1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * All landingpad instructions must use the same personality function with
43 // the same function.
44 // * All other things that are tested by asserts spread about the code...
45 //
46 //===----------------------------------------------------------------------===//
47
48 #include "llvm/Analysis/Verifier.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/Analysis/Dominators.h"
55 #include "llvm/Assembly/Writer.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/InstVisitor.h"
65 #include "llvm/Pass.h"
66 #include "llvm/PassManager.h"
67 #include "llvm/Support/CFG.h"
68 #include "llvm/Support/CallSite.h"
69 #include "llvm/Support/ConstantRange.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cstdarg>
75 using namespace llvm;
76
77 namespace { // Anonymous namespace for class
78 struct PreVerifier : public FunctionPass {
79 static char ID; // Pass ID, replacement for typeid
80
PreVerifier__anon36e1823e0111::PreVerifier81 PreVerifier() : FunctionPass(ID) {
82 initializePreVerifierPass(*PassRegistry::getPassRegistry());
83 }
84
getAnalysisUsage__anon36e1823e0111::PreVerifier85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86 AU.setPreservesAll();
87 }
88
89 // Check that the prerequisites for successful DominatorTree construction
90 // are satisfied.
runOnFunction__anon36e1823e0111::PreVerifier91 bool runOnFunction(Function &F) {
92 bool Broken = false;
93
94 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
95 if (I->empty() || !I->back().isTerminator()) {
96 dbgs() << "Basic Block in function '" << F.getName()
97 << "' does not have terminator!\n";
98 WriteAsOperand(dbgs(), I, true);
99 dbgs() << "\n";
100 Broken = true;
101 }
102 }
103
104 if (Broken)
105 report_fatal_error("Broken module, no Basic Block terminator!");
106
107 return false;
108 }
109 };
110 }
111
112 char PreVerifier::ID = 0;
113 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
114 false, false)
115 static char &PreVerifyID = PreVerifier::ID;
116
117 namespace {
118 struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
119 static char ID; // Pass ID, replacement for typeid
120 bool Broken; // Is this module found to be broken?
121 VerifierFailureAction action;
122 // What to do if verification fails.
123 Module *Mod; // Module we are verifying right now
124 LLVMContext *Context; // Context within which we are verifying
125 DominatorTree *DT; // Dominator Tree, caution can be null!
126
127 std::string Messages;
128 raw_string_ostream MessagesStr;
129
130 /// InstInThisBlock - when verifying a basic block, keep track of all of the
131 /// instructions we have seen so far. This allows us to do efficient
132 /// dominance checks for the case when an instruction has an operand that is
133 /// an instruction in the same block.
134 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
135
136 /// MDNodes - keep track of the metadata nodes that have been checked
137 /// already.
138 SmallPtrSet<MDNode *, 32> MDNodes;
139
140 /// PersonalityFn - The personality function referenced by the
141 /// LandingPadInsts. All LandingPadInsts within the same function must use
142 /// the same personality function.
143 const Value *PersonalityFn;
144
Verifier__anon36e1823e0211::Verifier145 Verifier()
146 : FunctionPass(ID), Broken(false),
147 action(AbortProcessAction), Mod(0), Context(0), DT(0),
148 MessagesStr(Messages), PersonalityFn(0) {
149 initializeVerifierPass(*PassRegistry::getPassRegistry());
150 }
Verifier__anon36e1823e0211::Verifier151 explicit Verifier(VerifierFailureAction ctn)
152 : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
153 Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
154 initializeVerifierPass(*PassRegistry::getPassRegistry());
155 }
156
doInitialization__anon36e1823e0211::Verifier157 bool doInitialization(Module &M) {
158 Mod = &M;
159 Context = &M.getContext();
160
161 // We must abort before returning back to the pass manager, or else the
162 // pass manager may try to run other passes on the broken module.
163 return abortIfBroken();
164 }
165
runOnFunction__anon36e1823e0211::Verifier166 bool runOnFunction(Function &F) {
167 // Get dominator information if we are being run by PassManager
168 DT = &getAnalysis<DominatorTree>();
169
170 Mod = F.getParent();
171 if (!Context) Context = &F.getContext();
172
173 visit(F);
174 InstsInThisBlock.clear();
175 PersonalityFn = 0;
176
177 // We must abort before returning back to the pass manager, or else the
178 // pass manager may try to run other passes on the broken module.
179 return abortIfBroken();
180 }
181
doFinalization__anon36e1823e0211::Verifier182 bool doFinalization(Module &M) {
183 // Scan through, checking all of the external function's linkage now...
184 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
185 visitGlobalValue(*I);
186
187 // Check to make sure function prototypes are okay.
188 if (I->isDeclaration()) visitFunction(*I);
189 }
190
191 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
192 I != E; ++I)
193 visitGlobalVariable(*I);
194
195 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
196 I != E; ++I)
197 visitGlobalAlias(*I);
198
199 for (Module::named_metadata_iterator I = M.named_metadata_begin(),
200 E = M.named_metadata_end(); I != E; ++I)
201 visitNamedMDNode(*I);
202
203 visitModuleFlags(M);
204
205 // If the module is broken, abort at this time.
206 return abortIfBroken();
207 }
208
getAnalysisUsage__anon36e1823e0211::Verifier209 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
210 AU.setPreservesAll();
211 AU.addRequiredID(PreVerifyID);
212 AU.addRequired<DominatorTree>();
213 }
214
215 /// abortIfBroken - If the module is broken and we are supposed to abort on
216 /// this condition, do so.
217 ///
abortIfBroken__anon36e1823e0211::Verifier218 bool abortIfBroken() {
219 if (!Broken) return false;
220 MessagesStr << "Broken module found, ";
221 switch (action) {
222 case AbortProcessAction:
223 MessagesStr << "compilation aborted!\n";
224 dbgs() << MessagesStr.str();
225 // Client should choose different reaction if abort is not desired
226 abort();
227 case PrintMessageAction:
228 MessagesStr << "verification continues.\n";
229 dbgs() << MessagesStr.str();
230 return false;
231 case ReturnStatusAction:
232 MessagesStr << "compilation terminated.\n";
233 return true;
234 }
235 llvm_unreachable("Invalid action");
236 }
237
238
239 // Verification methods...
240 void visitGlobalValue(GlobalValue &GV);
241 void visitGlobalVariable(GlobalVariable &GV);
242 void visitGlobalAlias(GlobalAlias &GA);
243 void visitNamedMDNode(NamedMDNode &NMD);
244 void visitMDNode(MDNode &MD, Function *F);
245 void visitModuleFlags(Module &M);
246 void visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*> &SeenIDs,
247 SmallVectorImpl<MDNode*> &Requirements);
248 void visitFunction(Function &F);
249 void visitBasicBlock(BasicBlock &BB);
250 using InstVisitor<Verifier>::visit;
251
252 void visit(Instruction &I);
253
254 void visitTruncInst(TruncInst &I);
255 void visitZExtInst(ZExtInst &I);
256 void visitSExtInst(SExtInst &I);
257 void visitFPTruncInst(FPTruncInst &I);
258 void visitFPExtInst(FPExtInst &I);
259 void visitFPToUIInst(FPToUIInst &I);
260 void visitFPToSIInst(FPToSIInst &I);
261 void visitUIToFPInst(UIToFPInst &I);
262 void visitSIToFPInst(SIToFPInst &I);
263 void visitIntToPtrInst(IntToPtrInst &I);
264 void visitPtrToIntInst(PtrToIntInst &I);
265 void visitBitCastInst(BitCastInst &I);
266 void visitPHINode(PHINode &PN);
267 void visitBinaryOperator(BinaryOperator &B);
268 void visitICmpInst(ICmpInst &IC);
269 void visitFCmpInst(FCmpInst &FC);
270 void visitExtractElementInst(ExtractElementInst &EI);
271 void visitInsertElementInst(InsertElementInst &EI);
272 void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst__anon36e1823e0211::Verifier273 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
274 void visitCallInst(CallInst &CI);
275 void visitInvokeInst(InvokeInst &II);
276 void visitGetElementPtrInst(GetElementPtrInst &GEP);
277 void visitLoadInst(LoadInst &LI);
278 void visitStoreInst(StoreInst &SI);
279 void verifyDominatesUse(Instruction &I, unsigned i);
280 void visitInstruction(Instruction &I);
281 void visitTerminatorInst(TerminatorInst &I);
282 void visitBranchInst(BranchInst &BI);
283 void visitReturnInst(ReturnInst &RI);
284 void visitSwitchInst(SwitchInst &SI);
285 void visitIndirectBrInst(IndirectBrInst &BI);
286 void visitSelectInst(SelectInst &SI);
287 void visitUserOp1(Instruction &I);
visitUserOp2__anon36e1823e0211::Verifier288 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
289 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
290 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
291 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
292 void visitFenceInst(FenceInst &FI);
293 void visitAllocaInst(AllocaInst &AI);
294 void visitExtractValueInst(ExtractValueInst &EVI);
295 void visitInsertValueInst(InsertValueInst &IVI);
296 void visitLandingPadInst(LandingPadInst &LPI);
297
298 void VerifyCallSite(CallSite CS);
299 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
300 int VT, unsigned ArgNo, std::string &Suffix);
301 bool VerifyIntrinsicType(Type *Ty,
302 ArrayRef<Intrinsic::IITDescriptor> &Infos,
303 SmallVectorImpl<Type*> &ArgTys);
304 void VerifyParameterAttrs(AttributeSet Attrs, uint64_t Idx, Type *Ty,
305 bool isReturnValue, const Value *V);
306 void VerifyFunctionAttrs(FunctionType *FT, const AttributeSet &Attrs,
307 const Value *V);
308
WriteValue__anon36e1823e0211::Verifier309 void WriteValue(const Value *V) {
310 if (!V) return;
311 if (isa<Instruction>(V)) {
312 MessagesStr << *V << '\n';
313 } else {
314 WriteAsOperand(MessagesStr, V, true, Mod);
315 MessagesStr << '\n';
316 }
317 }
318
WriteType__anon36e1823e0211::Verifier319 void WriteType(Type *T) {
320 if (!T) return;
321 MessagesStr << ' ' << *T;
322 }
323
324
325 // CheckFailed - A check failed, so print out the condition and the message
326 // that failed. This provides a nice place to put a breakpoint if you want
327 // to see why something is not correct.
