1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "isel"
15 #include "SelectionDAGBuilder.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/GCMetadata.h"
27 #include "llvm/CodeGen/GCStrategy.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/DebugInfo.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/IntegersSubsetMapping.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetFrameLowering.h"
55 #include "llvm/Target/TargetInstrInfo.h"
56 #include "llvm/Target/TargetIntrinsicInfo.h"
57 #include "llvm/Target/TargetLibraryInfo.h"
58 #include "llvm/Target/TargetLowering.h"
59 #include "llvm/Target/TargetOptions.h"
60 #include <algorithm>
61 using namespace llvm;
62
63 /// LimitFloatPrecision - Generate low-precision inline sequences for
64 /// some float libcalls (6, 8 or 12 bits).
65 static unsigned LimitFloatPrecision;
66
67 static cl::opt<unsigned, true>
68 LimitFPPrecision("limit-float-precision",
69 cl::desc("Generate low-precision inline sequences "
70 "for some float libcalls"),
71 cl::location(LimitFloatPrecision),
72 cl::init(0));
73
74 // Limit the width of DAG chains. This is important in general to prevent
75 // prevent DAG-based analysis from blowing up. For example, alias analysis and
76 // load clustering may not complete in reasonable time. It is difficult to
77 // recognize and avoid this situation within each individual analysis, and
78 // future analyses are likely to have the same behavior. Limiting DAG width is
79 // the safe approach, and will be especially important with global DAGs.
80 //
81 // MaxParallelChains default is arbitrarily high to avoid affecting
82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83 // sequence over this should have been converted to llvm.memcpy by the
84 // frontend. It easy to induce this behavior with .ll code such as:
85 // %buffer = alloca [4096 x i8]
86 // %data = load [4096 x i8]* %argPtr
87 // store [4096 x i8] %data, [4096 x i8]* %buffer
88 static const unsigned MaxParallelChains = 64;
89
90 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91 const SDValue *Parts, unsigned NumParts,
92 MVT PartVT, EVT ValueVT, const Value *V);
93
94 /// getCopyFromParts - Create a value that contains the specified legal parts
95 /// combined into the value they represent. If the parts combine to a type
96 /// larger then ValueVT then AssertOp can be used to specify whether the extra
97 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98 /// (ISD::AssertSext).
getCopyFromParts(SelectionDAG & DAG,DebugLoc DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,ISD::NodeType AssertOp=ISD::DELETED_NODE)99 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100 const SDValue *Parts,
101 unsigned NumParts, MVT PartVT, EVT ValueVT,
102 const Value *V,
103 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104 if (ValueVT.isVector())
105 return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106 PartVT, ValueVT, V);
107
108 assert(NumParts > 0 && "No parts to assemble!");
109 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110 SDValue Val = Parts[0];
111
112 if (NumParts > 1) {
113 // Assemble the value from multiple parts.
114 if (ValueVT.isInteger()) {
115 unsigned PartBits = PartVT.getSizeInBits();
116 unsigned ValueBits = ValueVT.getSizeInBits();
117
118 // Assemble the power of 2 part.
119 unsigned RoundParts = NumParts & (NumParts - 1) ?
120 1 << Log2_32(NumParts) : NumParts;
121 unsigned RoundBits = PartBits * RoundParts;
122 EVT RoundVT = RoundBits == ValueBits ?
123 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124 SDValue Lo, Hi;
125
126 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128 if (RoundParts > 2) {
129 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130 PartVT, HalfVT, V);
131 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132 RoundParts / 2, PartVT, HalfVT, V);
133 } else {
134 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136 }
137
138 if (TLI.isBigEndian())
139 std::swap(Lo, Hi);
140
141 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143 if (RoundParts < NumParts) {
144 // Assemble the trailing non-power-of-2 part.
145 unsigned OddParts = NumParts - RoundParts;
146 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147 Hi = getCopyFromParts(DAG, DL,
148 Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150 // Combine the round and odd parts.
