Memory-instructions-------------
743 
744   void lb(Register rd, const MemOperand& rs);
745   void lbu(Register rd, const MemOperand& rs);
746   void lh(Register rd, const MemOperand& rs);
747   void lhu(Register rd, const MemOperand& rs);
748   void lw(Register rd, const MemOperand& rs);
749   void lwl(Register rd, const MemOperand& rs);
750   void lwr(Register rd, const MemOperand& rs);
751   void sb(Register rd, const MemOperand& rs);
752   void sh(Register rd, const MemOperand& rs);
753   void sw(Register rd, const MemOperand& rs);
754   void swl(Register rd, const MemOperand& rs);
755   void swr(Register rd, const MemOperand& rs);
756 
757 
758   //-------------Misc-instructions--------------
759 
760   // Break / Trap instructions.
761   void break_(uint32_t code, bool break_as_stop = false);
762   void stop(const char* msg, uint32_t code = kMaxStopCode);
763   void tge(Register rs, Register rt, uint16_t code);
764   void tgeu(Register rs, Register rt, uint16_t code);
765   void tlt(Register rs, Register rt, uint16_t code);
766   void tltu(Register rs, Register rt, uint16_t code);
767   void teq(Register rs, Register rt, uint16_t code);
768   void tne(Register rs, Register rt, uint16_t code);
769 
770   // Move from HI/LO register.
771   void mfhi(Register rd);
772   void mflo(Register rd);
773 
774   // Set on less than.
775   void slt(Register rd, Register rs, Register rt);
776   void sltu(Register rd, Register rs, Register rt);
777   void slti(Register rd, Register rs, int32_t j);
778   void sltiu(Register rd, Register rs, int32_t j);
779 
780   // Conditional move.
781   void movz(Register rd, Register rs, Register rt);
782   void movn(Register rd, Register rs, Register rt);
783   void movt(Register rd, Register rs, uint16_t cc = 0);
784   void movf(Register rd, Register rs, uint16_t cc = 0);
785 
786   // Bit twiddling.
787   void clz(Register rd, Register rs);
788   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
789   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
790 
791   //--------Coprocessor-instructions----------------
792 
793   // Load, store, and move.
794   void lwc1(FPURegister fd, const MemOperand& src);
795   void ldc1(FPURegister fd, const MemOperand& src);
796 
797   void swc1(FPURegister fs, const MemOperand& dst);
798   void sdc1(FPURegister fs, const MemOperand& dst);
799 
800   void mtc1(Register rt, FPURegister fs);
801   void mfc1(Register rt, FPURegister fs);
802 
803   void ctc1(Register rt, FPUControlRegister fs);
804   void cfc1(Register rt, FPUControlRegister fs);
805 
806   // Arithmetic.
807   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
808   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
809   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
810   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
811   void abs_d(FPURegister fd, FPURegister fs);
812   void mov_d(FPURegister fd, FPURegister fs);
813   void neg_d(FPURegister fd, FPURegister fs);
814   void sqrt_d(FPURegister fd, FPURegister fs);
815 
816   // Conversion.
817   void cvt_w_s(FPURegister fd, FPURegister fs);
818   void cvt_w_d(FPURegister fd, FPURegister fs);
819   void trunc_w_s(FPURegister fd, FPURegister fs);
820   void trunc_w_d(FPURegister fd, FPURegister fs);
821   void round_w_s(FPURegister fd, FPURegister fs);
822   void round_w_d(FPURegister fd, FPURegister fs);
823   void floor_w_s(FPURegister fd, FPURegister fs);
824   void floor_w_d(FPURegister fd, FPURegister fs);
825   void ceil_w_s(FPURegister fd, FPURegister fs);
826   void ceil_w_d(FPURegister fd, FPURegister fs);
827 
828   void cvt_l_s(FPURegister fd, FPURegister fs);
829   void cvt_l_d(FPURegister fd, FPURegister fs);
830   void trunc_l_s(FPURegister fd, FPURegister fs);
831   void trunc_l_d(FPURegister fd, FPURegister fs);
832   void round_l_s(FPURegister fd, FPURegister fs);
833   void round_l_d(FPURegister fd, FPURegister fs);
834   void floor_l_s(FPURegister fd, FPURegister fs);
835   void floor_l_d(FPURegister fd, FPURegister fs);
836   void ceil_l_s(FPURegister fd, FPURegister fs);
837   void ceil_l_d(FPURegister fd, FPURegister fs);
838 
839   void cvt_s_w(FPURegister fd, FPURegister fs);
840   void cvt_s_l(FPURegister fd, FPURegister fs);
841   void cvt_s_d(FPURegister fd, FPURegister fs);
842 
843   void cvt_d_w(FPURegister fd, FPURegister fs);
844   void cvt_d_l(FPURegister fd, FPURegister fs);
845   void cvt_d_s(FPURegister fd, FPURegister fs);
846 
847   // Conditions and branches.