CheckFailed__anon36e1823e0211::Verifier328 void CheckFailed(const Twine &Message,
329 const Value *V1 = 0, const Value *V2 = 0,
330 const Value *V3 = 0, const Value *V4 = 0) {
331 MessagesStr << Message.str() << "\n";
332 WriteValue(V1);
333 WriteValue(V2);
334 WriteValue(V3);
335 WriteValue(V4);
336 Broken = true;
337 }
338
CheckFailed__anon36e1823e0211::Verifier339 void CheckFailed(const Twine &Message, const Value *V1,
340 Type *T2, const Value *V3 = 0) {
341 MessagesStr << Message.str() << "\n";
342 WriteValue(V1);
343 WriteType(T2);
344 WriteValue(V3);
345 Broken = true;
346 }
347
CheckFailed__anon36e1823e0211::Verifier348 void CheckFailed(const Twine &Message, Type *T1,
349 Type *T2 = 0, Type *T3 = 0) {
350 MessagesStr << Message.str() << "\n";
351 WriteType(T1);
352 WriteType(T2);
353 WriteType(T3);
354 Broken = true;
355 }
356 };
357 } // End anonymous namespace
358
359 char Verifier::ID = 0;
360 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
INITIALIZE_PASS_DEPENDENCY(PreVerifier)361 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
362 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
363 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
364
365 // Assert - We know that cond should be true, if not print an error message.
366 #define Assert(C, M) \
367 do { if (!(C)) { CheckFailed(M); return; } } while (0)
368 #define Assert1(C, M, V1) \
369 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
370 #define Assert2(C, M, V1, V2) \
371 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
372 #define Assert3(C, M, V1, V2, V3) \
373 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
374 #define Assert4(C, M, V1, V2, V3, V4) \
375 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
376
377 void Verifier::visit(Instruction &I) {
378 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
379 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
380 InstVisitor<Verifier>::visit(I);
381 }
382
383
visitGlobalValue(GlobalValue & GV)384 void Verifier::visitGlobalValue(GlobalValue &GV) {
385 Assert1(!GV.isDeclaration() ||
386 GV.isMaterializable() ||
387 GV.hasExternalLinkage() ||
388 GV.hasDLLImportLinkage() ||
389 GV.hasExternalWeakLinkage() ||
390 (isa<GlobalAlias>(GV) &&
391 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
392 "Global is external, but doesn't have external or dllimport or weak linkage!",
393 &GV);
394
395 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
396 "Global is marked as dllimport, but not external", &GV);
397
398 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
399 "Only global variables can have appending linkage!", &GV);
400
401 if (GV.hasAppendingLinkage()) {
402 GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
403 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
404 "Only global arrays can have appending linkage!", GVar);
405 }
406
407 Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
408 "linkonce_odr_auto_hide can only have default visibility!",
409 &GV);
410 }
411
visitGlobalVariable(GlobalVariable & GV)412 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
413 if (GV.hasInitializer()) {
414 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
415 "Global variable initializer type does not match global "
416 "variable type!", &GV);
417
418 // If the global has common linkage, it must have a zero initializer and
419 // cannot be constant.
420 if (GV.hasCommonLinkage()) {
421 Assert1(GV.getInitializer()->isNullValue(),
422 "'common' global must have a zero initializer!", &GV);
423 Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
424 &GV);
425 }
426 } else {
427 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
428 GV.hasExternalWeakLinkage(),
429 "invalid linkage type for global declaration", &GV);
430 }
431
432 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
433 GV.getName() == "llvm.global_dtors")) {
434 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
435 "invalid linkage for intrinsic global variable", &GV);
436 // Don't worry about emitting an error for it not being an array,
437 // visitGlobalValue will complain on appending non-array.
438 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
439 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
440 PointerType *FuncPtrTy =
441 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
442 Assert1(STy && STy->getNumElements() == 2 &&
443 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
444 STy->getTypeAtIndex(1) == FuncPtrTy,
445 "wrong type for intrinsic global variable", &GV);
446 }
447 }
448
449 visitGlobalValue(GV);
450 }
451
visitGlobalAlias(GlobalAlias & GA)452 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
453 Assert1(!GA.getName().empty(),
454 "Alias name cannot be empty!", &GA);
455 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
456 GA.hasWeakLinkage(),
457 "Alias should have external or external weak linkage!", &GA);
458 Assert1(GA.getAliasee(),
459 "Aliasee cannot be NULL!", &GA);
460 Assert1(GA.getType() == GA.getAliasee()->getType(),
461 "Alias and aliasee types should match!", &GA);
462 Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
463
464 if (!isa<GlobalValue>(GA.getAliasee())) {
465 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
466 Assert1(CE &&
467 (CE->getOpcode() == Instruction::BitCast ||
468 CE->getOpcode() == Instruction::GetElementPtr) &&
469 isa<GlobalValue>(CE->getOperand(0)),
470 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
471 &GA);
472 }
473
474 const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
475 Assert1(Aliasee,
476 "Aliasing chain should end with function or global variable", &GA);
477
478 visitGlobalValue(GA);
479 }
480
visitNamedMDNode(NamedMDNode & NMD)481 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
482 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
483 MDNode *MD = NMD.getOperand(i);
484 if (!MD)
485 continue;
486
487 Assert1(!MD->isFunctionLocal(),
488 "Named metadata operand cannot be function local!", MD);
489 visitMDNode(*MD, 0);
490 }
491 }
492
visitMDNode(MDNode & MD,Function * F)493 void Verifier::visitMDNode(MDNode &MD, Function *F) {
494 // Only visit each node once. Metadata can be mutually recursive, so this
495 // avoids infinite recursion here, as well as being an optimization.
496 if (!MDNodes.insert(&MD))
497 return;
498
499 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
500 Value *Op = MD.getOperand(i);
501 if (!Op)
502 continue;
503 if (isa<Constant>(Op) || isa<MDString>(Op))
504 continue;
505 if (MDNode *N = dyn_cast<MDNode>(Op)) {
506 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
507 "Global metadata operand cannot be function local!", &MD, N);
508 visitMDNode(*N, F);
509 continue;
510 }
511 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
512
513 // If this was an instruction, bb, or argument, verify that it is in the
514 // function that we expect.
515 Function *ActualF = 0;
516 if (Instruction *I = dyn_cast<Instruction>(Op))
517 ActualF = I->getParent()->getParent();
518 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
519 ActualF = BB->getParent();
520 else if (Argument *A = dyn_cast<Argument>(Op))
521 ActualF = A->getParent();
522 assert(ActualF && "Unimplemented function local metadata case!");
523
524 Assert2(ActualF == F, "function-local metadata used in wrong function",
525 &MD, Op);
526 }
527 }
528
visitModuleFlags(Module & M)529 void Verifier::visitModuleFlags(Module &M) {
530 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
531 if (!Flags) return;
532
533 // Scan each flag, and track the flags and requirements.
534 DenseMap<MDString*, MDNode*> SeenIDs;
535 SmallVector<MDNode*, 16> Requirements;
536 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
537 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
538 }
539
540 // Validate that the requirements in the module are valid.
541 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
542 MDNode *Requirement = Requirements[I];
543 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
544 Value *ReqValue = Requirement->getOperand(1);
545
546 MDNode *Op = SeenIDs.lookup(Flag);
547 if (!Op) {
548 CheckFailed("invalid requirement on flag, flag is not present in module",
549 Flag);
550 continue;
551 }
552
553 if (Op->getOperand(2) != ReqValue) {
554 CheckFailed(("invalid requirement on flag, "
555 "flag does not have the required value"),
556 Flag);
557 continue;
558 }
559 }
560 }
561
visitModuleFlag(MDNode * Op,DenseMap<MDString *,MDNode * > & SeenIDs,SmallVectorImpl<MDNode * > & Requirements)562 void Verifier::visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*>&SeenIDs,
563 SmallVectorImpl<MDNode*> &Requirements) {
564 // Each module flag should have three arguments, the merge behavior (a
565 // constant int), the flag ID (an MDString), and the value.
566 Assert1(Op->getNumOperands() == 3,
567 "incorrect number of operands in module flag", Op);
568 ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
569 MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
570 Assert1(Behavior,
571 "invalid behavior operand in module flag (expected constant integer)",
572 Op->getOperand(0));
573 unsigned BehaviorValue = Behavior->getZExtValue();
574 Assert1(ID,
575 "invalid ID operand in module flag (expected metadata string)",
576 Op->getOperand(1));
577
578 // Sanity check the values for behaviors with additional requirements.
579 switch (BehaviorValue) {
580 default:
581 Assert1(false,
582 "invalid behavior operand in module flag (unexpected constant)",
583 Op->getOperand(0));
584 break;
585
586 case Module::Error:
587 case Module::Warning:
588 case Module::Override:
589 // These behavior types accept any value.
590 break;
591
592 case Module::Require: {
593 // The value should itself be an MDNode with two operands, a flag ID (an
594 // MDString), and a value.
595 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
596 Assert1(Value && Value->getNumOperands() == 2,
597 "invalid value for 'require' module flag (expected metadata pair)",
598 Op->getOperand(2));
599 Assert1(isa<MDString>(Value->getOperand(0)),
600 ("invalid value for 'require' module flag "
601 "(first value operand should be a string)"),
602 Value->getOperand(0));
603
604 // Append it to the list of requirements, to check once all module flags are
605 // scanned.