151 Lo = Val;
152 if (TLI.isBigEndian())
153 std::swap(Lo, Hi);
154 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157 DAG.getConstant(Lo.getValueType().getSizeInBits(),
158 TLI.getPointerTy()));
159 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161 }
162 } else if (PartVT.isFloatingPoint()) {
163 // FP split into multiple FP parts (for ppcf128)
164 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
165 "Unexpected split");
166 SDValue Lo, Hi;
167 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169 if (TLI.isBigEndian())
170 std::swap(Lo, Hi);
171 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172 } else {
173 // FP split into integer parts (soft fp)
174 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175 !PartVT.isVector() && "Unexpected split");
176 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178 }
179 }
180
181 // There is now one part, held in Val. Correct it to match ValueVT.
182 EVT PartEVT = Val.getValueType();
183
184 if (PartEVT == ValueVT)
185 return Val;
186
187 if (PartEVT.isInteger() && ValueVT.isInteger()) {
188 if (ValueVT.bitsLT(PartEVT)) {
189 // For a truncate, see if we have any information to
190 // indicate whether the truncated bits will always be
191 // zero or sign-extension.
192 if (AssertOp != ISD::DELETED_NODE)
193 Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
194 DAG.getValueType(ValueVT));
195 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196 }
197 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198 }
199
200 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201 // FP_ROUND's are always exact here.
202 if (ValueVT.bitsLT(Val.getValueType()))
203 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204 DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207 }
208
209 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
210 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212 llvm_unreachable("Unknown mismatch!");
213 }
214
215 /// getCopyFromPartsVector - Create a value that contains the specified legal
216 /// parts combined into the value they represent. If the parts combine to a
217 /// type larger then ValueVT then AssertOp can be used to specify whether the
218 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219 /// ValueVT (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,DebugLoc DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V)220 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221 const SDValue *Parts, unsigned NumParts,
222 MVT PartVT, EVT ValueVT, const Value *V) {
223 assert(ValueVT.isVector() && "Not a vector value");
224 assert(NumParts > 0 && "No parts to assemble!");
225 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226 SDValue Val = Parts[0];
227
228 // Handle a multi-element vector.
229 if (NumParts > 1) {
230 EVT IntermediateVT;
231 MVT RegisterVT;
232 unsigned NumIntermediates;
233 unsigned NumRegs =
234 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235 NumIntermediates, RegisterVT);
236 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237 NumParts = NumRegs; // Silence a compiler warning.
238 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
239 assert(RegisterVT == Parts[0].getSimpleValueType() &&
240 "Part type doesn't match part!");
241
242 // Assemble the parts into intermediate operands.
243 SmallVector<SDValue, 8> Ops(NumIntermediates);
244 if (NumIntermediates == NumParts) {
245 // If the register was not expanded, truncate or copy the value,
246 // as appropriate.
247 for (unsigned i = 0; i != NumParts; ++i)
248 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
249 PartVT, IntermediateVT, V);
250 } else if (NumParts > 0) {
251 // If the intermediate type was expanded, build the intermediate
252 // operands from the parts.
253 assert(NumParts % NumIntermediates == 0 &&
254 "Must expand into a divisible number of parts!");
255 unsigned Factor = NumParts / NumIntermediates;
256 for (unsigned i = 0; i != NumIntermediates; ++i)
257 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
258 PartVT, IntermediateVT, V);
259 }
260
261 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
262 // intermediate operands.
263 Val = DAG.getNode(IntermediateVT.isVector() ?
264 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
265 ValueVT, &Ops[0], NumIntermediates);
266 }
267
268 // There is now one part, held in Val. Correct it to match ValueVT.
269 EVT PartEVT = Val.getValueType();
270
271 if (PartEVT == ValueVT)
272 return Val;
273
274 if (PartEVT.isVector()) {
275 // If the element type of the source/dest vectors are the same, but the
276 // parts vector has more elements than the value vector, then we have a
277 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
278 // elements we want.
279 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
280 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
281 "Cannot narrow, it would be a lossy transformation");
282 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
283 DAG.getIntPtrConstant(0));
284 }
285
286 // Vector/Vector bitcast.
287 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
288 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
289
290 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
291 "Cannot handle this kind of promotion");
292 // Promoted vector extract
293 bool Smaller = ValueVT.bitsLE(PartEVT);
294 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
295 DL, ValueVT, Val);
296
297 }
298
299 // Trivial bitcast if the types are the same size and the destination
300 // vector type is legal.
