1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveVariables.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SlotIndexes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/LeakDetector.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include <algorithm>
36 using namespace llvm;
37
MachineBasicBlock(MachineFunction & mf,const BasicBlock * bb)38 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
39 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
40 AddressTaken(false) {
41 Insts.Parent = this;
42 }
43
~MachineBasicBlock()44 MachineBasicBlock::~MachineBasicBlock() {
45 LeakDetector::removeGarbageObject(this);
46 }
47
48 /// getSymbol - Return the MCSymbol for this basic block.
49 ///
getSymbol() const50 MCSymbol *MachineBasicBlock::getSymbol() const {
51 const MachineFunction *MF = getParent();
52 MCContext &Ctx = MF->getContext();
53 const char *Prefix = Ctx.getAsmInfo().getPrivateGlobalPrefix();
54 return Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
55 Twine(MF->getFunctionNumber()) + "_" +
56 Twine(getNumber()));
57 }
58
59
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)60 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
61 MBB.print(OS);
62 return OS;
63 }
64
65 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
66 /// parent pointer of the MBB, the MBB numbering, and any instructions in the
67 /// MBB to be on the right operand list for registers.
68 ///
69 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
70 /// gets the next available unique MBB number. If it is removed from a
71 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)72 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
73 MachineFunction &MF = *N->getParent();
74 N->Number = MF.addToMBBNumbering(N);
75
76 // Make sure the instructions have their operands in the reginfo lists.
77 MachineRegisterInfo &RegInfo = MF.getRegInfo();
78 for (MachineBasicBlock::instr_iterator
79 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
80 I->AddRegOperandsToUseLists(RegInfo);
81
82 LeakDetector::removeGarbageObject(N);
83 }
84
removeNodeFromList(MachineBasicBlock * N)85 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
86 N->getParent()->removeFromMBBNumbering(N->Number);
87 N->Number = -1;
88 LeakDetector::addGarbageObject(N);
89 }
90
91
92 /// addNodeToList (MI) - When we add an instruction to a basic block
93 /// list, we update its parent pointer and add its operands from reg use/def
94 /// lists if appropriate.
addNodeToList(MachineInstr * N)95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
96 assert(N->getParent() == 0 && "machine instruction already in a basic block");
97 N->setParent(Parent);
98
99 // Add the instruction's register operands to their corresponding
100 // use/def lists.
101 MachineFunction *MF = Parent->getParent();
102 N->AddRegOperandsToUseLists(MF->getRegInfo());
103
104 LeakDetector::removeGarbageObject(N);
105 }
106
107 /// removeNodeFromList (MI) - When we remove an instruction from a basic block
108 /// list, we update its parent pointer and remove its operands from reg use/def
109 /// lists if appropriate.
removeNodeFromList(MachineInstr * N)110 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
111 assert(N->getParent() != 0 && "machine instruction not in a basic block");
112
113 // Remove from the use/def lists.
114 if (MachineFunction *MF = N->getParent()->getParent())
115 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
116
117 N->setParent(0);
118
119 LeakDetector::addGarbageObject(N);
120 }
121
122 /// transferNodesFromList (MI) - When moving a range of instructions from one
123 /// MBB list to another, we need to update the parent pointers and the use/def
124 /// lists.
125 void ilist_traits<MachineInstr>::
transferNodesFromList(ilist_traits<MachineInstr> & fromList,ilist_iterator<MachineInstr> first,ilist_iterator<MachineInstr> last)126 transferNodesFromList(ilist_traits<MachineInstr> &fromList,
127 ilist_iterator<MachineInstr> first,
128 ilist_iterator<MachineInstr> last) {
129 assert(Parent->getParent() == fromList.Parent->getParent() &&
130 "MachineInstr parent mismatch!");
131
132 // Splice within the same MBB -> no change.
133 if (Parent == fromList.Parent) return;
134
135 // If splicing between two blocks within the same function, just update the
136 // parent pointers.
137 for (; first != last; ++first)
138 first->setParent(Parent);
139 }
140
deleteNode(MachineInstr * MI)141 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
142 assert(!MI->getParent() && "MI is still in a block!");
143 Parent->getParent()->DeleteMachineInstr(MI);
144 }
145
getFirstNonPHI()146 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
147 instr_iterator I = instr_begin(), E = instr_end();
148 while (I != E && I->isPHI())
149 ++I;
150 assert((I == E || !I->isInsideBundle()) &&
151 "First non-phi MI cannot be inside a bundle!");
152 return I;
153 }
154
155 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)156 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
157 iterator E = end();
158 while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue()))
159 ++I;
160 // FIXME: This needs to change if we wish to bundle labels / dbg_values
161 // inside the bundle.
