• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Assembly/Writer.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/Support/CFG.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include <algorithm>
32 using namespace llvm;
33 
34 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
35 template class llvm::LoopBase<BasicBlock, Loop>;
36 template class llvm::LoopInfoBase<BasicBlock, Loop>;
37 
38 // Always verify loopinfo if expensive checking is enabled.
39 #ifdef XDEBUG
40 static bool VerifyLoopInfo = true;
41 #else
42 static bool VerifyLoopInfo = false;
43 #endif
44 static cl::opt<bool,true>
45 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
46                 cl::desc("Verify loop info (time consuming)"));
47 
48 char LoopInfo::ID = 0;
49 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)50 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
51 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
52 
53 //===----------------------------------------------------------------------===//
54 // Loop implementation
55 //
56 
57 /// isLoopInvariant - Return true if the specified value is loop invariant
58 ///
59 bool Loop::isLoopInvariant(Value *V) const {
60   if (Instruction *I = dyn_cast<Instruction>(V))
61     return !contains(I);
62   return true;  // All non-instructions are loop invariant
63 }
64 
65 /// hasLoopInvariantOperands - Return true if all the operands of the
66 /// specified instruction are loop invariant.
hasLoopInvariantOperands(Instruction * I) const67 bool Loop::hasLoopInvariantOperands(Instruction *I) const {
68   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
69     if (!isLoopInvariant(I->getOperand(i)))
70       return false;
71 
72   return true;
73 }
74 
75 /// makeLoopInvariant - If the given value is an instruciton inside of the
76 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
77 /// Return true if the value after any hoisting is loop invariant. This
78 /// function can be used as a slightly more aggressive replacement for
79 /// isLoopInvariant.
80 ///
81 /// If InsertPt is specified, it is the point to hoist instructions to.
82 /// If null, the terminator of the loop preheader is used.
83 ///
makeLoopInvariant(Value * V,bool & Changed,Instruction * InsertPt) const84 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
85                              Instruction *InsertPt) const {
86   if (Instruction *I = dyn_cast<Instruction>(V))
87     return makeLoopInvariant(I, Changed, InsertPt);
88   return true;  // All non-instructions are loop-invariant.
89 }
90 
91 /// makeLoopInvariant - If the given instruction is inside of the
92 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
93 /// Return true if the instruction after any hoisting is loop invariant. This
94 /// function can be used as a slightly more aggressive replacement for
95 /// isLoopInvariant.
96 ///
97 /// If InsertPt is specified, it is the point to hoist instructions to.
98 /// If null, the terminator of the loop preheader is used.
99 ///
makeLoopInvariant(Instruction * I,bool & Changed,Instruction * InsertPt) const100 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
101                              Instruction *InsertPt) const {
102   // Test if the value is already loop-invariant.
103   if (isLoopInvariant(I))
104     return true;
105   if (!isSafeToSpeculativelyExecute(I))
106     return false;
107   if (I->mayReadFromMemory())
108     return false;
109   // The landingpad instruction is immobile.
110   if (isa<LandingPadInst>(I))
111     return false;
112   // Determine the insertion point, unless one was given.
113   if (!InsertPt) {
114     BasicBlock *Preheader = getLoopPreheader();
115     // Without a preheader, hoisting is not feasible.
116     if (!Preheader)
117       return false;
118     InsertPt = Preheader->getTerminator();
119   }
120   // Don't hoist instructions with loop-variant operands.
121   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
122     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
123       return false;
124 
125   // Hoist.
126   I->moveBefore(InsertPt);
127   Changed = true;
128   return true;
129 }
130 
131 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
132 /// induction variable: an integer recurrence that starts at 0 and increments
133 /// by one each time through the loop.  If so, return the phi node that
134 /// corresponds to it.
135 ///
136 /// The IndVarSimplify pass transforms loops to have a canonical induction
137 /// variable.
138 ///
getCanonicalInductionVariable() const139 PHINode *Loop::getCanonicalInductionVariable() const {
140   BasicBlock *H = getHeader();
141 
142   BasicBlock *Incoming = 0, *Backedge = 0;
143   pred_iterator PI = pred_begin(H);
144   assert(PI != pred_end(H) &&
145          "Loop must have at least one backedge!");
146   Backedge = *PI++;
147   if (PI == pred_end(H)) return 0;  // dead loop
148   Incoming = *PI++;
149   if (PI != pred_end(H)) return 0;  // multiple backedges?
150 
151   if (contains(Incoming)) {
152     if (contains(Backedge))
153       return 0;
154     std::swap(Incoming, Backedge);
155   } else if (!contains(Backedge))
156     return 0;
157 
158   // Loop over all of the PHI nodes, looking for a canonical indvar.