301 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
302 TLI.isTypeLegal(ValueVT))
303 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
304
305 // Handle cases such as i8 -> <1 x i1>
306 if (ValueVT.getVectorNumElements() != 1) {
307 LLVMContext &Ctx = *DAG.getContext();
308 Twine ErrMsg("non-trivial scalar-to-vector conversion");
309 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
310 if (const CallInst *CI = dyn_cast<CallInst>(I))
311 if (isa<InlineAsm>(CI->getCalledValue()))
312 ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
313 Ctx.emitError(I, ErrMsg);
314 } else {
315 Ctx.emitError(ErrMsg);
316 }
317 report_fatal_error("Cannot handle scalar-to-vector conversion!");
318 }
319
320 if (ValueVT.getVectorNumElements() == 1 &&
321 ValueVT.getVectorElementType() != PartEVT) {
322 bool Smaller = ValueVT.bitsLE(PartEVT);
323 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
324 DL, ValueVT.getScalarType(), Val);
325 }
326
327 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
328 }
329
330 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
331 SDValue Val, SDValue *Parts, unsigned NumParts,
332 MVT PartVT, const Value *V);
333
334 /// getCopyToParts - Create a series of nodes that contain the specified value
335 /// split into legal parts. If the parts contain more bits than Val, then, for
336 /// integers, ExtendKind can be used to specify how to generate the extra bits.
getCopyToParts(SelectionDAG & DAG,DebugLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)337 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
338 SDValue Val, SDValue *Parts, unsigned NumParts,
339 MVT PartVT, const Value *V,
340 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
341 EVT ValueVT = Val.getValueType();
342
343 // Handle the vector case separately.
344 if (ValueVT.isVector())
345 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
346
347 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348 unsigned PartBits = PartVT.getSizeInBits();
349 unsigned OrigNumParts = NumParts;
350 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
351
352 if (NumParts == 0)
353 return;
354
355 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
356 EVT PartEVT = PartVT;
357 if (PartEVT == ValueVT) {
358 assert(NumParts == 1 && "No-op copy with multiple parts!");
359 Parts[0] = Val;
360 return;
361 }
362
363 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
364 // If the parts cover more bits than the value has, promote the value.
365 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
366 assert(NumParts == 1 && "Do not know what to promote to!");
367 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
368 } else {
369 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370 ValueVT.isInteger() &&
371 "Unknown mismatch!");
372 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
374 if (PartVT == MVT::x86mmx)
375 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376 }
377 } else if (PartBits == ValueVT.getSizeInBits()) {
378 // Different types of the same size.
379 assert(NumParts == 1 && PartEVT != ValueVT);
380 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
381 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
382 // If the parts cover less bits than value has, truncate the value.
383 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384 ValueVT.isInteger() &&
385 "Unknown mismatch!");
386 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
388 if (PartVT == MVT::x86mmx)
389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390 }
391
392 // The value may have changed - recompute ValueVT.
393 ValueVT = Val.getValueType();
394 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
395 "Failed to tile the value with PartVT!");
396
397 if (NumParts == 1) {
398 if (PartEVT != ValueVT) {
399 LLVMContext &Ctx = *DAG.getContext();
400 Twine ErrMsg("scalar-to-vector conversion failed");
401 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
402 if (const CallInst *CI = dyn_cast<CallInst>(I))
403 if (isa<InlineAsm>(CI->getCalledValue()))
404 ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
405 Ctx.emitError(I, ErrMsg);
406 } else {
407 Ctx.emitError(ErrMsg);
408 }
409 }
410
411 Parts[0] = Val;
412 return;
413 }
414
415 // Expand the value into multiple parts.
416 if (NumParts & (NumParts - 1)) {
417 // The number of parts is not a power of 2. Split off and copy the tail.
418 assert(PartVT.isInteger() && ValueVT.isInteger() &&
419 "Do not know what to expand to!");
420 unsigned RoundParts = 1 << Log2_32(NumParts);
421 unsigned RoundBits = RoundParts * PartBits;
422 unsigned OddParts = NumParts - RoundParts;
423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424 DAG.getIntPtrConstant(RoundBits));
425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427 if (TLI.isBigEndian())
428 // The odd parts were reversed by getCopyToParts - unreverse them.