162 assert((I == E || !I->isInsideBundle()) &&
163 "First non-phi / non-label instruction is inside a bundle!");
164 return I;
165 }
166
getFirstTerminator()167 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
168 iterator B = begin(), E = end(), I = E;
169 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
170 ; /*noop */
171 while (I != E && !I->isTerminator())
172 ++I;
173 return I;
174 }
175
176 MachineBasicBlock::const_iterator
getFirstTerminator() const177 MachineBasicBlock::getFirstTerminator() const {
178 const_iterator B = begin(), E = end(), I = E;
179 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
180 ; /*noop */
181 while (I != E && !I->isTerminator())
182 ++I;
183 return I;
184 }
185
getFirstInstrTerminator()186 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
187 instr_iterator B = instr_begin(), E = instr_end(), I = E;
188 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
189 ; /*noop */
190 while (I != E && !I->isTerminator())
191 ++I;
192 return I;
193 }
194
getLastNonDebugInstr()195 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
196 // Skip over end-of-block dbg_value instructions.
197 instr_iterator B = instr_begin(), I = instr_end();
198 while (I != B) {
199 --I;
200 // Return instruction that starts a bundle.
201 if (I->isDebugValue() || I->isInsideBundle())
202 continue;
203 return I;
204 }
205 // The block is all debug values.
206 return end();
207 }
208
209 MachineBasicBlock::const_iterator
getLastNonDebugInstr() const210 MachineBasicBlock::getLastNonDebugInstr() const {
211 // Skip over end-of-block dbg_value instructions.
212 const_instr_iterator B = instr_begin(), I = instr_end();
213 while (I != B) {
214 --I;
215 // Return instruction that starts a bundle.
216 if (I->isDebugValue() || I->isInsideBundle())
217 continue;
218 return I;
219 }
220 // The block is all debug values.
221 return end();
222 }
223
getLandingPadSuccessor() const224 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
225 // A block with a landing pad successor only has one other successor.
226 if (succ_size() > 2)
227 return 0;
228 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
229 if ((*I)->isLandingPad())
230 return *I;
231 return 0;
232 }
233
234 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const235 void MachineBasicBlock::dump() const {
236 print(dbgs());
237 }
238 #endif
239
getName() const240 StringRef MachineBasicBlock::getName() const {
241 if (const BasicBlock *LBB = getBasicBlock())
242 return LBB->getName();
243 else
244 return "(null)";
245 }
246
247 /// Return a hopefully unique identifier for this block.
getFullName() const248 std::string MachineBasicBlock::getFullName() const {
249 std::string Name;
250 if (getParent())
251 Name = (getParent()->getName() + ":").str();
252 if (getBasicBlock())
253 Name += getBasicBlock()->getName();
254 else
255 Name += (Twine("BB") + Twine(getNumber())).str();
256 return Name;
257 }
258
print(raw_ostream & OS,SlotIndexes * Indexes) const259 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
260 const MachineFunction *MF = getParent();
261 if (!MF) {
262 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
263 << " is null\n";
264 return;
265 }
266
267 if (Indexes)
268 OS << Indexes->getMBBStartIdx(this) << '\t';
269
270 OS << "BB#" << getNumber() << ": ";
271
272 const char *Comma = "";
273 if (const BasicBlock *LBB = getBasicBlock()) {
274 OS << Comma << "derived from LLVM BB ";
275 WriteAsOperand(OS, LBB, /*PrintType=*/false);
276 Comma = ", ";
277 }
278 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
279 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
280 if (Alignment)
281 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
282 << " bytes)";
283
284 OS << '\n';
285
286 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
287 if (!livein_empty()) {
288 if (Indexes) OS << '\t';
289 OS << " Live Ins:";
290 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
291 OS << ' ' << PrintReg(*I, TRI);
292 OS << '\n';
293 }
294 // Print the preds of this block according to the CFG.
295 if (!pred_empty()) {
296 if (Indexes) OS << '\t';
297 OS << " Predecessors according to CFG:";
298 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
299 OS << " BB#" << (*PI)->getNumber();
300 OS << '\n';
301 }
302
303 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
304 if (Indexes) {
305 if (Indexes->hasIndex(I))
306 OS << Indexes->getInstructionIndex(I);
307 OS << '\t';
308 }
309 OS << '\t';
310 if (I->isInsideBundle())
311 OS << " * ";
312 I->print(OS, &getParent()->getTarget());
313 }
314
315 // Print the successors of this block according to the CFG.