159   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
160     PHINode *PN = cast<PHINode>(I);
161     if (ConstantInt *CI =
162         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
163       if (CI->isNullValue())
164         if (Instruction *Inc =
165             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
166           if (Inc->getOpcode() == Instruction::Add &&
167                 Inc->getOperand(0) == PN)
168             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
169               if (CI->equalsInt(1))
170                 return PN;
171   }
172   return 0;
173 }
174 
175 /// isLCSSAForm - Return true if the Loop is in LCSSA form
isLCSSAForm(DominatorTree & DT) const176 bool Loop::isLCSSAForm(DominatorTree &DT) const {
177   // Sort the blocks vector so that we can use binary search to do quick
178   // lookups.
179   SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
180 
181   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
182     BasicBlock *BB = *BI;
183     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
184       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
185            ++UI) {
186         User *U = *UI;
187         BasicBlock *UserBB = cast<Instruction>(U)->getParent();
188         if (PHINode *P = dyn_cast<PHINode>(U))
189           UserBB = P->getIncomingBlock(UI);
190 
191         // Check the current block, as a fast-path, before checking whether
192         // the use is anywhere in the loop.  Most values are used in the same
193         // block they are defined in.  Also, blocks not reachable from the
194         // entry are special; uses in them don't need to go through PHIs.
195         if (UserBB != BB &&
196             !LoopBBs.count(UserBB) &&
197             DT.isReachableFromEntry(UserBB))
198           return false;
199       }
200   }
201 
202   return true;
203 }
204 
205 /// isLoopSimplifyForm - Return true if the Loop is in the form that
206 /// the LoopSimplify form transforms loops to, which is sometimes called
207 /// normal form.
isLoopSimplifyForm() const208 bool Loop::isLoopSimplifyForm() const {
209   // Normal-form loops have a preheader, a single backedge, and all of their
210   // exits have all their predecessors inside the loop.
211   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
212 }
213 
214 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
215 /// Routines that reform the loop CFG and split edges often fail on indirectbr.
isSafeToClone() const216 bool Loop::isSafeToClone() const {
217   // Return false if any loop blocks contain indirectbrs, or there are any calls
218   // to noduplicate functions.
219   for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
220     if (isa<IndirectBrInst>((*I)->getTerminator())) {
221       return false;
222     } else if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) {
223       if (II->hasFnAttr(Attribute::NoDuplicate))
224         return false;
225     }
226 
227     for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
228       if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
229         if (CI->hasFnAttr(Attribute::NoDuplicate))
230           return false;
231       }
232     }
233   }
234   return true;
235 }
236 
isAnnotatedParallel() const237 bool Loop::isAnnotatedParallel() const {
238 
239   BasicBlock *latch = getLoopLatch();
240   if (latch == NULL)
241     return false;
242 
243   MDNode *desiredLoopIdMetadata =
244     latch->getTerminator()->getMetadata("llvm.loop.parallel");
245 
246   if (!desiredLoopIdMetadata)
247       return false;
248 
249   // The loop branch contains the parallel loop metadata. In order to ensure
250   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
251   // dependencies (thus converted the loop back to a sequential loop), check
252   // that all the memory instructions in the loop contain parallelism metadata
253   // that point to the same unique "loop id metadata" the loop branch does.
254   for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
255     for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
256          II != EE; II++) {
257 
258       if (!II->mayReadOrWriteMemory())
259         continue;
260 
261       if (!II->getMetadata("llvm.mem.parallel_loop_access"))
262         return false;
263 
264       // The memory instruction can refer to the loop identifier metadata
265       // directly or indirectly through another list metadata (in case of
266       // nested parallel loops). The loop identifier metadata refers to
267       // itself so we can check both cases with the same routine.
268       MDNode *loopIdMD =
269           dyn_cast<MDNode>(II->getMetadata("llvm.mem.parallel_loop_access"));
270       bool loopIdMDFound = false;
271       for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
272         if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
273           loopIdMDFound = true;
274           break;
275         }
276       }
277 
278       if (!loopIdMDFound)
279         return false;
280     }
281   }
282   return true;
283 }
284 
285 
286 /// hasDedicatedExits - Return true if no exit block for the loop
287 /// has a predecessor that is outside the loop.
hasDedicatedExits() const288 bool Loop::hasDedicatedExits() const {
289   // Sort the blocks vector so that we can use binary search to do quick
290   // lookups.