429 std::reverse(Parts + RoundParts, Parts + NumParts);
430
431 NumParts = RoundParts;
432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434 }
435
436 // The number of parts is a power of 2. Repeatedly bisect the value using
437 // EXTRACT_ELEMENT.
438 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439 EVT::getIntegerVT(*DAG.getContext(),
440 ValueVT.getSizeInBits()),
441 Val);
442
443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444 for (unsigned i = 0; i < NumParts; i += StepSize) {
445 unsigned ThisBits = StepSize * PartBits / 2;
446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447 SDValue &Part0 = Parts[i];
448 SDValue &Part1 = Parts[i+StepSize/2];
449
450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451 ThisVT, Part0, DAG.getIntPtrConstant(1));
452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453 ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455 if (ThisBits == PartBits && ThisVT != PartVT) {
456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458 }
459 }
460 }
461
462 if (TLI.isBigEndian())
463 std::reverse(Parts, Parts + OrigNumParts);
464 }
465
466
467 /// getCopyToPartsVector - Create a series of nodes that contain the specified
468 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,DebugLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V)469 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
470 SDValue Val, SDValue *Parts, unsigned NumParts,
471 MVT PartVT, const Value *V) {
472 EVT ValueVT = Val.getValueType();
473 assert(ValueVT.isVector() && "Not a vector");
474 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476 if (NumParts == 1) {
477 EVT PartEVT = PartVT;
478 if (PartEVT == ValueVT) {
479 // Nothing to do.
480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481 // Bitconvert vector->vector case.
482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483 } else if (PartVT.isVector() &&
484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486 EVT ElementVT = PartVT.getVectorElementType();
487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
488 // undef elements.
489 SmallVector<SDValue, 16> Ops;
490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492 ElementVT, Val, DAG.getIntPtrConstant(i)));
493
494 for (unsigned i = ValueVT.getVectorNumElements(),
495 e = PartVT.getVectorNumElements(); i != e; ++i)
496 Ops.push_back(DAG.getUNDEF(ElementVT));
497
498 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
499
500 // FIXME: Use CONCAT for 2x -> 4x.
501
502 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
503 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
504 } else if (PartVT.isVector() &&
505 PartEVT.getVectorElementType().bitsGE(
506 ValueVT.getVectorElementType()) &&
507 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
508
509 // Promoted vector extract
510 bool Smaller = PartEVT.bitsLE(ValueVT);
511 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
512 DL, PartVT, Val);
513 } else{
514 // Vector -> scalar conversion.
515 assert(ValueVT.getVectorNumElements() == 1 &&
516 "Only trivial vector-to-scalar conversions should get here!");
517 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518 PartVT, Val, DAG.getIntPtrConstant(0));
519
520 bool Smaller = ValueVT.bitsLE(PartVT);
521 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
522 DL, PartVT, Val);
523 }
524
525 Parts[0] = Val;
526 return;
527 }
528
529 // Handle a multi-element vector.
530 EVT IntermediateVT;
531 MVT RegisterVT;
532 unsigned NumIntermediates;
533 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
534 IntermediateVT,
535 NumIntermediates, RegisterVT);
536 unsigned NumElements = ValueVT.getVectorNumElements();
537
538 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539 NumParts = NumRegs; // Silence a compiler warning.
540 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542 // Split the vector into intermediate operands.
543 SmallVector<SDValue, 8> Ops(NumIntermediates);
544 for (unsigned i = 0; i != NumIntermediates; ++i) {
545 if (IntermediateVT.isVector())
546 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547 IntermediateVT, Val,
548 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
549 else
550 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
551 IntermediateVT, Val, DAG.getIntPtrConstant(i));
552 }
553
554 // Split the intermediate operands into legal parts.
555 if (NumParts == NumIntermediates) {
556 // If the register was not expanded, promote or copy the value,
557 // as appropriate.
558 for (unsigned i = 0; i != NumParts; ++i)
559 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
560 } else if (NumParts > 0) {
561 // If the intermediate type was expanded, split each the value into
562 // legal parts.