606 Requirements.push_back(Value);
607 break;
608 }
609
610 case Module::Append:
611 case Module::AppendUnique: {
612 // These behavior types require the operand be an MDNode.
613 Assert1(isa<MDNode>(Op->getOperand(2)),
614 "invalid value for 'append'-type module flag "
615 "(expected a metadata node)", Op->getOperand(2));
616 break;
617 }
618 }
619
620 // Unless this is a "requires" flag, check the ID is unique.
621 if (BehaviorValue != Module::Require) {
622 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
623 Assert1(Inserted,
624 "module flag identifiers must be unique (or of 'require' type)",
625 ID);
626 }
627 }
628
629 // VerifyParameterAttrs - Check the given attributes for an argument or return
630 // value of the specified type. The value V is printed in error messages.
VerifyParameterAttrs(AttributeSet Attrs,uint64_t Idx,Type * Ty,bool isReturnValue,const Value * V)631 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, uint64_t Idx, Type *Ty,
632 bool isReturnValue, const Value *V) {
633 if (!Attrs.hasAttributes(Idx))
634 return;
635
636 Assert1(!Attrs.hasAttribute(Idx, Attribute::NoReturn) &&
637 !Attrs.hasAttribute(Idx, Attribute::NoUnwind) &&
638 !Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
639 !Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
640 !Attrs.hasAttribute(Idx, Attribute::NoInline) &&
641 !Attrs.hasAttribute(Idx, Attribute::AlwaysInline) &&
642 !Attrs.hasAttribute(Idx, Attribute::OptimizeForSize) &&
643 !Attrs.hasAttribute(Idx, Attribute::StackProtect) &&
644 !Attrs.hasAttribute(Idx, Attribute::StackProtectReq) &&
645 !Attrs.hasAttribute(Idx, Attribute::NoRedZone) &&
646 !Attrs.hasAttribute(Idx, Attribute::NoImplicitFloat) &&
647 !Attrs.hasAttribute(Idx, Attribute::Naked) &&
648 !Attrs.hasAttribute(Idx, Attribute::InlineHint) &&
649 !Attrs.hasAttribute(Idx, Attribute::StackAlignment) &&
650 !Attrs.hasAttribute(Idx, Attribute::UWTable) &&
651 !Attrs.hasAttribute(Idx, Attribute::NonLazyBind) &&
652 !Attrs.hasAttribute(Idx, Attribute::ReturnsTwice) &&
653 !Attrs.hasAttribute(Idx, Attribute::SanitizeAddress) &&
654 !Attrs.hasAttribute(Idx, Attribute::SanitizeThread) &&
655 !Attrs.hasAttribute(Idx, Attribute::SanitizeMemory) &&
656 !Attrs.hasAttribute(Idx, Attribute::MinSize) &&
657 !Attrs.hasAttribute(Idx, Attribute::NoBuiltin),
658 "Some attributes in '" + Attrs.getAsString(Idx) +
659 "' only apply to functions!", V);
660
661 if (isReturnValue)
662 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
663 !Attrs.hasAttribute(Idx, Attribute::Nest) &&
664 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
665 !Attrs.hasAttribute(Idx, Attribute::NoCapture),
666 "Attribute 'byval', 'nest', 'sret', and 'nocapture' "
667 "do not apply to return values!", V);
668
669 // Check for mutually incompatible attributes.
670 Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) &&
671 Attrs.hasAttribute(Idx, Attribute::Nest)) ||
672 (Attrs.hasAttribute(Idx, Attribute::ByVal) &&
673 Attrs.hasAttribute(Idx, Attribute::StructRet)) ||
674 (Attrs.hasAttribute(Idx, Attribute::Nest) &&
675 Attrs.hasAttribute(Idx, Attribute::StructRet))), "Attributes "
676 "'byval, nest, and sret' are incompatible!", V);
677
678 Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) &&
679 Attrs.hasAttribute(Idx, Attribute::Nest)) ||
680 (Attrs.hasAttribute(Idx, Attribute::ByVal) &&
681 Attrs.hasAttribute(Idx, Attribute::InReg)) ||
682 (Attrs.hasAttribute(Idx, Attribute::Nest) &&
683 Attrs.hasAttribute(Idx, Attribute::InReg))), "Attributes "
684 "'byval, nest, and inreg' are incompatible!", V);
685
686 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
687 Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
688 "'zeroext and signext' are incompatible!", V);
689
690 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
691 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
692 "'readnone and readonly' are incompatible!", V);
693
694 Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
695 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
696 "'noinline and alwaysinline' are incompatible!", V);
697
698 Assert1(!AttrBuilder(Attrs, Idx).
699 hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
700 "Wrong types for attribute: " +
701 AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
702
703 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
704 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) ||
705 PTy->getElementType()->isSized(),
706 "Attribute 'byval' does not support unsized types!", V);
707 else
708 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
709 "Attribute 'byval' only applies to parameters with pointer type!",
710 V);
711 }
712
713 // VerifyFunctionAttrs - Check parameter attributes against a function type.
714 // The value V is printed in error messages.
VerifyFunctionAttrs(FunctionType * FT,const AttributeSet & Attrs,const Value * V)715 void Verifier::VerifyFunctionAttrs(FunctionType *FT,
716 const AttributeSet &Attrs,
717 const Value *V) {
718 if (Attrs.isEmpty())
719 return;
720
721 bool SawNest = false;
722
723 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
724 unsigned Index = Attrs.getSlotIndex(i);
725
726 Type *Ty;
727 if (Index == 0)
728 Ty = FT->getReturnType();
729 else if (Index-1 < FT->getNumParams())
730 Ty = FT->getParamType(Index-1);
731 else
732 break; // VarArgs attributes, verified elsewhere.
733
734 VerifyParameterAttrs(Attrs, Index, Ty, Index == 0, V);
735
736 if (Attrs.hasAttribute(i, Attribute::Nest)) {
737 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
738 SawNest = true;
739 }
740
741 if (Attrs.hasAttribute(Index, Attribute::StructRet))
742 Assert1(Index == 1, "Attribute sret is not on first parameter!", V);
743 }
744
745 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
746 return;
747
748 AttrBuilder NotFn(Attrs, AttributeSet::FunctionIndex);
749 NotFn.removeFunctionOnlyAttrs();
750 Assert1(NotFn.empty(), "Attributes '" +
751 AttributeSet::get(V->getContext(),
752 AttributeSet::FunctionIndex,
753 NotFn).getAsString(AttributeSet::FunctionIndex) +
754 "' do not apply to the function!", V);
755
756 // Check for mutually incompatible attributes.
757 Assert1(!((Attrs.hasAttribute(AttributeSet::FunctionIndex,
758 Attribute::ByVal) &&
759 Attrs.hasAttribute(AttributeSet::FunctionIndex,
760 Attribute::Nest)) ||
761 (Attrs.hasAttribute(AttributeSet::FunctionIndex,
762 Attribute::ByVal) &&
763 Attrs.hasAttribute(AttributeSet::FunctionIndex,
764 Attribute::StructRet)) ||
765 (Attrs.hasAttribute(AttributeSet::FunctionIndex,
766 Attribute::Nest) &&
767 Attrs.hasAttribute(AttributeSet::FunctionIndex,
768 Attribute::StructRet))),
769 "Attributes 'byval, nest, and sret' are incompatible!", V);
770
771 Assert1(!((Attrs.hasAttribute(AttributeSet::FunctionIndex,
772 Attribute::ByVal) &&
773 Attrs.hasAttribute(AttributeSet::FunctionIndex,
774 Attribute::Nest)) ||
775 (Attrs.hasAttribute(AttributeSet::FunctionIndex,
776 Attribute::ByVal) &&
777 Attrs.hasAttribute(AttributeSet::FunctionIndex,
778 Attribute::InReg)) ||
779 (Attrs.hasAttribute(AttributeSet::FunctionIndex,
780 Attribute::Nest) &&
781 Attrs.hasAttribute(AttributeSet::FunctionIndex,
782 Attribute::InReg))),
783 "Attributes 'byval, nest, and inreg' are incompatible!", V);
784
785 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
786 Attribute::ZExt) &&
787 Attrs.hasAttribute(AttributeSet::FunctionIndex,
788 Attribute::SExt)),
789 "Attributes 'zeroext and signext' are incompatible!", V);
790
791 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
792 Attribute::ReadNone) &&
793 Attrs.hasAttribute(AttributeSet::FunctionIndex,
794 Attribute::ReadOnly)),
795 "Attributes 'readnone and readonly' are incompatible!", V);
796
797 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
798 Attribute::NoInline) &&
799 Attrs.hasAttribute(AttributeSet::FunctionIndex,
800 Attribute::AlwaysInline)),
801 "Attributes 'noinline and alwaysinline' are incompatible!", V);
802 }
803
VerifyAttributeCount(const AttributeSet & Attrs,unsigned Params)804 static bool VerifyAttributeCount(const AttributeSet &Attrs, unsigned Params) {
805 if (Attrs.getNumSlots() == 0)
806 return true;
807
808 unsigned LastSlot = Attrs.getNumSlots() - 1;
809 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
810 if (LastIndex <= Params
811 || (LastIndex == AttributeSet::FunctionIndex
812 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
813 return true;
814
815 return false;
816 }
817
818 // visitFunction - Verify that a function is ok.
819 //
visitFunction(Function & F)820 void Verifier::visitFunction(Function &F) {
821 // Check function arguments.