291   SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
292   // Each predecessor of each exit block of a normal loop is contained
293   // within the loop.
294   SmallVector<BasicBlock *, 4> ExitBlocks;
295   getExitBlocks(ExitBlocks);
296   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
297     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
298          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
299       if (!LoopBBs.count(*PI))
300         return false;
301   // All the requirements are met.
302   return true;
303 }
304 
305 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
306 /// These are the blocks _outside of the current loop_ which are branched to.
307 /// This assumes that loop exits are in canonical form.
308 ///
309 void
getUniqueExitBlocks(SmallVectorImpl<BasicBlock * > & ExitBlocks) const310 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
311   assert(hasDedicatedExits() &&
312          "getUniqueExitBlocks assumes the loop has canonical form exits!");
313 
314   // Sort the blocks vector so that we can use binary search to do quick
315   // lookups.
316   SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
317   std::sort(LoopBBs.begin(), LoopBBs.end());
318 
319   SmallVector<BasicBlock *, 32> switchExitBlocks;
320 
321   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
322 
323     BasicBlock *current = *BI;
324     switchExitBlocks.clear();
325 
326     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
327       // If block is inside the loop then it is not a exit block.
328       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
329         continue;
330 
331       pred_iterator PI = pred_begin(*I);
332       BasicBlock *firstPred = *PI;
333 
334       // If current basic block is this exit block's first predecessor
335       // then only insert exit block in to the output ExitBlocks vector.
336       // This ensures that same exit block is not inserted twice into
337       // ExitBlocks vector.
338       if (current != firstPred)
339         continue;
340 
341       // If a terminator has more then two successors, for example SwitchInst,
342       // then it is possible that there are multiple edges from current block
343       // to one exit block.
344       if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
345         ExitBlocks.push_back(*I);
346         continue;
347       }
348 
349       // In case of multiple edges from current block to exit block, collect
350       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
351       // duplicate edges.
352       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
353           == switchExitBlocks.end()) {
354         switchExitBlocks.push_back(*I);
355         ExitBlocks.push_back(*I);
356       }
357     }
358   }
359 }
360 
361 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
362 /// block, return that block. Otherwise return null.
getUniqueExitBlock() const363 BasicBlock *Loop::getUniqueExitBlock() const {
364   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
365   getUniqueExitBlocks(UniqueExitBlocks);
366   if (UniqueExitBlocks.size() == 1)
367     return UniqueExitBlocks[0];
368   return 0;
369 }
370 
371 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const372 void Loop::dump() const {
373   print(dbgs());
374 }
375 #endif
376 
377 //===----------------------------------------------------------------------===//
378 // UnloopUpdater implementation
379 //
380 
381 namespace {
382 /// Find the new parent loop for all blocks within the "unloop" whose last
383 /// backedges has just been removed.
384 class UnloopUpdater {
385   Loop *Unloop;
386   LoopInfo *LI;
387 
388   LoopBlocksDFS DFS;
389 
390   // Map unloop's immediate subloops to their nearest reachable parents. Nested
391   // loops within these subloops will not change parents. However, an immediate
392   // subloop's new parent will be the nearest loop reachable from either its own
393   // exits *or* any of its nested loop's exits.
394   DenseMap<Loop*, Loop*> SubloopParents;
395 
396   // Flag the presence of an irreducible backedge whose destination is a block
397   // directly contained by the original unloop.
398   bool FoundIB;
399 
400 public:
UnloopUpdater(Loop * UL,LoopInfo * LInfo)401   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
402     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
403 
404   void updateBlockParents();
405 
406   void removeBlocksFromAncestors();
407 
408   void updateSubloopParents();
409 
410 protected:
411   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
412 };
413 } // end anonymous namespace
414 
415 /// updateBlockParents - Update the parent loop for all blocks that are directly
416 /// contained within the original "unloop".
updateBlockParents()417 void UnloopUpdater::updateBlockParents() {
418   if (Unloop->getNumBlocks()) {
419     // Perform a post order CFG traversal of all blocks within this loop,
420     // propagating the nearest loop from sucessors to predecessors.
421     LoopBlocksTraversal Traversal(DFS, LI);
422     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
423            POE = Traversal.end(); POI != POE; ++POI) {
424 
425       Loop *L = LI->getLoopFor(*POI);
426       Loop *NL = getNearestLoop(*POI, L);
427 
428       if (NL != L) {
429         // For reducible loops, NL is now an ancestor of Unloop.
430         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
431                "uninitialized successor");
432         LI->changeLoopFor(*POI, NL);
433       }
434       else {
435         // Or the current block is part of a subloop, in which case its parent
436         // is unchanged.