848   void c(FPUCondition cond, SecondaryField fmt,
849          FPURegister ft, FPURegister fs, uint16_t cc = 0);
850 
851   void bc1f(int16_t offset, uint16_t cc = 0);
852   void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
853   void bc1t(int16_t offset, uint16_t cc = 0);
854   void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
855   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
856 
857   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)858   int SizeOfCodeGeneratedSince(Label* label) {
859     return pc_offset() - label->pos();
860   }
861 
862   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)863   int InstructionsGeneratedSince(Label* label) {
864     return SizeOfCodeGeneratedSince(label) / kInstrSize;
865   }
866 
867   // Class for scoping postponing the trampoline pool generation.
868   class BlockTrampolinePoolScope {
869    public:
BlockTrampolinePoolScope(Assembler * assem)870     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
871       assem_->StartBlockTrampolinePool();
872     }
~BlockTrampolinePoolScope()873     ~BlockTrampolinePoolScope() {
874       assem_->EndBlockTrampolinePool();
875     }
876 
877    private:
878     Assembler* assem_;
879 
880     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
881   };
882 
883   // Class for postponing the assembly buffer growth. Typically used for
884   // sequences of instructions that must be emitted as a unit, before
885   // buffer growth (and relocation) can occur.
886   // This blocking scope is not nestable.
887   class BlockGrowBufferScope {
888    public:
BlockGrowBufferScope(Assembler * assem)889     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
890       assem_->StartBlockGrowBuffer();
891     }
~BlockGrowBufferScope()892     ~BlockGrowBufferScope() {
893       assem_->EndBlockGrowBuffer();
894     }
895 
896     private:
897      Assembler* assem_;
898 
899      DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
900   };
901 
902   // Debugging.
903 
904   // Mark address of the ExitJSFrame code.
905   void RecordJSReturn();
906 
907   // Mark address of a debug break slot.
908   void RecordDebugBreakSlot();
909 
910   // Record the AST id of the CallIC being compiled, so that it can be placed
911   // in the relocation information.
SetRecordedAstId(unsigned ast_id)912   void SetRecordedAstId(unsigned ast_id) {
913     ASSERT(recorded_ast_id_ == kNoASTId);
914     recorded_ast_id_ = ast_id;
915   }
916 
RecordedAstId()917   unsigned RecordedAstId() {
918     ASSERT(recorded_ast_id_ != kNoASTId);
919     return recorded_ast_id_;
920   }
921 
ClearRecordedAstId()922   void ClearRecordedAstId() { recorded_ast_id_ = kNoASTId; }
923 
924   // Record a comment relocation entry that can be used by a disassembler.
925   // Use --code-comments to enable.
926   void RecordComment(const char* msg);
927 
928   static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
929 
930   // Writes a single byte or word of data in the code stream.  Used for
931   // inline tables, e.g., jump-tables.
932   void db(uint8_t data);
933   void dd(uint32_t data);
934 
pc_offset()935   int32_t pc_offset() const { return pc_ - buffer_; }
936 
positions_recorder()937   PositionsRecorder* positions_recorder() { return &positions_recorder_; }
938 
939   // Postpone the generation of the trampoline pool for the specified number of
940   // instructions.
941   void BlockTrampolinePoolFor(int instructions);
942 
943   // Check if there is less than kGap bytes available in the buffer.