316 if (!succ_empty()) {
317 if (Indexes) OS << '\t';
318 OS << " Successors according to CFG:";
319 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
320 OS << " BB#" << (*SI)->getNumber();
321 if (!Weights.empty())
322 OS << '(' << *getWeightIterator(SI) << ')';
323 }
324 OS << '\n';
325 }
326 }
327
removeLiveIn(unsigned Reg)328 void MachineBasicBlock::removeLiveIn(unsigned Reg) {
329 std::vector<unsigned>::iterator I =
330 std::find(LiveIns.begin(), LiveIns.end(), Reg);
331 if (I != LiveIns.end())
332 LiveIns.erase(I);
333 }
334
isLiveIn(unsigned Reg) const335 bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
336 livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
337 return I != livein_end();
338 }
339
moveBefore(MachineBasicBlock * NewAfter)340 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
341 getParent()->splice(NewAfter, this);
342 }
343
moveAfter(MachineBasicBlock * NewBefore)344 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
345 MachineFunction::iterator BBI = NewBefore;
346 getParent()->splice(++BBI, this);
347 }
348
updateTerminator()349 void MachineBasicBlock::updateTerminator() {
350 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
351 // A block with no successors has no concerns with fall-through edges.
352 if (this->succ_empty()) return;
353
354 MachineBasicBlock *TBB = 0, *FBB = 0;
355 SmallVector<MachineOperand, 4> Cond;
356 DebugLoc dl; // FIXME: this is nowhere
357 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
358 (void) B;
359 assert(!B && "UpdateTerminators requires analyzable predecessors!");
360 if (Cond.empty()) {
361 if (TBB) {
362 // The block has an unconditional branch. If its successor is now
363 // its layout successor, delete the branch.
364 if (isLayoutSuccessor(TBB))
365 TII->RemoveBranch(*this);
366 } else {
367 // The block has an unconditional fallthrough. If its successor is not
368 // its layout successor, insert a branch. First we have to locate the
369 // only non-landing-pad successor, as that is the fallthrough block.
370 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
371 if ((*SI)->isLandingPad())
372 continue;
373 assert(!TBB && "Found more than one non-landing-pad successor!");
374 TBB = *SI;
375 }
376
377 // If there is no non-landing-pad successor, the block has no
378 // fall-through edges to be concerned with.
379 if (!TBB)
380 return;
381
382 // Finally update the unconditional successor to be reached via a branch
383 // if it would not be reached by fallthrough.
384 if (!isLayoutSuccessor(TBB))
385 TII->InsertBranch(*this, TBB, 0, Cond, dl);
386 }
387 } else {
388 if (FBB) {
389 // The block has a non-fallthrough conditional branch. If one of its
390 // successors is its layout successor, rewrite it to a fallthrough
391 // conditional branch.
392 if (isLayoutSuccessor(TBB)) {
393 if (TII->ReverseBranchCondition(Cond))
394 return;
395 TII->RemoveBranch(*this);
396 TII->InsertBranch(*this, FBB, 0, Cond, dl);
397 } else if (isLayoutSuccessor(FBB)) {
398 TII->RemoveBranch(*this);
399 TII->InsertBranch(*this, TBB, 0, Cond, dl);
400 }
401 } else {
402 // Walk through the successors and find the successor which is not
403 // a landing pad and is not the conditional branch destination (in TBB)
404 // as the fallthrough successor.
405 MachineBasicBlock *FallthroughBB = 0;
406 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
407 if ((*SI)->isLandingPad() || *SI == TBB)
408 continue;
409 assert(!FallthroughBB && "Found more than one fallthrough successor.");
410 FallthroughBB = *SI;
411 }
412 if (!FallthroughBB && canFallThrough()) {
413 // We fallthrough to the same basic block as the conditional jump
414 // targets. Remove the conditional jump, leaving unconditional
415 // fallthrough.
416 // FIXME: This does not seem like a reasonable pattern to support, but it
417 // has been seen in the wild coming out of degenerate ARM test cases.
418 TII->RemoveBranch(*this);
419
420 // Finally update the unconditional successor to be reached via a branch
421 // if it would not be reached by fallthrough.
422 if (!isLayoutSuccessor(TBB))
423 TII->InsertBranch(*this, TBB, 0, Cond, dl);
424 return;
425 }
426
427 // The block has a fallthrough conditional branch.
428 if (isLayoutSuccessor(TBB)) {
429 if (TII->ReverseBranchCondition(Cond)) {
430 // We can't reverse the condition, add an unconditional branch.
431 Cond.clear();
432 TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
433 return;
434 }
435 TII->RemoveBranch(*this);
436 TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
437 } else if (!isLayoutSuccessor(FallthroughBB)) {
438 TII->RemoveBranch(*this);
439 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
440 }
441 }
442 }
443 }
444
addSuccessor(MachineBasicBlock * succ,uint32_t weight)445 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
446
447 // If we see non-zero value for the first time it means we actually use Weight
448 // list, so we fill all Weights with 0's.