437         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
438       }
439     }
440   }
441   // Each irreducible loop within the unloop induces a round of iteration using
442   // the DFS result cached by Traversal.
443   bool Changed = FoundIB;
444   for (unsigned NIters = 0; Changed; ++NIters) {
445     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
446 
447     // Iterate over the postorder list of blocks, propagating the nearest loop
448     // from successors to predecessors as before.
449     Changed = false;
450     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
451            POE = DFS.endPostorder(); POI != POE; ++POI) {
452 
453       Loop *L = LI->getLoopFor(*POI);
454       Loop *NL = getNearestLoop(*POI, L);
455       if (NL != L) {
456         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
457                "uninitialized successor");
458         LI->changeLoopFor(*POI, NL);
459         Changed = true;
460       }
461     }
462   }
463 }
464 
465 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
466 /// their new parents.
removeBlocksFromAncestors()467 void UnloopUpdater::removeBlocksFromAncestors() {
468   // Remove all unloop's blocks (including those in nested subloops) from
469   // ancestors below the new parent loop.
470   for (Loop::block_iterator BI = Unloop->block_begin(),
471          BE = Unloop->block_end(); BI != BE; ++BI) {
472     Loop *OuterParent = LI->getLoopFor(*BI);
473     if (Unloop->contains(OuterParent)) {
474       while (OuterParent->getParentLoop() != Unloop)
475         OuterParent = OuterParent->getParentLoop();
476       OuterParent = SubloopParents[OuterParent];
477     }
478     // Remove blocks from former Ancestors except Unloop itself which will be
479     // deleted.
480     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
481          OldParent = OldParent->getParentLoop()) {
482       assert(OldParent && "new loop is not an ancestor of the original");
483       OldParent->removeBlockFromLoop(*BI);
484     }
485   }
486 }
487 
488 /// updateSubloopParents - Update the parent loop for all subloops directly
489 /// nested within unloop.
updateSubloopParents()490 void UnloopUpdater::updateSubloopParents() {
491   while (!Unloop->empty()) {
492     Loop *Subloop = *llvm::prior(Unloop->end());
493     Unloop->removeChildLoop(llvm::prior(Unloop->end()));
494 
495     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
496     if (Loop *Parent = SubloopParents[Subloop])
497       Parent->addChildLoop(Subloop);
498     else
499       LI->addTopLevelLoop(Subloop);
500   }
501 }
502 
503 /// getNearestLoop - Return the nearest parent loop among this block's
504 /// successors. If a successor is a subloop header, consider its parent to be
505 /// the nearest parent of the subloop's exits.
506 ///
507 /// For subloop blocks, simply update SubloopParents and return NULL.
getNearestLoop(BasicBlock * BB,Loop * BBLoop)508 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
509 
510   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
511   // is considered uninitialized.
512   Loop *NearLoop = BBLoop;
513 
514   Loop *Subloop = 0;
515   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
516     Subloop = NearLoop;
517     // Find the subloop ancestor that is directly contained within Unloop.
518     while (Subloop->getParentLoop() != Unloop) {
519       Subloop = Subloop->getParentLoop();
520       assert(Subloop && "subloop is not an ancestor of the original loop");
521     }
522     // Get the current nearest parent of the Subloop exits, initially Unloop.
523     NearLoop =
524       SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
525   }
526 
527   succ_iterator I = succ_begin(BB), E = succ_end(BB);
528   if (I == E) {
529     assert(!Subloop && "subloop blocks must have a successor");
530     NearLoop = 0; // unloop blocks may now exit the function.
531   }
532   for (; I != E; ++I) {
533     if (*I == BB)
534       continue; // self loops are uninteresting
535 
536     Loop *L = LI->getLoopFor(*I);
537     if (L == Unloop) {
538       // This successor has not been processed. This path must lead to an
539       // irreducible backedge.
540       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
541       FoundIB = true;
542     }
543     if (L != Unloop && Unloop->contains(L)) {
544       // Successor is in a subloop.
545       if (Subloop)
546         continue; // Branching within subloops. Ignore it.
547 
548       // BB branches from the original into a subloop header.
549       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
550 
551       // Get the current nearest parent of the Subloop's exits.
552       L = SubloopParents[L];
553       // L could be Unloop if the only exit was an irreducible backedge.
554     }
555     if (L == Unloop) {
556       continue;
557     }
558     // Handle critical edges from Unloop into a sibling loop.
559     if (L && !L->contains(Unloop)) {
560       L = L->getParentLoop();
561     }
562     // Remember the nearest parent loop among successors or subloop exits.