944   // If this is the case, we need to grow the buffer before emitting
945   // an instruction or relocation information.
overflow()946   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
947 
948   // Get the number of bytes available in the buffer.
available_space()949   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
950 
951   // Read/patch instructions.
instr_at(byte * pc)952   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)953   static void instr_at_put(byte* pc, Instr instr) {
954     *reinterpret_cast<Instr*>(pc) = instr;
955   }
instr_at(int pos)956   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)957   void instr_at_put(int pos, Instr instr) {
958     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
959   }
960 
961   // Check if an instruction is a branch of some kind.
962   static bool IsBranch(Instr instr);
963   static bool IsBeq(Instr instr);
964   static bool IsBne(Instr instr);
965 
966   static bool IsJump(Instr instr);
967   static bool IsJ(Instr instr);
968   static bool IsLui(Instr instr);
969   static bool IsOri(Instr instr);
970 
971   static bool IsJal(Instr instr);
972   static bool IsJr(Instr instr);
973   static bool IsJalr(Instr instr);
974 
975   static bool IsNop(Instr instr, unsigned int type);
976   static bool IsPop(Instr instr);
977   static bool IsPush(Instr instr);
978   static bool IsLwRegFpOffset(Instr instr);
979   static bool IsSwRegFpOffset(Instr instr);
980   static bool IsLwRegFpNegOffset(Instr instr);
981   static bool IsSwRegFpNegOffset(Instr instr);
982 
983   static Register GetRtReg(Instr instr);
984   static Register GetRsReg(Instr instr);
985   static Register GetRdReg(Instr instr);
986 
987   static uint32_t GetRt(Instr instr);
988   static uint32_t GetRtField(Instr instr);
989   static uint32_t GetRs(Instr instr);
990   static uint32_t GetRsField(Instr instr);
991   static uint32_t GetRd(Instr instr);
992   static uint32_t GetRdField(Instr instr);
993   static uint32_t GetSa(Instr instr);
994   static uint32_t GetSaField(Instr instr);
995   static uint32_t GetOpcodeField(Instr instr);
996   static uint32_t GetFunction(Instr instr);
997   static uint32_t GetFunctionField(Instr instr);
998   static uint32_t GetImmediate16(Instr instr);
999   static uint32_t GetLabelConst(Instr instr);
1000 
1001   static int32_t GetBranchOffset(Instr instr);
1002   static bool IsLw(Instr instr);
1003   static int16_t GetLwOffset(Instr instr);
1004   static Instr SetLwOffset(Instr instr, int16_t offset);
1005 
1006   static bool IsSw(Instr instr);
1007   static Instr SetSwOffset(Instr instr, int16_t offset);
1008   static bool IsAddImmediate(Instr instr);
1009   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1010 
1011   static bool IsAndImmediate(Instr instr);
1012 
1013   void CheckTrampolinePool();
1014 
1015  protected:
1016   // Relocation for a type-recording IC has the AST id added to it.  This
1017   // member variable is a way to pass the information from the call site to
1018   // the relocation info.
1019   unsigned recorded_ast_id_;
1020 
emit_debug_code()1021   bool emit_debug_code() const { return emit_debug_code_; }
1022 
buffer_space()1023   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1024 
1025   // Decode branch instruction at pos and return branch target pos.
1026   int target_at(int32_t pos);
1027 
1028   // Patch branch instruction at pos to branch to given branch target pos.
1029   void target_at_put(int32_t pos, int32_t target_pos);
1030 
1031   // Say if we need to relocate with this mode.
1032   bool MustUseReg(RelocInfo::Mode rmode);
1033 
1034   // Record reloc info for current pc_.