449 if (weight != 0 && Weights.empty())
450 Weights.resize(Successors.size());
451
452 if (weight != 0 || !Weights.empty())
453 Weights.push_back(weight);
454
455 Successors.push_back(succ);
456 succ->addPredecessor(this);
457 }
458
removeSuccessor(MachineBasicBlock * succ)459 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
460 succ->removePredecessor(this);
461 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
462 assert(I != Successors.end() && "Not a current successor!");
463
464 // If Weight list is empty it means we don't use it (disabled optimization).
465 if (!Weights.empty()) {
466 weight_iterator WI = getWeightIterator(I);
467 Weights.erase(WI);
468 }
469
470 Successors.erase(I);
471 }
472
473 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I)474 MachineBasicBlock::removeSuccessor(succ_iterator I) {
475 assert(I != Successors.end() && "Not a current successor!");
476
477 // If Weight list is empty it means we don't use it (disabled optimization).
478 if (!Weights.empty()) {
479 weight_iterator WI = getWeightIterator(I);
480 Weights.erase(WI);
481 }
482
483 (*I)->removePredecessor(this);
484 return Successors.erase(I);
485 }
486
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)487 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
488 MachineBasicBlock *New) {
489 if (Old == New)
490 return;
491
492 succ_iterator E = succ_end();
493 succ_iterator NewI = E;
494 succ_iterator OldI = E;
495 for (succ_iterator I = succ_begin(); I != E; ++I) {
496 if (*I == Old) {
497 OldI = I;
498 if (NewI != E)
499 break;
500 }
501 if (*I == New) {
502 NewI = I;
503 if (OldI != E)
504 break;
505 }
506 }
507 assert(OldI != E && "Old is not a successor of this block");
508 Old->removePredecessor(this);
509
510 // If New isn't already a successor, let it take Old's place.
511 if (NewI == E) {
512 New->addPredecessor(this);
513 *OldI = New;
514 return;
515 }
516
517 // New is already a successor.
518 // Update its weight instead of adding a duplicate edge.
519 if (!Weights.empty()) {
520 weight_iterator OldWI = getWeightIterator(OldI);
521 *getWeightIterator(NewI) += *OldWI;
522 Weights.erase(OldWI);
523 }
524 Successors.erase(OldI);
525 }
526
addPredecessor(MachineBasicBlock * pred)527 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
528 Predecessors.push_back(pred);
529 }
530
removePredecessor(MachineBasicBlock * pred)531 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
532 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
533 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
534 Predecessors.erase(I);
535 }
536
transferSuccessors(MachineBasicBlock * fromMBB)537 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
538 if (this == fromMBB)
539 return;
540
541 while (!fromMBB->succ_empty()) {
542 MachineBasicBlock *Succ = *fromMBB->succ_begin();
543 uint32_t Weight = 0;
544
545 // If Weight list is empty it means we don't use it (disabled optimization).
546 if (!fromMBB->Weights.empty())
547 Weight = *fromMBB->Weights.begin();
548
549 addSuccessor(Succ, Weight);
550 fromMBB->removeSuccessor(Succ);
551 }
552 }
553
554 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * fromMBB)555 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
556 if (this == fromMBB)
557 return;
558
559 while (!fromMBB->succ_empty()) {
560 MachineBasicBlock *Succ = *fromMBB->succ_begin();
561 uint32_t Weight = 0;
562 if (!fromMBB->Weights.empty())
563 Weight = *fromMBB->Weights.begin();
564 addSuccessor(Succ, Weight);
565 fromMBB->removeSuccessor(Succ);
566
567 // Fix up any PHI nodes in the successor.
568 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
569 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
570 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
571 MachineOperand &MO = MI->getOperand(i);
572 if (MO.getMBB() == fromMBB)
573 MO.setMBB(this);
574 }
575 }
576 }
577
isPredecessor(const MachineBasicBlock * MBB) const578 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
579 return std::find(pred_begin(), pred_end(), MBB) != pred_end();
580 }
581
isSuccessor(const MachineBasicBlock * MBB) const582 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
583 return std::find(succ_begin(), succ_end(), MBB) != succ_end();
584 }
585
isLayoutSuccessor(const MachineBasicBlock * MBB) const586 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
587 MachineFunction::const_iterator I(this);
588 return llvm::next(I) == MachineFunction::const_iterator(MBB);
589 }
590
canFallThrough()591 bool MachineBasicBlock::canFallThrough() {
592 MachineFunction::iterator Fallthrough = this;
593 ++Fallthrough;
594 // If FallthroughBlock is off the end of the function, it can't fall through.
595 if (Fallthrough == getParent()->end())
596 return false;
597
598 // If FallthroughBlock isn't a successor, no fallthrough is possible.
599 if (!isSuccessor(Fallthrough))
600 return false;
601
602 // Analyze the branches, if any, at the end of the block.
603 MachineBasicBlock *TBB = 0, *FBB = 0;
604 SmallVector<MachineOperand, 4> Cond;
605 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
606 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
607 // If we couldn't analyze the branch, examine the last instruction.