563     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
564       NearLoop = L;
565   }
566   if (Subloop) {
567     SubloopParents[Subloop] = NearLoop;
568     return BBLoop;
569   }
570   return NearLoop;
571 }
572 
573 //===----------------------------------------------------------------------===//
574 // LoopInfo implementation
575 //
runOnFunction(Function &)576 bool LoopInfo::runOnFunction(Function &) {
577   releaseMemory();
578   LI.Analyze(getAnalysis<DominatorTree>().getBase());
579   return false;
580 }
581 
582 /// updateUnloop - The last backedge has been removed from a loop--now the
583 /// "unloop". Find a new parent for the blocks contained within unloop and
584 /// update the loop tree. We don't necessarily have valid dominators at this
585 /// point, but LoopInfo is still valid except for the removal of this loop.
586 ///
587 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
588 /// checking first is illegal.
updateUnloop(Loop * Unloop)589 void LoopInfo::updateUnloop(Loop *Unloop) {
590 
591   // First handle the special case of no parent loop to simplify the algorithm.
592   if (!Unloop->getParentLoop()) {
593     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
594     for (Loop::block_iterator I = Unloop->block_begin(),
595          E = Unloop->block_end(); I != E; ++I) {
596 
597       // Don't reparent blocks in subloops.
598       if (getLoopFor(*I) != Unloop)
599         continue;
600 
601       // Blocks no longer have a parent but are still referenced by Unloop until
602       // the Unloop object is deleted.
603       LI.changeLoopFor(*I, 0);
604     }
605 
606     // Remove the loop from the top-level LoopInfo object.
607     for (LoopInfo::iterator I = LI.begin();; ++I) {
608       assert(I != LI.end() && "Couldn't find loop");
609       if (*I == Unloop) {
610         LI.removeLoop(I);
611         break;
612       }
613     }
614 
615     // Move all of the subloops to the top-level.
616     while (!Unloop->empty())
617       LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
618 
619     return;
620   }
621 
622   // Update the parent loop for all blocks within the loop. Blocks within
623   // subloops will not change parents.
624   UnloopUpdater Updater(Unloop, this);
625   Updater.updateBlockParents();
626 
627   // Remove blocks from former ancestor loops.
628   Updater.removeBlocksFromAncestors();
629 
630   // Add direct subloops as children in their new parent loop.
631   Updater.updateSubloopParents();
632 
633   // Remove unloop from its parent loop.
634   Loop *ParentLoop = Unloop->getParentLoop();
635   for (Loop::iterator I = ParentLoop->begin();; ++I) {
636     assert(I != ParentLoop->end() && "Couldn't find loop");
637     if (*I == Unloop) {
638       ParentLoop->removeChildLoop(I);
639       break;
640     }
641   }
642 }
643 
verifyAnalysis() const644 void LoopInfo::verifyAnalysis() const {
645   // LoopInfo is a FunctionPass, but verifying every loop in the function
646   // each time verifyAnalysis is called is very expensive. The
647   // -verify-loop-info option can enable this. In order to perform some
648   // checking by default, LoopPass has been taught to call verifyLoop
649   // manually during loop pass sequences.
650 
651   if (!VerifyLoopInfo) return;
652 
653   DenseSet<const Loop*> Loops;
654   for (iterator I = begin(), E = end(); I != E; ++I) {
655     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
656     (*I)->verifyLoopNest(&Loops);
657   }
658 
659   // Verify that blocks are mapped to valid loops.
660   for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
661          E = LI.BBMap.end(); I != E; ++I) {
662     assert(Loops.count(I->second) && "orphaned loop");
663     assert(I->second->contains(I->first) && "orphaned block");
664   }
665 }
666 
getAnalysisUsage(AnalysisUsage & AU) const667 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
668   AU.setPreservesAll();
669   AU.addRequired<DominatorTree>();
670 }
671 
print(raw_ostream & OS,const Module *) const672 void LoopInfo::print(raw_ostream &OS, const Module*) const {
673   LI.print(OS);
674 }
675 
676 //===----------------------------------------------------------------------===//
677 // LoopBlocksDFS implementation
678 //
679 
680 /// Traverse the loop blocks and store the DFS result.
681 /// Useful for clients that just want the final DFS result and don't need to
682 /// visit blocks during the initial traversal.
perform(LoopInfo * LI)683 void LoopBlocksDFS::perform(LoopInfo *LI) {
684   LoopBlocksTraversal Traversal(*this, LI);
685   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
686          POE = Traversal.end(); POI != POE; ++POI) ;
687 }
688