822 FunctionType *FT = F.getFunctionType();
823 unsigned NumArgs = F.arg_size();
824
825 Assert1(Context == &F.getContext(),
826 "Function context does not match Module context!", &F);
827
828 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
829 Assert2(FT->getNumParams() == NumArgs,
830 "# formal arguments must match # of arguments for function type!",
831 &F, FT);
832 Assert1(F.getReturnType()->isFirstClassType() ||
833 F.getReturnType()->isVoidTy() ||
834 F.getReturnType()->isStructTy(),
835 "Functions cannot return aggregate values!", &F);
836
837 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
838 "Invalid struct return type!", &F);
839
840 const AttributeSet &Attrs = F.getAttributes();
841
842 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
843 "Attribute after last parameter!", &F);
844
845 // Check function attributes.
846 VerifyFunctionAttrs(FT, Attrs, &F);
847
848 // Check that this function meets the restrictions on this calling convention.
849 switch (F.getCallingConv()) {
850 default:
851 break;
852 case CallingConv::C:
853 break;
854 case CallingConv::Fast:
855 case CallingConv::Cold:
856 case CallingConv::X86_FastCall:
857 case CallingConv::X86_ThisCall:
858 case CallingConv::Intel_OCL_BI:
859 case CallingConv::PTX_Kernel:
860 case CallingConv::PTX_Device:
861 Assert1(!F.isVarArg(),
862 "Varargs functions must have C calling conventions!", &F);
863 break;
864 }
865
866 bool isLLVMdotName = F.getName().size() >= 5 &&
867 F.getName().substr(0, 5) == "llvm.";
868
869 // Check that the argument values match the function type for this function...
870 unsigned i = 0;
871 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
872 I != E; ++I, ++i) {
873 Assert2(I->getType() == FT->getParamType(i),
874 "Argument value does not match function argument type!",
875 I, FT->getParamType(i));
876 Assert1(I->getType()->isFirstClassType(),
877 "Function arguments must have first-class types!", I);
878 if (!isLLVMdotName)
879 Assert2(!I->getType()->isMetadataTy(),
880 "Function takes metadata but isn't an intrinsic", I, &F);
881 }
882
883 if (F.isMaterializable()) {
884 // Function has a body somewhere we can't see.
885 } else if (F.isDeclaration()) {
886 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
887 F.hasExternalWeakLinkage(),
888 "invalid linkage type for function declaration", &F);
889 } else {
890 // Verify that this function (which has a body) is not named "llvm.*". It
891 // is not legal to define intrinsics.
892 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
893
894 // Check the entry node
895 BasicBlock *Entry = &F.getEntryBlock();
896 Assert1(pred_begin(Entry) == pred_end(Entry),
897 "Entry block to function must not have predecessors!", Entry);
898
899 // The address of the entry block cannot be taken, unless it is dead.
900 if (Entry->hasAddressTaken()) {
901 Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
902 "blockaddress may not be used with the entry block!", Entry);
903 }
904 }
905
906 // If this function is actually an intrinsic, verify that it is only used in
907 // direct call/invokes, never having its "address taken".
908 if (F.getIntrinsicID()) {
909 const User *U;
910 if (F.hasAddressTaken(&U))
911 Assert1(0, "Invalid user of intrinsic instruction!", U);
912 }
913 }
914
915 // verifyBasicBlock - Verify that a basic block is well formed...
916 //
visitBasicBlock(BasicBlock & BB)917 void Verifier::visitBasicBlock(BasicBlock &BB) {
918 InstsInThisBlock.clear();
919
920 // Ensure that basic blocks have terminators!
921 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
922
923 // Check constraints that this basic block imposes on all of the PHI nodes in
924 // it.
925 if (isa<PHINode>(BB.front())) {
926 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
927 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
928 std::sort(Preds.begin(), Preds.end());
929 PHINode *PN;
930 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
931 // Ensure that PHI nodes have at least one entry!
932 Assert1(PN->getNumIncomingValues() != 0,
933 "PHI nodes must have at least one entry. If the block is dead, "
934 "the PHI should be removed!", PN);
935 Assert1(PN->getNumIncomingValues() == Preds.size(),
936 "PHINode should have one entry for each predecessor of its "
937 "parent basic block!", PN);
938
939 // Get and sort all incoming values in the PHI node...
940 Values.clear();
941 Values.reserve(PN->getNumIncomingValues());
942 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
943 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
944 PN->getIncomingValue(i)));
945 std::sort(Values.begin(), Values.end());
946
947 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
948 // Check to make sure that if there is more than one entry for a
949 // particular basic block in this PHI node, that the incoming values are
950 // all identical.
951 //
952 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
953 Values[i].second == Values[i-1].second,
954 "PHI node has multiple entries for the same basic block with "
955 "different incoming values!", PN, Values[i].first,
956 Values[i].second, Values[i-1].second);
957
958 // Check to make sure that the predecessors and PHI node entries are
959 // matched up.
960 Assert3(Values[i].first == Preds[i],
961 "PHI node entries do not match predecessors!", PN,
962 Values[i].first, Preds[i]);
963 }
964 }
965 }
966 }
967
visitTerminatorInst(TerminatorInst & I)968 void Verifier::visitTerminatorInst(TerminatorInst &I) {
969 // Ensure that terminators only exist at the end of the basic block.
970 Assert1(&I == I.getParent()->getTerminator(),
971 "Terminator found in the middle of a basic block!", I.getParent());
972 visitInstruction(I);
973 }
974
visitBranchInst(BranchInst & BI)975 void Verifier::visitBranchInst(BranchInst &BI) {
976 if (BI.isConditional()) {
977 Assert2(BI.getCondition()->getType()->isIntegerTy(1),
978 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
979 }
980 visitTerminatorInst(BI);
981 }
982
visitReturnInst(ReturnInst & RI)983 void Verifier::visitReturnInst(ReturnInst &RI) {
984 Function *F = RI.getParent()->getParent();
985 unsigned N = RI.getNumOperands();
986 if (F->getReturnType()->isVoidTy())
987 Assert2(N == 0,
988 "Found return instr that returns non-void in Function of void "
989 "return type!", &RI, F->getReturnType());
990 else
991 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
992 "Function return type does not match operand "
993 "type of return inst!", &RI, F->getReturnType());
994
995 // Check to make sure that the return value has necessary properties for
996 // terminators...
997 visitTerminatorInst(RI);
998 }
999
visitSwitchInst(SwitchInst & SI)1000 void Verifier::visitSwitchInst(SwitchInst &SI) {
1001 // Check to make sure that all of the constants in the switch instruction
1002 // have the same type as the switched-on value.
1003 Type *SwitchTy = SI.getCondition()->getType();
1004 IntegerType *IntTy = cast<IntegerType>(SwitchTy);
1005 IntegersSubsetToBB Mapping;
1006 std::map<IntegersSubset::Range, unsigned> RangeSetMap;
1007 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1008 IntegersSubset CaseRanges = i.getCaseValueEx();
1009 for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
1010 IntegersSubset::Range r = CaseRanges.getItem(ri);
1011 Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
1012 "Switch constants must all be same type as switch value!", &SI);
1013 Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
1014 "Switch constants must all be same type as switch value!", &SI);
1015 Mapping.add(r);
1016 RangeSetMap[r] = i.getCaseIndex();
1017 }
1018 }
1019
1020 IntegersSubsetToBB::RangeIterator errItem;
1021 if (!Mapping.verify(errItem)) {
1022 unsigned CaseIndex = RangeSetMap[errItem->first];
1023 SwitchInst::CaseIt i(&SI, CaseIndex);
1024 Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
1025 }
1026
1027 visitTerminatorInst(SI);
1028 }
1029
visitIndirectBrInst(IndirectBrInst & BI)1030 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1031 Assert1(BI.getAddress()->getType()->isPointerTy(),
1032 "Indirectbr operand must have pointer type!", &BI);
1033 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1034 Assert1(BI.getDestination(i)->getType()->isLabelTy(),
1035 "Indirectbr destinations must all have pointer type!", &BI);
1036
1037 visitTerminatorInst(BI);
1038 }
1039
visitSelectInst(SelectInst & SI)1040 void Verifier::visitSelectInst(SelectInst &SI) {
1041 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1042 SI.getOperand(2)),
1043 "Invalid operands for select instruction!", &SI);
1044
1045 Assert1(SI.getTrueValue()->getType() == SI.getType(),
1046 "Select values must have same type as select instruction!", &SI);
1047 visitInstruction(SI);
1048 }
1049
1050 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1051 /// a pass, if any exist, it's an error.