608 // If the block doesn't end in a known control barrier, assume fallthrough
609 // is possible. The isPredicated check is needed because this code can be
610 // called during IfConversion, where an instruction which is normally a
611 // Barrier is predicated and thus no longer an actual control barrier.
612 return empty() || !back().isBarrier() || TII->isPredicated(&back());
613 }
614
615 // If there is no branch, control always falls through.
616 if (TBB == 0) return true;
617
618 // If there is some explicit branch to the fallthrough block, it can obviously
619 // reach, even though the branch should get folded to fall through implicitly.
620 if (MachineFunction::iterator(TBB) == Fallthrough ||
621 MachineFunction::iterator(FBB) == Fallthrough)
622 return true;
623
624 // If it's an unconditional branch to some block not the fall through, it
625 // doesn't fall through.
626 if (Cond.empty()) return false;
627
628 // Otherwise, if it is conditional and has no explicit false block, it falls
629 // through.
630 return FBB == 0;
631 }
632
633 MachineBasicBlock *
SplitCriticalEdge(MachineBasicBlock * Succ,Pass * P)634 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
635 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
636 // it in this generic function.
637 if (Succ->isLandingPad())
638 return NULL;
639
640 MachineFunction *MF = getParent();
641 DebugLoc dl; // FIXME: this is nowhere
642
643 // We may need to update this's terminator, but we can't do that if
644 // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
645 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
646 MachineBasicBlock *TBB = 0, *FBB = 0;
647 SmallVector<MachineOperand, 4> Cond;
648 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
649 return NULL;
650
651 // Avoid bugpoint weirdness: A block may end with a conditional branch but
652 // jumps to the same MBB is either case. We have duplicate CFG edges in that
653 // case that we can't handle. Since this never happens in properly optimized
654 // code, just skip those edges.
655 if (TBB && TBB == FBB) {
656 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
657 << getNumber() << '\n');
658 return NULL;
659 }
660
661 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
662 MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
663 DEBUG(dbgs() << "Splitting critical edge:"
664 " BB#" << getNumber()
665 << " -- BB#" << NMBB->getNumber()
666 << " -- BB#" << Succ->getNumber() << '\n');
667
668 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
669 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
670 if (LIS)
671 LIS->insertMBBInMaps(NMBB);
672 else if (Indexes)
673 Indexes->insertMBBInMaps(NMBB);
674
675 // On some targets like Mips, branches may kill virtual registers. Make sure
676 // that LiveVariables is properly updated after updateTerminator replaces the
677 // terminators.
678 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
679
680 // Collect a list of virtual registers killed by the terminators.
681 SmallVector<unsigned, 4> KilledRegs;
682 if (LV)
683 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
684 I != E; ++I) {
685 MachineInstr *MI = I;
686 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
687 OE = MI->operands_end(); OI != OE; ++OI) {
688 if (!OI->isReg() || OI->getReg() == 0 ||
689 !OI->isUse() || !OI->isKill() || OI->isUndef())
690 continue;
691 unsigned Reg = OI->getReg();
692 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
693 LV->getVarInfo(Reg).removeKill(MI)) {
694 KilledRegs.push_back(Reg);
695 DEBUG(dbgs() << "Removing terminator kill: " << *MI);
696 OI->setIsKill(false);
697 }
698 }
699 }
700
701 SmallVector<unsigned, 4> UsedRegs;
702 if (LIS) {
703 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
704 I != E; ++I) {
705 MachineInstr *MI = I;
706
707 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
708 OE = MI->operands_end(); OI != OE; ++OI) {
709 if (!OI->isReg() || OI->getReg() == 0)
710 continue;
711
712 unsigned Reg = OI->getReg();
713 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
714 UsedRegs.push_back(Reg);
715 }
716 }
717 }
718
719 ReplaceUsesOfBlockWith(Succ, NMBB);
720
721 // If updateTerminator() removes instructions, we need to remove them from
722 // SlotIndexes.
723 SmallVector<MachineInstr*, 4> Terminators;
724 if (Indexes) {
725 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
726 I != E; ++I)
727 Terminators.push_back(I);
728 }
729
730 updateTerminator();
731
732 if (Indexes) {
733 SmallVector<MachineInstr*, 4> NewTerminators;
734 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
735 I != E; ++I)
736 NewTerminators.push_back(I);
737
738 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
739 E = Terminators.end(); I != E; ++I) {
740 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
741 NewTerminators.end())
742 Indexes->removeMachineInstrFromMaps(*I);
743 }
744 }
745
746 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
747 NMBB->addSuccessor(Succ);
748 if (!NMBB->isLayoutSuccessor(Succ)) {
749 Cond.clear();
750 MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
751
752 if (Indexes) {
753 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
754 I != E; ++I) {
755 // Some instructions may have been moved to NMBB by updateTerminator(),
756 // so we first remove any instruction that already has an index.