1035   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1036 
1037   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1038   void BlockTrampolinePoolBefore(int pc_offset) {
1039     if (no_trampoline_pool_before_ < pc_offset)
1040       no_trampoline_pool_before_ = pc_offset;
1041   }
1042 
StartBlockTrampolinePool()1043   void StartBlockTrampolinePool() {
1044     trampoline_pool_blocked_nesting_++;
1045   }
1046 
EndBlockTrampolinePool()1047   void EndBlockTrampolinePool() {
1048     trampoline_pool_blocked_nesting_--;
1049   }
1050 
is_trampoline_pool_blocked()1051   bool is_trampoline_pool_blocked() const {
1052     return trampoline_pool_blocked_nesting_ > 0;
1053   }
1054 
has_exception()1055   bool has_exception() const {
1056     return internal_trampoline_exception_;
1057   }
1058 
1059   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1060 
is_trampoline_emitted()1061   bool is_trampoline_emitted() const {
1062     return trampoline_emitted_;
1063   }
1064 
1065   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1066   void StartBlockGrowBuffer() {
1067     ASSERT(!block_buffer_growth_);
1068     block_buffer_growth_ = true;
1069   }
1070 
EndBlockGrowBuffer()1071   void EndBlockGrowBuffer() {
1072     ASSERT(block_buffer_growth_);
1073     block_buffer_growth_ = false;
1074   }
1075 
is_buffer_growth_blocked()1076   bool is_buffer_growth_blocked() const {
1077     return block_buffer_growth_;
1078   }
1079 
1080  private:
1081   // Code buffer:
1082   // The buffer into which code and relocation info are generated.
1083   byte* buffer_;
1084   int buffer_size_;
1085   // True if the assembler owns the buffer, false if buffer is external.
1086   bool own_buffer_;
1087 
1088   // Buffer size and constant pool distance are checked together at regular
1089   // intervals of kBufferCheckInterval emitted bytes.
1090   static const int kBufferCheckInterval = 1*KB/2;
1091 
1092   // Code generation.
1093   // The relocation writer's position is at least kGap bytes below the end of
1094   // the generated instructions. This is so that multi-instruction sequences do
1095   // not have to check for overflow. The same is true for writes of large
1096   // relocation info entries.
1097   static const int kGap = 32;
1098   byte* pc_;  // The program counter - moves forward.
1099 
1100 
1101   // Repeated checking whether the trampoline pool should be emitted is rather
1102   // expensive. By default we only check again once a number of instructions
1103   // has been generated.
1104   static const int kCheckConstIntervalInst = 32;
1105   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1106 
1107   int next_buffer_check_;  // pc offset of next buffer check.
1108 
1109   // Emission of the trampoline pool may be blocked in some code sequences.
1110   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1111   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1112 
1113   // Keep track of the last emitted pool to guarantee a maximal distance.
1114   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1115 
1116   // Automatic growth of the assembly buffer may be blocked for some sequences.
1117   bool block_buffer_growth_;  // Block growth when true.
1118 
1119   // Relocation information generation.
1120   // Each relocation is encoded as a variable size value.
1121   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1122   RelocInfoWriter reloc_info_writer;
1123 
1124   // The bound position, before this we cannot do instruction elimination.
1125   int last_bound_pos_;
1126 
1127   // Code emission.
1128   inline void CheckBuffer();
1129   void GrowBuffer();
1130   inline void emit(Instr x);
1131   inline void CheckTrampolinePoolQuick();
1132 
1133   // Instruction generation.
1134   // We have 3 different kind of encoding layout on MIPS.
1135   // However due to many different types of objects encoded in the same fields
1136   // we have quite a few aliases for each mode.
1137   // Using the same structure to refer to Register and FPURegister would spare a
1138   // few aliases, but mixing both does not look clean to me.
1139   // Anyway we could surely implement this differently.