1052 ///
visitUserOp1(Instruction & I)1053 void Verifier::visitUserOp1(Instruction &I) {
1054 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
1055 }
1056
visitTruncInst(TruncInst & I)1057 void Verifier::visitTruncInst(TruncInst &I) {
1058 // Get the source and destination types
1059 Type *SrcTy = I.getOperand(0)->getType();
1060 Type *DestTy = I.getType();
1061
1062 // Get the size of the types in bits, we'll need this later
1063 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1064 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1065
1066 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1067 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1068 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1069 "trunc source and destination must both be a vector or neither", &I);
1070 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
1071
1072 visitInstruction(I);
1073 }
1074
visitZExtInst(ZExtInst & I)1075 void Verifier::visitZExtInst(ZExtInst &I) {
1076 // Get the source and destination types
1077 Type *SrcTy = I.getOperand(0)->getType();
1078 Type *DestTy = I.getType();
1079
1080 // Get the size of the types in bits, we'll need this later
1081 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1082 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1083 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1084 "zext source and destination must both be a vector or neither", &I);
1085 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1086 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1087
1088 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
1089
1090 visitInstruction(I);
1091 }
1092
visitSExtInst(SExtInst & I)1093 void Verifier::visitSExtInst(SExtInst &I) {
1094 // Get the source and destination types
1095 Type *SrcTy = I.getOperand(0)->getType();
1096 Type *DestTy = I.getType();
1097
1098 // Get the size of the types in bits, we'll need this later
1099 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1100 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1101
1102 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1103 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1104 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1105 "sext source and destination must both be a vector or neither", &I);
1106 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
1107
1108 visitInstruction(I);
1109 }
1110
visitFPTruncInst(FPTruncInst & I)1111 void Verifier::visitFPTruncInst(FPTruncInst &I) {
1112 // Get the source and destination types
1113 Type *SrcTy = I.getOperand(0)->getType();
1114 Type *DestTy = I.getType();
1115 // Get the size of the types in bits, we'll need this later
1116 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1117 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1118
1119 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
1120 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
1121 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1122 "fptrunc source and destination must both be a vector or neither",&I);
1123 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
1124
1125 visitInstruction(I);
1126 }
1127
visitFPExtInst(FPExtInst & I)1128 void Verifier::visitFPExtInst(FPExtInst &I) {
1129 // Get the source and destination types
1130 Type *SrcTy = I.getOperand(0)->getType();
1131 Type *DestTy = I.getType();
1132
1133 // Get the size of the types in bits, we'll need this later
1134 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1135 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1136
1137 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
1138 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
1139 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1140 "fpext source and destination must both be a vector or neither", &I);
1141 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
1142
1143 visitInstruction(I);
1144 }
1145
visitUIToFPInst(UIToFPInst & I)1146 void Verifier::visitUIToFPInst(UIToFPInst &I) {
1147 // Get the source and destination types
1148 Type *SrcTy = I.getOperand(0)->getType();
1149 Type *DestTy = I.getType();
1150
1151 bool SrcVec = SrcTy->isVectorTy();
1152 bool DstVec = DestTy->isVectorTy();
1153
1154 Assert1(SrcVec == DstVec,
1155 "UIToFP source and dest must both be vector or scalar", &I);
1156 Assert1(SrcTy->isIntOrIntVectorTy(),
1157 "UIToFP source must be integer or integer vector", &I);
1158 Assert1(DestTy->isFPOrFPVectorTy(),
1159 "UIToFP result must be FP or FP vector", &I);
1160
1161 if (SrcVec && DstVec)
1162 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1163 cast<VectorType>(DestTy)->getNumElements(),
1164 "UIToFP source and dest vector length mismatch", &I);
1165
1166 visitInstruction(I);
1167 }
1168
visitSIToFPInst(SIToFPInst & I)1169 void Verifier::visitSIToFPInst(SIToFPInst &I) {
1170 // Get the source and destination types
1171 Type *SrcTy = I.getOperand(0)->getType();
1172 Type *DestTy = I.getType();
1173
1174 bool SrcVec = SrcTy->isVectorTy();
1175 bool DstVec = DestTy->isVectorTy();
1176
1177 Assert1(SrcVec == DstVec,
1178 "SIToFP source and dest must both be vector or scalar", &I);
1179 Assert1(SrcTy->isIntOrIntVectorTy(),
1180 "SIToFP source must be integer or integer vector", &I);
1181 Assert1(DestTy->isFPOrFPVectorTy(),
1182 "SIToFP result must be FP or FP vector", &I);
1183
1184 if (SrcVec && DstVec)
1185 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1186 cast<VectorType>(DestTy)->getNumElements(),
1187 "SIToFP source and dest vector length mismatch", &I);
1188
1189 visitInstruction(I);
1190 }
1191
visitFPToUIInst(FPToUIInst & I)1192 void Verifier::visitFPToUIInst(FPToUIInst &I) {
1193 // Get the source and destination types
1194 Type *SrcTy = I.getOperand(0)->getType();
1195 Type *DestTy = I.getType();
1196
1197 bool SrcVec = SrcTy->isVectorTy();
1198 bool DstVec = DestTy->isVectorTy();
1199
1200 Assert1(SrcVec == DstVec,
1201 "FPToUI source and dest must both be vector or scalar", &I);
1202 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1203 &I);
1204 Assert1(DestTy->isIntOrIntVectorTy(),
1205 "FPToUI result must be integer or integer vector", &I);
1206
1207 if (SrcVec && DstVec)
1208 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1209 cast<VectorType>(DestTy)->getNumElements(),
1210 "FPToUI source and dest vector length mismatch", &I);
1211
1212 visitInstruction(I);
1213 }
1214
visitFPToSIInst(FPToSIInst & I)1215 void Verifier::visitFPToSIInst(FPToSIInst &I) {
1216 // Get the source and destination types
1217 Type *SrcTy = I.getOperand(0)->getType();
1218 Type *DestTy = I.getType();
1219
1220 bool SrcVec = SrcTy->isVectorTy();
1221 bool DstVec = DestTy->isVectorTy();
1222
1223 Assert1(SrcVec == DstVec,
1224 "FPToSI source and dest must both be vector or scalar", &I);
1225 Assert1(SrcTy->isFPOrFPVectorTy(),
1226 "FPToSI source must be FP or FP vector", &I);
1227 Assert1(DestTy->isIntOrIntVectorTy(),
1228 "FPToSI result must be integer or integer vector", &I);
1229
1230 if (SrcVec && DstVec)
1231 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1232 cast<VectorType>(DestTy)->getNumElements(),
1233 "FPToSI source and dest vector length mismatch", &I);
1234
1235 visitInstruction(I);
1236 }
1237
visitPtrToIntInst(PtrToIntInst & I)1238 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1239 // Get the source and destination types
1240 Type *SrcTy = I.getOperand(0)->getType();
1241 Type *DestTy = I.getType();
1242
1243 Assert1(SrcTy->getScalarType()->isPointerTy(),
1244 "PtrToInt source must be pointer", &I);
1245 Assert1(DestTy->getScalarType()->isIntegerTy(),
1246 "PtrToInt result must be integral", &I);
1247 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1248 "PtrToInt type mismatch", &I);
1249
1250 if (SrcTy->isVectorTy()) {
1251 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1252 VectorType *VDest = dyn_cast<VectorType>(DestTy);
1253 Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1254 "PtrToInt Vector width mismatch", &I);
1255 }
1256
1257 visitInstruction(I);
1258 }
1259
visitIntToPtrInst(IntToPtrInst & I)1260 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1261 // Get the source and destination types
1262 Type *SrcTy = I.getOperand(0)->getType();
1263 Type *DestTy = I.getType();
1264
1265 Assert1(SrcTy->getScalarType()->isIntegerTy(),
1266 "IntToPtr source must be an integral", &I);
1267 Assert1(DestTy->getScalarType()->isPointerTy(),
1268 "IntToPtr result must be a pointer",&I);
1269 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1270 "IntToPtr type mismatch", &I);
1271 if (SrcTy->isVectorTy()) {
1272 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1273 VectorType *VDest = dyn_cast<VectorType>(DestTy);
1274 Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1275 "IntToPtr Vector width mismatch", &I);
1276 }
1277 visitInstruction(I);
1278 }
1279
visitBitCastInst(BitCastInst & I)1280 void Verifier::visitBitCastInst(BitCastInst &I) {
1281 // Get the source and destination types
1282 Type *SrcTy = I.getOperand(0)->getType();
1283 Type *DestTy = I.getType();
1284
1285 // Get the size of the types in bits, we'll need this later
1286 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1287 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1288
1289 // BitCast implies a no-op cast of type only. No bits change.
1290 // However, you can't cast pointers to anything but pointers.
1291 Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
1292 "Bitcast requires both operands to be pointer or neither", &I);
1293 Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1294
1295 // Disallow aggregates.
1296 Assert1(!SrcTy->isAggregateType(),
1297 "Bitcast operand must not be aggregate", &I);
1298 Assert1(!DestTy->isAggregateType(),
1299 "Bitcast type must not be aggregate", &I);
1300
1301 visitInstruction(I);
1302 }
1303
1304 /// visitPHINode - Ensure that a PHI node is well formed.
1305 ///
visitPHINode(PHINode & PN)1306 void Verifier::visitPHINode(PHINode &PN) {
1307 // Ensure that the PHI nodes are all grouped together at the top of the block.
1308 // This can be tested by checking whether the instruction before this is
1309 // either nonexistent (because this is begin()) or is a PHI node. If not,
1310 // then there is some other instruction before a PHI.
1311 Assert2(&PN == &PN.getParent()->front() ||
1312 isa<PHINode>(--BasicBlock::iterator(&PN)),
1313 "PHI nodes not grouped at top of basic block!",
1314 &PN, PN.getParent());
1315
1316 // Check that all of the values of the PHI node have the same type as the
1317 // result, and that the incoming blocks are really basic blocks.
1318 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1319 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1320 "PHI node operands are not the same type as the result!", &PN);
1321 }
1322
1323 // All other PHI node constraints are checked in the visitBasicBlock method.
1324
1325 visitInstruction(PN);
1326 }
1327
VerifyCallSite(CallSite CS)1328 void Verifier::VerifyCallSite(CallSite CS) {
1329 Instruction *I = CS.getInstruction();
1330
1331 Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1332 "Called function must be a pointer!", I);
1333 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1334
1335 Assert1(FPTy->getElementType()->isFunctionTy(),
1336 "Called function is not pointer to function type!", I);
1337 FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1338
1339 // Verify that the correct number of arguments are being passed
1340 if (FTy->isVarArg())
1341 Assert1(CS.arg_size() >= FTy->getNumParams(),
1342 "Called function requires more parameters than were provided!",I);
1343 else
1344 Assert1(CS.arg_size() == FTy->getNumParams(),
1345 "Incorrect number of arguments passed to called function!", I);
1346
1347 // Verify that all arguments to the call match the function type.