563 assert(NumParts % NumIntermediates == 0 &&
564 "Must expand into a divisible number of parts!");
565 unsigned Factor = NumParts / NumIntermediates;
566 for (unsigned i = 0; i != NumIntermediates; ++i)
567 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
568 }
569 }
570
571 namespace {
572 /// RegsForValue - This struct represents the registers (physical or virtual)
573 /// that a particular set of values is assigned, and the type information
574 /// about the value. The most common situation is to represent one value at a
575 /// time, but struct or array values are handled element-wise as multiple
576 /// values. The splitting of aggregates is performed recursively, so that we
577 /// never have aggregate-typed registers. The values at this point do not
578 /// necessarily have legal types, so each value may require one or more
579 /// registers of some legal type.
580 ///
581 struct RegsForValue {
582 /// ValueVTs - The value types of the values, which may not be legal, and
583 /// may need be promoted or synthesized from one or more registers.
584 ///
585 SmallVector<EVT, 4> ValueVTs;
586
587 /// RegVTs - The value types of the registers. This is the same size as
588 /// ValueVTs and it records, for each value, what the type of the assigned
589 /// register or registers are. (Individual values are never synthesized
590 /// from more than one type of register.)
591 ///
592 /// With virtual registers, the contents of RegVTs is redundant with TLI's
593 /// getRegisterType member function, however when with physical registers
594 /// it is necessary to have a separate record of the types.
595 ///
596 SmallVector<MVT, 4> RegVTs;
597
598 /// Regs - This list holds the registers assigned to the values.
599 /// Each legal or promoted value requires one register, and each
600 /// expanded value requires multiple registers.
601 ///
602 SmallVector<unsigned, 4> Regs;
603
RegsForValue__anon23e33df60111::RegsForValue604 RegsForValue() {}
605
RegsForValue__anon23e33df60111::RegsForValue606 RegsForValue(const SmallVector<unsigned, 4> ®s,
607 MVT regvt, EVT valuevt)
608 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
609
RegsForValue__anon23e33df60111::RegsForValue610 RegsForValue(LLVMContext &Context, const TargetLowering &tli,
611 unsigned Reg, Type *Ty) {
612 ComputeValueVTs(tli, Ty, ValueVTs);
613
614 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
615 EVT ValueVT = ValueVTs[Value];
616 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
617 MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
618 for (unsigned i = 0; i != NumRegs; ++i)
619 Regs.push_back(Reg + i);
620 RegVTs.push_back(RegisterVT);
621 Reg += NumRegs;
622 }
623 }
624
625 /// areValueTypesLegal - Return true if types of all the values are legal.
areValueTypesLegal__anon23e33df60111::RegsForValue626 bool areValueTypesLegal(const TargetLowering &TLI) {
627 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
628 MVT RegisterVT = RegVTs[Value];
629 if (!TLI.isTypeLegal(RegisterVT))
630 return false;
631 }
632 return true;
633 }
634
635 /// append - Add the specified values to this one.
append__anon23e33df60111::RegsForValue636 void append(const RegsForValue &RHS) {
637 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
638 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
639 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
640 }
641
642 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643 /// this value and returns the result as a ValueVTs value. This uses
644 /// Chain/Flag as the input and updates them for the output Chain/Flag.
645 /// If the Flag pointer is NULL, no flag is used.
646 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647 DebugLoc dl,
648 SDValue &Chain, SDValue *Flag,
649 const Value *V = 0) const;
650
651 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
652 /// specified value into the registers specified by this object. This uses
653 /// Chain/Flag as the input and updates them for the output Chain/Flag.
654 /// If the Flag pointer is NULL, no flag is used.
655 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
656 SDValue &Chain, SDValue *Flag, const Value *V) const;
657
658 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659 /// operand list. This adds the code marker, matching input operand index
660 /// (if applicable), and includes the number of values added into it.
661 void AddInlineAsmOperands(unsigned Kind,
662 bool HasMatching, unsigned MatchingIdx,
663 SelectionDAG &DAG,
664 std::vector<SDValue> &Ops) const;
665 };
666 }
667
668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669 /// this value and returns the result as a ValueVT value. This uses
670 /// Chain/Flag as the input and updates them for the output Chain/Flag.
671 /// If the Flag pointer is NULL, no flag is used.