757 if (Indexes->hasIndex(I))
758 Indexes->removeMachineInstrFromMaps(I);
759 Indexes->insertMachineInstrInMaps(I);
760 }
761 }
762 }
763
764 // Fix PHI nodes in Succ so they refer to NMBB instead of this
765 for (MachineBasicBlock::instr_iterator
766 i = Succ->instr_begin(),e = Succ->instr_end();
767 i != e && i->isPHI(); ++i)
768 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
769 if (i->getOperand(ni+1).getMBB() == this)
770 i->getOperand(ni+1).setMBB(NMBB);
771
772 // Inherit live-ins from the successor
773 for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
774 E = Succ->livein_end(); I != E; ++I)
775 NMBB->addLiveIn(*I);
776
777 // Update LiveVariables.
778 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
779 if (LV) {
780 // Restore kills of virtual registers that were killed by the terminators.
781 while (!KilledRegs.empty()) {
782 unsigned Reg = KilledRegs.pop_back_val();
783 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
784 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
785 continue;
786 if (TargetRegisterInfo::isVirtualRegister(Reg))
787 LV->getVarInfo(Reg).Kills.push_back(I);
788 DEBUG(dbgs() << "Restored terminator kill: " << *I);
789 break;
790 }
791 }
792 // Update relevant live-through information.
793 LV->addNewBlock(NMBB, this, Succ);
794 }
795
796 if (LIS) {
797 // After splitting the edge and updating SlotIndexes, live intervals may be
798 // in one of two situations, depending on whether this block was the last in
799 // the function. If the original block was the last in the function, all live
800 // intervals will end prior to the beginning of the new split block. If the
801 // original block was not at the end of the function, all live intervals will
802 // extend to the end of the new split block.
803
804 bool isLastMBB =
805 llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end();
806
807 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
808 SlotIndex PrevIndex = StartIndex.getPrevSlot();
809 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
810
811 // Find the registers used from NMBB in PHIs in Succ.
812 SmallSet<unsigned, 8> PHISrcRegs;
813 for (MachineBasicBlock::instr_iterator
814 I = Succ->instr_begin(), E = Succ->instr_end();
815 I != E && I->isPHI(); ++I) {
816 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
817 if (I->getOperand(ni+1).getMBB() == NMBB) {
818 MachineOperand &MO = I->getOperand(ni);
819 unsigned Reg = MO.getReg();
820 PHISrcRegs.insert(Reg);
821 if (MO.isUndef())
822 continue;
823
824 LiveInterval &LI = LIS->getInterval(Reg);
825 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
826 assert(VNI && "PHI sources should be live out of their predecessors.");
827 LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
828 }
829 }
830 }
831
832 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
833 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
834 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
835 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
836 continue;
837
838 LiveInterval &LI = LIS->getInterval(Reg);
839 if (!LI.liveAt(PrevIndex))
840 continue;
841
842 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
843 if (isLiveOut && isLastMBB) {
844 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
845 assert(VNI && "LiveInterval should have VNInfo where it is live.");
846 LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
847 } else if (!isLiveOut && !isLastMBB) {
848 LI.removeRange(StartIndex, EndIndex);
849 }
850 }
851
852 // Update all intervals for registers whose uses may have been modified by
853 // updateTerminator().
854 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
855 }
856
857 if (MachineDominatorTree *MDT =
858 P->getAnalysisIfAvailable<MachineDominatorTree>()) {
859 // Update dominator information.
860 MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
861
862 bool IsNewIDom = true;
863 for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
864 PI != E; ++PI) {
865 MachineBasicBlock *PredBB = *PI;
866 if (PredBB == NMBB)
867 continue;
868 if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
869 IsNewIDom = false;
870 break;
871 }
872 }
873
874 // We know "this" dominates the newly created basic block.
875 MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
876
877 // If all the other predecessors of "Succ" are dominated by "Succ" itself
878 // then the new block is the new immediate dominator of "Succ". Otherwise,
879 // the new block doesn't dominate anything.
880 if (IsNewIDom)
881 MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
882 }
883
884 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
885 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
886 // If one or the other blocks were not in a loop, the new block is not
887 // either, and thus LI doesn't need to be updated.
888 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
889 if (TIL == DestLoop) {
890 // Both in the same loop, the NMBB joins loop.
891 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
892 } else if (TIL->contains(DestLoop)) {
893 // Edge from an outer loop to an inner loop. Add to the outer loop.
894 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
895 } else if (DestLoop->contains(TIL)) {
896 // Edge from an inner loop to an outer loop. Add to the outer loop.
897 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
898 } else {
899 // Edge from two loops with no containment relation. Because these
900 // are natural loops, we know that the destination block must be the
901 // header of its loop (adding a branch into a loop elsewhere would
902 // create an irreducible loop).