1348 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1349 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1350 "Call parameter type does not match function signature!",
1351 CS.getArgument(i), FTy->getParamType(i), I);
1352
1353 const AttributeSet &Attrs = CS.getAttributes();
1354
1355 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1356 "Attribute after last parameter!", I);
1357
1358 // Verify call attributes.
1359 VerifyFunctionAttrs(FTy, Attrs, I);
1360
1361 if (FTy->isVarArg())
1362 // Check attributes on the varargs part.
1363 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1364 VerifyParameterAttrs(Attrs, Idx, CS.getArgument(Idx-1)->getType(),
1365 false, I);
1366
1367 Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
1368 "Attribute 'sret' cannot be used for vararg call arguments!", I);
1369 }
1370
1371 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1372 if (CS.getCalledFunction() == 0 ||
1373 !CS.getCalledFunction()->getName().startswith("llvm.")) {
1374 for (FunctionType::param_iterator PI = FTy->param_begin(),
1375 PE = FTy->param_end(); PI != PE; ++PI)
1376 Assert1(!(*PI)->isMetadataTy(),
1377 "Function has metadata parameter but isn't an intrinsic", I);
1378 }
1379
1380 visitInstruction(*I);
1381 }
1382
visitCallInst(CallInst & CI)1383 void Verifier::visitCallInst(CallInst &CI) {
1384 VerifyCallSite(&CI);
1385
1386 if (Function *F = CI.getCalledFunction())
1387 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1388 visitIntrinsicFunctionCall(ID, CI);
1389 }
1390
visitInvokeInst(InvokeInst & II)1391 void Verifier::visitInvokeInst(InvokeInst &II) {
1392 VerifyCallSite(&II);
1393
1394 // Verify that there is a landingpad instruction as the first non-PHI
1395 // instruction of the 'unwind' destination.
1396 Assert1(II.getUnwindDest()->isLandingPad(),
1397 "The unwind destination does not have a landingpad instruction!",&II);
1398
1399 visitTerminatorInst(II);
1400 }
1401
1402 /// visitBinaryOperator - Check that both arguments to the binary operator are
1403 /// of the same type!
1404 ///
visitBinaryOperator(BinaryOperator & B)1405 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1406 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1407 "Both operands to a binary operator are not of the same type!", &B);
1408
1409 switch (B.getOpcode()) {
1410 // Check that integer arithmetic operators are only used with
1411 // integral operands.
1412 case Instruction::Add:
1413 case Instruction::Sub:
1414 case Instruction::Mul:
1415 case Instruction::SDiv:
1416 case Instruction::UDiv:
1417 case Instruction::SRem:
1418 case Instruction::URem:
1419 Assert1(B.getType()->isIntOrIntVectorTy(),
1420 "Integer arithmetic operators only work with integral types!", &B);
1421 Assert1(B.getType() == B.getOperand(0)->getType(),
1422 "Integer arithmetic operators must have same type "
1423 "for operands and result!", &B);
1424 break;
1425 // Check that floating-point arithmetic operators are only used with
1426 // floating-point operands.
1427 case Instruction::FAdd:
1428 case Instruction::FSub:
1429 case Instruction::FMul:
1430 case Instruction::FDiv:
1431 case Instruction::FRem:
1432 Assert1(B.getType()->isFPOrFPVectorTy(),
1433 "Floating-point arithmetic operators only work with "
1434 "floating-point types!", &B);
1435 Assert1(B.getType() == B.getOperand(0)->getType(),
1436 "Floating-point arithmetic operators must have same type "
1437 "for operands and result!", &B);
1438 break;
1439 // Check that logical operators are only used with integral operands.
1440 case Instruction::And:
1441 case Instruction::Or:
1442 case Instruction::Xor:
1443 Assert1(B.getType()->isIntOrIntVectorTy(),
1444 "Logical operators only work with integral types!", &B);
1445 Assert1(B.getType() == B.getOperand(0)->getType(),
1446 "Logical operators must have same type for operands and result!",
1447 &B);
1448 break;
1449 case Instruction::Shl:
1450 case Instruction::LShr:
1451 case Instruction::AShr:
1452 Assert1(B.getType()->isIntOrIntVectorTy(),
1453 "Shifts only work with integral types!", &B);
1454 Assert1(B.getType() == B.getOperand(0)->getType(),
1455 "Shift return type must be same as operands!", &B);
1456 break;
1457 default:
1458 llvm_unreachable("Unknown BinaryOperator opcode!");
1459 }
1460
1461 visitInstruction(B);
1462 }
1463
visitICmpInst(ICmpInst & IC)1464 void Verifier::visitICmpInst(ICmpInst &IC) {
1465 // Check that the operands are the same type
1466 Type *Op0Ty = IC.getOperand(0)->getType();
1467 Type *Op1Ty = IC.getOperand(1)->getType();
1468 Assert1(Op0Ty == Op1Ty,
1469 "Both operands to ICmp instruction are not of the same type!", &IC);
1470 // Check that the operands are the right type
1471 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1472 "Invalid operand types for ICmp instruction", &IC);
1473 // Check that the predicate is valid.
1474 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1475 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1476 "Invalid predicate in ICmp instruction!", &IC);
1477
1478 visitInstruction(IC);
1479 }
1480
visitFCmpInst(FCmpInst & FC)1481 void Verifier::visitFCmpInst(FCmpInst &FC) {
1482 // Check that the operands are the same type
1483 Type *Op0Ty = FC.getOperand(0)->getType();
1484 Type *Op1Ty = FC.getOperand(1)->getType();
1485 Assert1(Op0Ty == Op1Ty,
1486 "Both operands to FCmp instruction are not of the same type!", &FC);
1487 // Check that the operands are the right type
1488 Assert1(Op0Ty->isFPOrFPVectorTy(),
1489 "Invalid operand types for FCmp instruction", &FC);
1490 // Check that the predicate is valid.
1491 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1492 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1493 "Invalid predicate in FCmp instruction!", &FC);
1494
1495 visitInstruction(FC);
1496 }
1497
visitExtractElementInst(ExtractElementInst & EI)1498 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1499 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1500 EI.getOperand(1)),
1501 "Invalid extractelement operands!", &EI);
1502 visitInstruction(EI);
1503 }
1504
visitInsertElementInst(InsertElementInst & IE)1505 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1506 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1507 IE.getOperand(1),
1508 IE.getOperand(2)),
1509 "Invalid insertelement operands!", &IE);
1510 visitInstruction(IE);
1511 }
1512
visitShuffleVectorInst(ShuffleVectorInst & SV)1513 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1514 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1515 SV.getOperand(2)),
1516 "Invalid shufflevector operands!", &SV);
1517 visitInstruction(SV);
1518 }
1519
visitGetElementPtrInst(GetElementPtrInst & GEP)1520 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1521 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1522
1523 Assert1(isa<PointerType>(TargetTy),
1524 "GEP base pointer is not a vector or a vector of pointers", &GEP);
1525 Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1526 "GEP into unsized type!", &GEP);
1527 Assert1(GEP.getPointerOperandType()->isVectorTy() ==
1528 GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
1529 &GEP);
1530
1531 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1532 Type *ElTy =
1533 GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1534 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1535
1536 Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
1537 cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
1538 == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
1539
1540 if (GEP.getPointerOperandType()->isVectorTy()) {
1541 // Additional checks for vector GEPs.