1140 
1141   void GenInstrRegister(Opcode opcode,
1142                         Register rs,
1143                         Register rt,
1144                         Register rd,
1145                         uint16_t sa = 0,
1146                         SecondaryField func = NULLSF);
1147 
1148   void GenInstrRegister(Opcode opcode,
1149                         Register rs,
1150                         Register rt,
1151                         uint16_t msb,
1152                         uint16_t lsb,
1153                         SecondaryField func);
1154 
1155   void GenInstrRegister(Opcode opcode,
1156                         SecondaryField fmt,
1157                         FPURegister ft,
1158                         FPURegister fs,
1159                         FPURegister fd,
1160                         SecondaryField func = NULLSF);
1161 
1162   void GenInstrRegister(Opcode opcode,
1163                         SecondaryField fmt,
1164                         Register rt,
1165                         FPURegister fs,
1166                         FPURegister fd,
1167                         SecondaryField func = NULLSF);
1168 
1169   void GenInstrRegister(Opcode opcode,
1170                         SecondaryField fmt,
1171                         Register rt,
1172                         FPUControlRegister fs,
1173                         SecondaryField func = NULLSF);
1174 
1175 
1176   void GenInstrImmediate(Opcode opcode,
1177                          Register rs,
1178                          Register rt,
1179                          int32_t  j);
1180   void GenInstrImmediate(Opcode opcode,
1181                          Register rs,
1182                          SecondaryField SF,
1183                          int32_t  j);
1184   void GenInstrImmediate(Opcode opcode,
1185                          Register r1,
1186                          FPURegister r2,
1187                          int32_t  j);
1188 
1189 
1190   void GenInstrJump(Opcode opcode,
1191                      uint32_t address);
1192 
1193   // Helpers.
1194   void LoadRegPlusOffsetToAt(const MemOperand& src);
1195 
1196   // Labels.
1197   void print(Label* L);
1198   void bind_to(Label* L, int pos);
1199   void next(Label* L);
1200 
1201   // One trampoline consists of:
1202   // - space for trampoline slots,
1203   // - space for labels.
1204   //
1205   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1206   // Space for trampoline slots preceeds space for labels. Each label is of one
1207   // instruction size, so total amount for labels is equal to
1208   // label_count *  kInstrSize.
1209   class Trampoline {
1210    public:
Trampoline()1211     Trampoline() {
1212       start_ = 0;
1213       next_slot_ = 0;
1214       free_slot_count_ = 0;
1215       end_ = 0;
1216     }
Trampoline(int start,int slot_count)1217     Trampoline(int start, int slot_count) {
1218       start_ = start;
1219       next_slot_ = start;
1220       free_slot_count_ = slot_count;
1221       end_ = start + slot_count * kTrampolineSlotsSize;
1222     }
start()1223     int start() {
1224       return start_;
1225     }
end()1226     int end() {
1227       return end_;
1228     }
take_slot()1229     int take_slot() {
1230       int trampoline_slot = kInvalidSlotPos;
1231       if (free_slot_count_ <= 0) {
1232         // We have run out of space on trampolines.
1233         // Make sure we fail in debug mode, so we become aware of each case
1234         // when this happens.
1235         ASSERT(0);
1236         // Internal exception will be caught.
1237       } else {
1238         trampoline_slot = next_slot_;
1239         free_slot_count_--;
1240         next_slot_ += kTrampolineSlotsSize;
1241       }
1242       return trampoline_slot;
1243     }
1244 
1245    private:
1246     int start_;
1247     int end_;
1248     int next_slot_;
1249     int free_slot_count_;
1250   };
1251 
1252   int32_t get_trampoline_entry(int32_t pos);
1253   int unbound_labels_count_;
1254   // If trampoline is emitted, generated code is becoming large. As this is
1255   // already a slow case which can possibly break our code generation for the
1256   // extreme case, we use this information to trigger different mode of
1257   // branch instruction generation, where we use jump instructions rather
1258   // than regular branch instructions.
1259   bool trampoline_emitted_;
1260   static const int kTrampolineSlotsSize = 4 * kInstrSize;
1261   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1262   static const int kInvalidSlotPos = -1;
1263 
1264   Trampoline trampoline_;
1265   bool internal_trampoline_exception_;
1266 
1267   friend class RegExpMacroAssemblerMIPS;
1268   friend class RelocInfo;
1269   friend class CodePatcher;
1270   friend class BlockTrampolinePoolScope;
1271 
1272   PositionsRecorder positions_recorder_;
1273   bool emit_debug_code_;
1274   friend class PositionsRecorder;
1275   friend class EnsureSpace;
1276 };
1277 
1278 
1279 class EnsureSpace BASE_EMBEDDED {
1280  public:
EnsureSpace(Assembler * assembler)1281   explicit EnsureSpace(Assembler* assembler) {
1282     assembler->CheckBuffer();
1283   }
1284 };
1285 
1286 } }  // namespace v8::internal
1287 
1288 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
1289