903 assert(DestLoop->getHeader() == Succ &&
904 "Should not create irreducible loops!");
905 if (MachineLoop *P = DestLoop->getParentLoop())
906 P->addBasicBlockToLoop(NMBB, MLI->getBase());
907 }
908 }
909 }
910
911 return NMBB;
912 }
913
914 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
915 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)916 static void unbundleSingleMI(MachineInstr *MI) {
917 // Removing the first instruction in a bundle.
918 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
919 MI->unbundleFromSucc();
920 // Removing the last instruction in a bundle.
921 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
922 MI->unbundleFromPred();
923 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
924 // are already fine.
925 }
926
927 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)928 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
929 unbundleSingleMI(I);
930 return Insts.erase(I);
931 }
932
remove_instr(MachineInstr * MI)933 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
934 unbundleSingleMI(MI);
935 MI->clearFlag(MachineInstr::BundledPred);
936 MI->clearFlag(MachineInstr::BundledSucc);
937 return Insts.remove(MI);
938 }
939
940 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)941 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
942 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
943 "Cannot insert instruction with bundle flags");
944 // Set the bundle flags when inserting inside a bundle.
945 if (I != instr_end() && I->isBundledWithPred()) {
946 MI->setFlag(MachineInstr::BundledPred);
947 MI->setFlag(MachineInstr::BundledSucc);
948 }
949 return Insts.insert(I, MI);
950 }
951
952 /// removeFromParent - This method unlinks 'this' from the containing function,
953 /// and returns it, but does not delete it.
removeFromParent()954 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
955 assert(getParent() && "Not embedded in a function!");
956 getParent()->remove(this);
957 return this;
958 }
959
960
961 /// eraseFromParent - This method unlinks 'this' from the containing function,
962 /// and deletes it.
eraseFromParent()963 void MachineBasicBlock::eraseFromParent() {
964 assert(getParent() && "Not embedded in a function!");
965 getParent()->erase(this);
966 }
967
968
969 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
970 /// 'Old', change the code and CFG so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)971 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
972 MachineBasicBlock *New) {
973 assert(Old != New && "Cannot replace self with self!");
974
975 MachineBasicBlock::instr_iterator I = instr_end();
976 while (I != instr_begin()) {
977 --I;
978 if (!I->isTerminator()) break;
979
980 // Scan the operands of this machine instruction, replacing any uses of Old
981 // with New.
982 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
983 if (I->getOperand(i).isMBB() &&
984 I->getOperand(i).getMBB() == Old)
985 I->getOperand(i).setMBB(New);
986 }
987
988 // Update the successor information.
989 replaceSuccessor(Old, New);
990 }
991
992 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
993 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and
994 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be
995 /// null.
996 ///
997 /// Besides DestA and DestB, retain other edges leading to LandingPads
998 /// (currently there can be only one; we don't check or require that here).
999 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool isCond)1000 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1001 MachineBasicBlock *DestB,
1002 bool isCond) {
1003 // The values of DestA and DestB frequently come from a call to the
1004 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1005 // values from there.
1006 //
1007 // 1. If both DestA and DestB are null, then the block ends with no branches
1008 // (it falls through to its successor).
1009 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
1010 // with only an unconditional branch.
1011 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
1012 // with a conditional branch that falls through to a successor (DestB).
1013 // 4. If DestA and DestB is set and isCond is true, then the block ends with a
1014 // conditional branch followed by an unconditional branch. DestA is the
1015 // 'true' destination and DestB is the 'false' destination.
1016
1017 bool Changed = false;
1018
1019 MachineFunction::iterator FallThru =
1020 llvm::next(MachineFunction::iterator(this));
1021
1022 if (DestA == 0 && DestB == 0) {
1023 // Block falls through to successor.
1024 DestA = FallThru;
1025 DestB = FallThru;
1026 } else if (DestA != 0 && DestB == 0) {
1027 if (isCond)
1028 // Block ends in conditional jump that falls through to successor.
1029 DestB = FallThru;
1030 } else {
1031 assert(DestA && DestB && isCond &&
1032 "CFG in a bad state. Cannot correct CFG edges");
1033 }
1034
1035 // Remove superfluous edges. I.e., those which aren't destinations of this
1036 // basic block, duplicate edges, or landing pads.
1037 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1038 MachineBasicBlock::succ_iterator SI = succ_begin();
1039 while (SI != succ_end()) {
1040 const MachineBasicBlock *MBB = *SI;
1041 if (!SeenMBBs.insert(MBB) ||
1042 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
1043 // This is a superfluous edge, remove it.
1044 SI = removeSuccessor(SI);
1045 Changed = true;
1046 } else {
1047 ++SI;
1048 }
1049 }
1050
1051 return Changed;
1052 }
1053
1054 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
1055 /// any DBG_VALUE instructions. Return UnknownLoc if there is none.