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,DebugLoc dl,SDValue & Chain,SDValue * Flag,const Value * V) const672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673 FunctionLoweringInfo &FuncInfo,
674 DebugLoc dl,
675 SDValue &Chain, SDValue *Flag,
676 const Value *V) const {
677 // A Value with type {} or [0 x %t] needs no registers.
678 if (ValueVTs.empty())
679 return SDValue();
680
681 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683 // Assemble the legal parts into the final values.
684 SmallVector<SDValue, 4> Values(ValueVTs.size());
685 SmallVector<SDValue, 8> Parts;
686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687 // Copy the legal parts from the registers.
688 EVT ValueVT = ValueVTs[Value];
689 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690 MVT RegisterVT = RegVTs[Value];
691
692 Parts.resize(NumRegs);
693 for (unsigned i = 0; i != NumRegs; ++i) {
694 SDValue P;
695 if (Flag == 0) {
696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697 } else {
698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699 *Flag = P.getValue(2);
700 }
701
702 Chain = P.getValue(1);
703 Parts[i] = P;
704
705 // If the source register was virtual and if we know something about it,
706 // add an assert node.
707 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708 !RegisterVT.isInteger() || RegisterVT.isVector())
709 continue;
710
711 const FunctionLoweringInfo::LiveOutInfo *LOI =
712 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713 if (!LOI)
714 continue;
715
716 unsigned RegSize = RegisterVT.getSizeInBits();
717 unsigned NumSignBits = LOI->NumSignBits;
718 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720 // FIXME: We capture more information than the dag can represent. For
721 // now, just use the tightest assertzext/assertsext possible.
722 bool isSExt = true;
723 EVT FromVT(MVT::Other);
724 if (NumSignBits == RegSize)
725 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
726 else if (NumZeroBits >= RegSize-1)
727 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
728 else if (NumSignBits > RegSize-8)
729 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
730 else if (NumZeroBits >= RegSize-8)
731 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
732 else if (NumSignBits > RegSize-16)
733 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
734 else if (NumZeroBits >= RegSize-16)
735 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736 else if (NumSignBits > RegSize-32)
737 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
738 else if (NumZeroBits >= RegSize-32)
739 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740 else
741 continue;
742
743 // Add an assertion node.
744 assert(FromVT != MVT::Other);
745 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746 RegisterVT, P, DAG.getValueType(FromVT));
747 }
748
749 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750 NumRegs, RegisterVT, ValueVT, V);
751 Part += NumRegs;
752 Parts.clear();
753 }
754
755 return DAG.getNode(ISD::MERGE_VALUES, dl,
756 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757 &Values[0], ValueVTs.size());
758 }
759
760 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761 /// specified value into the registers specified by this object. This uses
762 /// Chain/Flag as the input and updates them for the output Chain/Flag.
763 /// If the Flag pointer is NULL, no flag is used.
getCopyToRegs(SDValue Val,SelectionDAG & DAG,DebugLoc dl,SDValue & Chain,SDValue * Flag,const Value * V) const764 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
765 SDValue &Chain, SDValue *Flag,
766 const Value *V) const {
767 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769 // Get the list of the values's legal parts.
770 unsigned NumRegs = Regs.size();
771 SmallVector<SDValue, 8> Parts(NumRegs);
772 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773 EVT ValueVT = ValueVTs[Value];
774 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775 MVT RegisterVT = RegVTs[Value];
776 ISD::NodeType ExtendKind =
777 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780 &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781 Part += NumParts;
782 }
783
784 // Copy the parts into the registers.
785 SmallVector<SDValue, 8> Chains(NumRegs);
786 for (unsigned i = 0; i != NumRegs; ++i) {
787 SDValue Part;
788 if (Flag == 0) {
789 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790 } else {
791 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792 *Flag = Part.getValue(1);
793 }
794
795 Chains[i] = Part.getValue(0);
796 }
797
798 if (NumRegs == 1 || Flag)
799 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800 // flagged to it. That is the CopyToReg nodes and the user are considered
801 // a single scheduling unit. If we create a TokenFactor and return it as
802 // chain, then the TokenFactor is both a predecessor (operand) of the
803 // user as well as a successor (the TF operands are flagged to the user).
804 // c1, f1 = CopyToReg
805 // c2, f2 = CopyToReg
806 // c3 = TokenFactor c1, c2
807 // ...