1542 unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
1543 Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
1544 "Vector GEP result width doesn't match operand's", &GEP);
1545 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1546 Type *IndexTy = Idxs[i]->getType();
1547 Assert1(IndexTy->isVectorTy(),
1548 "Vector GEP must have vector indices!", &GEP);
1549 unsigned IndexWidth = IndexTy->getVectorNumElements();
1550 Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1551 }
1552 }
1553 visitInstruction(GEP);
1554 }
1555
isContiguous(const ConstantRange & A,const ConstantRange & B)1556 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1557 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1558 }
1559
visitLoadInst(LoadInst & LI)1560 void Verifier::visitLoadInst(LoadInst &LI) {
1561 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1562 Assert1(PTy, "Load operand must be a pointer.", &LI);
1563 Type *ElTy = PTy->getElementType();
1564 Assert2(ElTy == LI.getType(),
1565 "Load result type does not match pointer operand type!", &LI, ElTy);
1566 if (LI.isAtomic()) {
1567 Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1568 "Load cannot have Release ordering", &LI);
1569 Assert1(LI.getAlignment() != 0,
1570 "Atomic load must specify explicit alignment", &LI);
1571 if (!ElTy->isPointerTy()) {
1572 Assert2(ElTy->isIntegerTy(),
1573 "atomic store operand must have integer type!",
1574 &LI, ElTy);
1575 unsigned Size = ElTy->getPrimitiveSizeInBits();
1576 Assert2(Size >= 8 && !(Size & (Size - 1)),
1577 "atomic store operand must be power-of-two byte-sized integer",
1578 &LI, ElTy);
1579 }
1580 } else {
1581 Assert1(LI.getSynchScope() == CrossThread,
1582 "Non-atomic load cannot have SynchronizationScope specified", &LI);
1583 }
1584
1585 if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1586 unsigned NumOperands = Range->getNumOperands();
1587 Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1588 unsigned NumRanges = NumOperands / 2;
1589 Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1590
1591 ConstantRange LastRange(1); // Dummy initial value
1592 for (unsigned i = 0; i < NumRanges; ++i) {
1593 ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1594 Assert1(Low, "The lower limit must be an integer!", Low);
1595 ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1596 Assert1(High, "The upper limit must be an integer!", High);
1597 Assert1(High->getType() == Low->getType() &&
1598 High->getType() == ElTy, "Range types must match load type!",
1599 &LI);
1600
1601 APInt HighV = High->getValue();
1602 APInt LowV = Low->getValue();
1603 ConstantRange CurRange(LowV, HighV);
1604 Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1605 "Range must not be empty!", Range);
1606 if (i != 0) {
1607 Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1608 "Intervals are overlapping", Range);
1609 Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1610 Range);
1611 Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1612 Range);
1613 }
1614 LastRange = ConstantRange(LowV, HighV);
1615 }
1616 if (NumRanges > 2) {
1617 APInt FirstLow =
1618 dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1619 APInt FirstHigh =
1620 dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1621 ConstantRange FirstRange(FirstLow, FirstHigh);
1622 Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1623 "Intervals are overlapping", Range);
1624 Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1625 Range);
1626 }
1627
1628
1629 }
1630
1631 visitInstruction(LI);
1632 }
1633
visitStoreInst(StoreInst & SI)1634 void Verifier::visitStoreInst(StoreInst &SI) {
1635 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1636 Assert1(PTy, "Store operand must be a pointer.", &SI);
1637 Type *ElTy = PTy->getElementType();
1638 Assert2(ElTy == SI.getOperand(0)->getType(),
1639 "Stored value type does not match pointer operand type!",
1640 &SI, ElTy);
1641 if (SI.isAtomic()) {
1642 Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1643 "Store cannot have Acquire ordering", &SI);
1644 Assert1(SI.getAlignment() != 0,
1645 "Atomic store must specify explicit alignment", &SI);
1646 if (!ElTy->isPointerTy()) {
1647 Assert2(ElTy->isIntegerTy(),
1648 "atomic store operand must have integer type!",
1649 &SI, ElTy);
1650 unsigned Size = ElTy->getPrimitiveSizeInBits();
1651 Assert2(Size >= 8 && !(Size & (Size - 1)),
1652 "atomic store operand must be power-of-two byte-sized integer",
1653 &SI, ElTy);
1654 }
1655 } else {
1656 Assert1(SI.getSynchScope() == CrossThread,
1657 "Non-atomic store cannot have SynchronizationScope specified", &SI);
1658 }
1659 visitInstruction(SI);
1660 }
1661
visitAllocaInst(AllocaInst & AI)1662 void Verifier::visitAllocaInst(AllocaInst &AI) {
1663 PointerType *PTy = AI.getType();
1664 Assert1(PTy->getAddressSpace() == 0,
1665 "Allocation instruction pointer not in the generic address space!",
1666 &AI);
1667 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1668 &AI);
1669 Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1670 "Alloca array size must have integer type", &AI);
1671 visitInstruction(AI);
1672 }
1673
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)1674 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
1675 Assert1(CXI.getOrdering() != NotAtomic,
1676 "cmpxchg instructions must be atomic.", &CXI);
1677 Assert1(CXI.getOrdering() != Unordered,
1678 "cmpxchg instructions cannot be unordered.", &CXI);
1679 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
1680 Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
1681 Type *ElTy = PTy->getElementType();
1682 Assert2(ElTy->isIntegerTy(),
1683 "cmpxchg operand must have integer type!",
1684 &CXI, ElTy);
1685 unsigned Size = ElTy->getPrimitiveSizeInBits();
1686 Assert2(Size >= 8 && !(Size & (Size - 1)),
1687 "cmpxchg operand must be power-of-two byte-sized integer",
1688 &CXI, ElTy);
1689 Assert2(ElTy == CXI.getOperand(1)->getType(),
1690 "Expected value type does not match pointer operand type!",
1691 &CXI, ElTy);
1692 Assert2(ElTy == CXI.getOperand(2)->getType(),
1693 "Stored value type does not match pointer operand type!",
1694 &CXI, ElTy);
1695 visitInstruction(CXI);
1696 }
1697
visitAtomicRMWInst(AtomicRMWInst & RMWI)1698 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
1699 Assert1(RMWI.getOrdering() != NotAtomic,
1700 "atomicrmw instructions must be atomic.", &RMWI);
1701 Assert1(RMWI.getOrdering() != Unordered,
1702 "atomicrmw instructions cannot be unordered.", &RMWI);
1703 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
1704 Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
1705 Type *ElTy = PTy->getElementType();
1706 Assert2(ElTy->isIntegerTy(),
1707 "atomicrmw operand must have integer type!",
1708 &RMWI, ElTy);
1709 unsigned Size = ElTy->getPrimitiveSizeInBits();
1710 Assert2(Size >= 8 && !(Size & (Size - 1)),
1711 "atomicrmw operand must be power-of-two byte-sized integer",
1712 &RMWI, ElTy);
1713 Assert2(ElTy == RMWI.getOperand(1)->getType(),
1714 "Argument value type does not match pointer operand type!",
1715 &RMWI, ElTy);
1716 Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
1717 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
1718 "Invalid binary operation!", &RMWI);
1719 visitInstruction(RMWI);
1720 }
1721
visitFenceInst(FenceInst & FI)1722 void Verifier::visitFenceInst(FenceInst &FI) {
1723 const AtomicOrdering Ordering = FI.getOrdering();
1724 Assert1(Ordering == Acquire || Ordering == Release ||
1725 Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
1726 "fence instructions may only have "
1727 "acquire, release, acq_rel, or seq_cst ordering.", &FI);
1728 visitInstruction(FI);
1729 }
1730
visitExtractValueInst(ExtractValueInst & EVI)1731 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1732 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1733 EVI.getIndices()) ==
1734 EVI.getType(),
1735 "Invalid ExtractValueInst operands!", &EVI);
1736
1737 visitInstruction(EVI);
1738 }
1739
visitInsertValueInst(InsertValueInst & IVI)1740 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1741 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1742 IVI.getIndices()) ==
1743 IVI.getOperand(1)->getType(),
1744 "Invalid InsertValueInst operands!", &IVI);
1745
1746 visitInstruction(IVI);
1747 }
1748
visitLandingPadInst(LandingPadInst & LPI)1749 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
1750 BasicBlock *BB = LPI.getParent();
1751
1752 // The landingpad instruction is ill-formed if it doesn't have any clauses and
1753 // isn't a cleanup.
1754 Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
1755 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
1756
1757 // The landingpad instruction defines its parent as a landing pad block. The
1758 // landing pad block may be branched to only by the unwind edge of an invoke.
1759 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1760 const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
1761 Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
1762 "Block containing LandingPadInst must be jumped to "
1763 "only by the unwind edge of an invoke.", &LPI);
1764 }
1765
1766 // The landingpad instruction must be the first non-PHI instruction in the
1767 // block.
1768 Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
1769 "LandingPadInst not the first non-PHI instruction in the block.",
1770 &LPI);
1771
1772 // The personality functions for all landingpad instructions within the same
1773 // function should match.
1774 if (PersonalityFn)
1775 Assert1(LPI.getPersonalityFn() == PersonalityFn,
1776 "Personality function doesn't match others in function", &LPI);
1777 PersonalityFn = LPI.getPersonalityFn();
1778
1779 // All operands must be constants.
1780 Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
1781 &LPI);
1782 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
1783 Value *Clause = LPI.getClause(i);
1784 Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
1785 if (LPI.isCatch(i)) {
1786 Assert1(isa<PointerType>(Clause->getType()),
1787 "Catch operand does not have pointer type!", &LPI);
1788 } else {
1789 Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
1790 Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
1791 "Filter operand is not an array of constants!", &LPI);
1792 }
1793 }
1794
1795 visitInstruction(LPI);
1796 }
1797
verifyDominatesUse(Instruction & I,unsigned i)1798 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
1799 Instruction *Op = cast<Instruction>(I.getOperand(i));
1800 // If the we have an invalid invoke, don't try to compute the dominance.
1801 // We already reject it in the invoke specific checks and the dominance
1802 // computation doesn't handle multiple edges.
1803 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1804 if (II->getNormalDest() == II->getUnwindDest())
1805 return;
1806 }
1807
1808 const Use &U = I.getOperandUse(i);
1809 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
1810 "Instruction does not dominate all uses!", Op, &I);
1811 }
1812
1813 /// verifyInstruction - Verify that an instruction is well formed.
1814 ///
visitInstruction(Instruction & I)1815 void Verifier::visitInstruction(Instruction &I) {
1816 BasicBlock *BB = I.getParent();
1817 Assert1(BB, "Instruction not embedded in basic block!", &I);
1818
1819 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
1820 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1821 UI != UE; ++UI)
1822 Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1823 "Only PHI nodes may reference their own value!", &I);
1824 }
1825
1826 // Check that void typed values don't have names
1827 Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1828 "Instruction has a name, but provides a void value!", &I);
1829
1830 // Check that the return value of the instruction is either void or a legal
1831 // value type.
1832 Assert1(I.getType()->isVoidTy() ||
1833 I.getType()->isFirstClassType(),
1834 "Instruction returns a non-scalar type!", &I);
1835
1836 // Check that the instruction doesn't produce metadata. Calls are already
1837 // checked against the callee type.
1838 Assert1(!I.getType()->isMetadataTy() ||
1839 isa<CallInst>(I) || isa<InvokeInst>(I),
1840 "Invalid use of metadata!", &I);
1841
1842 // Check that all uses of the instruction, if they are instructions
1843 // themselves, actually have parent basic blocks. If the use is not an
1844 // instruction, it is an error!
1845 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1846 UI != UE; ++UI) {
1847 if (Instruction *Used = dyn_cast<Instruction>(*UI))
1848 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1849 " embedded in a basic block!", &I, Used);
1850 else {
1851 CheckFailed("Use of instruction is not an instruction!", *UI);
1852 return;
1853 }
1854 }
1855
1856 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1857 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1858
1859 // Check to make sure that only first-class-values are operands to
1860 // instructions.
1861 if (!I.getOperand(i)->getType()->isFirstClassType()) {
1862 Assert1(0, "Instruction operands must be first-class values!", &I);
1863 }
1864
1865 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1866 // Check to make sure that the "address of" an intrinsic function is never
1867 // taken.