1056 DebugLoc
findDebugLoc(instr_iterator MBBI)1057 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1058 DebugLoc DL;
1059 instr_iterator E = instr_end();
1060 if (MBBI == E)
1061 return DL;
1062
1063 // Skip debug declarations, we don't want a DebugLoc from them.
1064 while (MBBI != E && MBBI->isDebugValue())
1065 MBBI++;
1066 if (MBBI != E)
1067 DL = MBBI->getDebugLoc();
1068 return DL;
1069 }
1070
1071 /// getSuccWeight - Return weight of the edge from this block to MBB.
1072 ///
getSuccWeight(const_succ_iterator Succ) const1073 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
1074 if (Weights.empty())
1075 return 0;
1076
1077 return *getWeightIterator(Succ);
1078 }
1079
1080 /// getWeightIterator - Return wight iterator corresonding to the I successor
1081 /// iterator
1082 MachineBasicBlock::weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::succ_iterator I)1083 getWeightIterator(MachineBasicBlock::succ_iterator I) {
1084 assert(Weights.size() == Successors.size() && "Async weight list!");
1085 size_t index = std::distance(Successors.begin(), I);
1086 assert(index < Weights.size() && "Not a current successor!");
1087 return Weights.begin() + index;
1088 }
1089
1090 /// getWeightIterator - Return wight iterator corresonding to the I successor
1091 /// iterator
1092 MachineBasicBlock::const_weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::const_succ_iterator I) const1093 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
1094 assert(Weights.size() == Successors.size() && "Async weight list!");
1095 const size_t index = std::distance(Successors.begin(), I);
1096 assert(index < Weights.size() && "Not a current successor!");
1097 return Weights.begin() + index;
1098 }
1099
1100 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1101 /// as of just before "MI".
1102 ///
1103 /// Search is localised to a neighborhood of
1104 /// Neighborhood instructions before (searching for defs or kills) and N
1105 /// instructions after (searching just for defs) MI.
1106 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,MachineInstr * MI,unsigned Neighborhood)1107 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1108 unsigned Reg, MachineInstr *MI,
1109 unsigned Neighborhood) {
1110 unsigned N = Neighborhood;
1111 MachineBasicBlock *MBB = MI->getParent();
1112
1113 // Start by searching backwards from MI, looking for kills, reads or defs.
1114
1115 MachineBasicBlock::iterator I(MI);
1116 // If this is the first insn in the block, don't search backwards.
1117 if (I != MBB->begin()) {
1118 do {
1119 --I;
1120
1121 MachineOperandIteratorBase::PhysRegInfo Analysis =
1122 MIOperands(I).analyzePhysReg(Reg, TRI);
1123
1124 if (Analysis.Defines)
1125 // Outputs happen after inputs so they take precedence if both are
1126 // present.
1127 return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
1128
1129 if (Analysis.Kills || Analysis.Clobbers)
1130 // Register killed, so isn't live.
1131 return LQR_Dead;
1132
1133 else if (Analysis.ReadsOverlap)
1134 // Defined or read without a previous kill - live.
1135 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
1136
1137 } while (I != MBB->begin() && --N > 0);
1138 }
1139
1140 // Did we get to the start of the block?
1141 if (I == MBB->begin()) {
1142 // If so, the register's state is definitely defined by the live-in state.
1143 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
1144 RAI.isValid(); ++RAI) {
1145 if (MBB->isLiveIn(*RAI))
1146 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
1147 }
1148
1149 return LQR_Dead;
1150 }
1151
1152 N = Neighborhood;
1153
1154 // Try searching forwards from MI, looking for reads or defs.
1155 I = MachineBasicBlock::iterator(MI);
1156 // If this is the last insn in the block, don't search forwards.
1157 if (I != MBB->end()) {
1158 for (++I; I != MBB->end() && N > 0; ++I, --N) {
1159 MachineOperandIteratorBase::PhysRegInfo Analysis =
1160 MIOperands(I).analyzePhysReg(Reg, TRI);
1161
1162 if (Analysis.ReadsOverlap)
1163 // Used, therefore must have been live.
1164 return (Analysis.Reads) ?
1165 LQR_Live : LQR_OverlappingLive;
1166
1167 else if (Analysis.Clobbers || Analysis.Defines)
1168 // Defined (but not read) therefore cannot have been live.
1169 return LQR_Dead;
1170 }
1171 }
1172
1173 // At this point we have no idea of the liveness of the register.
1174 return LQR_Unknown;
1175 }
1176
WriteAsOperand(raw_ostream & OS,const MachineBasicBlock * MBB,bool t)1177 void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
1178 bool t) {
1179 OS << "BB#" << MBB->getNumber();
1180 }
1181
1182