1868 Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
1869 "Cannot take the address of an intrinsic!", &I);
1870 Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
1871 F->getIntrinsicID() == Intrinsic::donothing,
1872 "Cannot invoke an intrinsinc other than donothing", &I);
1873 Assert1(F->getParent() == Mod, "Referencing function in another module!",
1874 &I);
1875 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1876 Assert1(OpBB->getParent() == BB->getParent(),
1877 "Referring to a basic block in another function!", &I);
1878 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1879 Assert1(OpArg->getParent() == BB->getParent(),
1880 "Referring to an argument in another function!", &I);
1881 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1882 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1883 &I);
1884 } else if (isa<Instruction>(I.getOperand(i))) {
1885 verifyDominatesUse(I, i);
1886 } else if (isa<InlineAsm>(I.getOperand(i))) {
1887 Assert1((i + 1 == e && isa<CallInst>(I)) ||
1888 (i + 3 == e && isa<InvokeInst>(I)),
1889 "Cannot take the address of an inline asm!", &I);
1890 }
1891 }
1892
1893 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
1894 Assert1(I.getType()->isFPOrFPVectorTy(),
1895 "fpmath requires a floating point result!", &I);
1896 Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
1897 Value *Op0 = MD->getOperand(0);
1898 if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
1899 APFloat Accuracy = CFP0->getValueAPF();
1900 Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
1901 "fpmath accuracy not a positive number!", &I);
1902 } else {
1903 Assert1(false, "invalid fpmath accuracy!", &I);
1904 }
1905 }
1906
1907 MDNode *MD = I.getMetadata(LLVMContext::MD_range);
1908 Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
1909
1910 InstsInThisBlock.insert(&I);
1911 }
1912
1913 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
1914 /// intrinsic argument or return value) matches the type constraints specified
1915 /// by the .td file (e.g. an "any integer" argument really is an integer).
1916 ///
1917 /// This return true on error but does not print a message.
VerifyIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)1918 bool Verifier::VerifyIntrinsicType(Type *Ty,
1919 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1920 SmallVectorImpl<Type*> &ArgTys) {
1921 using namespace Intrinsic;
1922
1923 // If we ran out of descriptors, there are too many arguments.
1924 if (Infos.empty()) return true;
1925 IITDescriptor D = Infos.front();
1926 Infos = Infos.slice(1);
1927
1928 switch (D.Kind) {
1929 case IITDescriptor::Void: return !Ty->isVoidTy();
1930 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1931 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1932 case IITDescriptor::Half: return !Ty->isHalfTy();
1933 case IITDescriptor::Float: return !Ty->isFloatTy();
1934 case IITDescriptor::Double: return !Ty->isDoubleTy();
1935 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1936 case IITDescriptor::Vector: {
1937 VectorType *VT = dyn_cast<VectorType>(Ty);
1938 return VT == 0 || VT->getNumElements() != D.Vector_Width ||
1939 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
1940 }
1941 case IITDescriptor::Pointer: {
1942 PointerType *PT = dyn_cast<PointerType>(Ty);
1943 return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1944 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
1945 }
1946
1947 case IITDescriptor::Struct: {
1948 StructType *ST = dyn_cast<StructType>(Ty);
1949 if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
1950 return true;
1951
1952 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1953 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1954 return true;
1955 return false;
1956 }
1957
1958 case IITDescriptor::Argument:
1959 // Two cases here - If this is the second occurrence of an argument, verify
1960 // that the later instance matches the previous instance.
1961 if (D.getArgumentNumber() < ArgTys.size())
1962 return Ty != ArgTys[D.getArgumentNumber()];
1963
1964 // Otherwise, if this is the first instance of an argument, record it and
1965 // verify the "Any" kind.
1966 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1967 ArgTys.push_back(Ty);
1968
1969 switch (D.getArgumentKind()) {
1970 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1971 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1972 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1973 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1974 }
1975 llvm_unreachable("all argument kinds not covered");
1976
1977 case IITDescriptor::ExtendVecArgument:
1978 // This may only be used when referring to a previous vector argument.
1979 return D.getArgumentNumber() >= ArgTys.size() ||
1980 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1981 VectorType::getExtendedElementVectorType(
1982 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1983
1984 case IITDescriptor::TruncVecArgument:
1985 // This may only be used when referring to a previous vector argument.
1986 return D.getArgumentNumber() >= ArgTys.size() ||
1987 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1988 VectorType::getTruncatedElementVectorType(
1989 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1990 }
1991 llvm_unreachable("unhandled");
1992 }
1993
1994 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1995 ///
visitIntrinsicFunctionCall(Intrinsic::ID ID,CallInst & CI)1996 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1997 Function *IF = CI.getCalledFunction();
1998 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1999 IF);
2000
2001 // Verify that the intrinsic prototype lines up with what the .td files
2002 // describe.
2003 FunctionType *IFTy = IF->getFunctionType();
2004 Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
2005
2006 SmallVector<Intrinsic::IITDescriptor, 8> Table;
2007 getIntrinsicInfoTableEntries(ID, Table);
2008 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
2009
2010 SmallVector<Type *, 4> ArgTys;
2011 Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
2012 "Intrinsic has incorrect return type!", IF);
2013 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
2014 Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
2015 "Intrinsic has incorrect argument type!", IF);
2016 Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
2017
2018 // Now that we have the intrinsic ID and the actual argument types (and we
2019 // know they are legal for the intrinsic!) get the intrinsic name through the
2020 // usual means. This allows us to verify the mangling of argument types into
2021 // the name.
2022 Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
2023 "Intrinsic name not mangled correctly for type arguments!", IF);
2024
2025 // If the intrinsic takes MDNode arguments, verify that they are either global
2026 // or are local to *this* function.
2027 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
2028 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
2029 visitMDNode(*MD, CI.getParent()->getParent());
2030
2031 switch (ID) {
2032 default:
2033 break;
2034 case Intrinsic::ctlz: // llvm.ctlz
2035 case Intrinsic::cttz: // llvm.cttz
2036 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2037 "is_zero_undef argument of bit counting intrinsics must be a "
2038 "constant int", &CI);
2039 break;
2040 case Intrinsic::dbg_declare: { // llvm.dbg.declare
2041 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2042 "invalid llvm.dbg.declare intrinsic call 1", &CI);
2043 MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
2044 Assert1(MD->getNumOperands() == 1,
2045 "invalid llvm.dbg.declare intrinsic call 2", &CI);
2046 } break;
2047 case Intrinsic::memcpy:
2048 case Intrinsic::memmove:
2049 case Intrinsic::memset:
2050 Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
2051 "alignment argument of memory intrinsics must be a constant int",
2052 &CI);
2053 Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
2054 "isvolatile argument of memory intrinsics must be a constant int",
2055 &CI);
2056 break;
2057 case Intrinsic::gcroot:
2058 case Intrinsic::gcwrite:
2059 case Intrinsic::gcread:
2060 if (ID == Intrinsic::gcroot) {
2061 AllocaInst *AI =
2062 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
2063 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
2064 Assert1(isa<Constant>(CI.getArgOperand(1)),
2065 "llvm.gcroot parameter #2 must be a constant.", &CI);
2066 if (!AI->getType()->getElementType()->isPointerTy()) {
2067 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
2068 "llvm.gcroot parameter #1 must either be a pointer alloca, "
2069 "or argument #2 must be a non-null constant.", &CI);
2070 }
2071 }
2072
2073 Assert1(CI.getParent()->getParent()->hasGC(),
2074 "Enclosing function does not use GC.", &CI);
2075 break;
2076 case Intrinsic::init_trampoline:
2077 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
2078 "llvm.init_trampoline parameter #2 must resolve to a function.",
2079 &CI);
2080 break;
2081 case Intrinsic::prefetch:
2082 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
2083 isa<ConstantInt>(CI.getArgOperand(2)) &&
2084 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
2085 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
2086 "invalid arguments to llvm.prefetch",
2087 &CI);
2088 break;
2089 case Intrinsic::stackprotector:
2090 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
2091 "llvm.stackprotector parameter #2 must resolve to an alloca.",
2092 &CI);
2093 break;
2094 case Intrinsic::lifetime_start:
2095 case Intrinsic::lifetime_end:
2096 case Intrinsic::invariant_start:
2097 Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
2098 "size argument of memory use markers must be a constant integer",
2099 &CI);
2100 break;
2101 case Intrinsic::invariant_end:
2102 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2103 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
2104 break;
2105 }
2106 }
2107
2108 //===----------------------------------------------------------------------===//
2109 // Implement the public interfaces to this file...
2110 //===----------------------------------------------------------------------===//
2111
createVerifierPass(VerifierFailureAction action)2112 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
2113 return new Verifier(action);
2114 }
2115
2116
2117 /// verifyFunction - Check a function for errors, printing messages on stderr.
2118 /// Return true if the function is corrupt.
2119 ///
verifyFunction(const Function & f,VerifierFailureAction action)2120 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
2121 Function &F = const_cast<Function&>(f);
2122 assert(!F.isDeclaration() && "Cannot verify external functions");
2123
2124 FunctionPassManager FPM(F.getParent());
2125 Verifier *V = new Verifier(action);
2126 FPM.add(V);
2127 FPM.run(F);
2128 return V->Broken;
2129 }
2130
2131 /// verifyModule - Check a module for errors, printing messages on stderr.
2132 /// Return true if the module is corrupt.
2133 ///
verifyModule(const Module & M,VerifierFailureAction action,std::string * ErrorInfo)2134 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
2135 std::string *ErrorInfo) {
2136 PassManager PM;
2137 Verifier *V = new Verifier(action);
2138 PM.add(V);
2139 PM.run(const_cast<Module&>(M));
2140
2141 if (ErrorInfo && V->Broken)
2142 *ErrorInfo = V->MessagesStr.str();
2143 return V->Broken;
2144 }
2145