808 // = op c3, ..., f2
809 Chain = Chains[NumRegs-1];
810 else
811 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812 }
813
814 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
815 /// operand list. This adds the code marker and includes the number of
816 /// values added into it.
AddInlineAsmOperands(unsigned Code,bool HasMatching,unsigned MatchingIdx,SelectionDAG & DAG,std::vector<SDValue> & Ops) const817 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818 unsigned MatchingIdx,
819 SelectionDAG &DAG,
820 std::vector<SDValue> &Ops) const {
821 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824 if (HasMatching)
825 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826 else if (!Regs.empty() &&
827 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828 // Put the register class of the virtual registers in the flag word. That
829 // way, later passes can recompute register class constraints for inline
830 // assembly as well as normal instructions.
831 // Don't do this for tied operands that can use the regclass information
832 // from the def.
833 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836 }
837
838 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839 Ops.push_back(Res);
840
841 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843 MVT RegisterVT = RegVTs[Value];
844 for (unsigned i = 0; i != NumRegs; ++i) {
845 assert(Reg < Regs.size() && "Mismatch in # registers expected");
846 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
847 }
848 }
849 }
850
init(GCFunctionInfo * gfi,AliasAnalysis & aa,const TargetLibraryInfo * li)851 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
852 const TargetLibraryInfo *li) {
853 AA = &aa;
854 GFI = gfi;
855 LibInfo = li;
856 TD = DAG.getTarget().getDataLayout();
857 Context = DAG.getContext();
858 LPadToCallSiteMap.clear();
859 }
860
861 /// clear - Clear out the current SelectionDAG and the associated
862 /// state and prepare this SelectionDAGBuilder object to be used
863 /// for a new block. This doesn't clear out information about
864 /// additional blocks that are needed to complete switch lowering
865 /// or PHI node updating; that information is cleared out as it is
866 /// consumed.
clear()867 void SelectionDAGBuilder::clear() {
868 NodeMap.clear();
869 UnusedArgNodeMap.clear();
870 PendingLoads.clear();
871 PendingExports.clear();
872 CurDebugLoc = DebugLoc();
873 HasTailCall = false;
874 }
875
876 /// clearDanglingDebugInfo - Clear the dangling debug information
877 /// map. This function is separated from the clear so that debug
878 /// information that is dangling in a basic block can be properly
879 /// resolved in a different basic block. This allows the
880 /// SelectionDAG to resolve dangling debug information attached
881 /// to PHI nodes.
clearDanglingDebugInfo()882 void SelectionDAGBuilder::clearDanglingDebugInfo() {
883 DanglingDebugInfoMap.clear();
884 }
885
886 /// getRoot - Return the current virtual root of the Selection DAG,
887 /// flushing any PendingLoad items. This must be done before emitting
888 /// a store or any other node that may need to be ordered after any
889 /// prior load instructions.
890 ///
getRoot()891 SDValue SelectionDAGBuilder::getRoot() {
892 if (PendingLoads.empty())
893 return DAG.getRoot();
894
895 if (PendingLoads.size() == 1) {
896 SDValue Root = PendingLoads[0];
897 DAG.setRoot(Root);
898 PendingLoads.clear();
899 return Root;
900 }
901
902 // Otherwise, we have to make a token factor node.
903 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904 &PendingLoads[0], PendingLoads.size());
905 PendingLoads.clear();
906 DAG.setRoot(Root);
907 return Root;
908 }
909
910 /// getControlRoot - Similar to getRoot, but instead of flushing all the
911 /// PendingLoad items, flush all the PendingExports items. It is necessary
912 /// to do this before emitting a terminator instruction.
913 ///
getControlRoot()914 SDValue SelectionDAGBuilder::getControlRoot() {
915 SDValue Root = DAG.getRoot();
916
917 if (PendingExports.empty())
918 return Root;
919
920 // Turn all of the CopyToReg chains into one factored node.
921 if (Root.getOpcode() != ISD::EntryToken) {
922 unsigned i = 0, e = PendingExports.size();
923 for (; i != e; ++i) {
924 assert(PendingExports[i].getNode()->getNumOperands() > 1);
925 if (PendingExports[i].getNode()->getOperand(0) == Root)
926 break; // Don't add the root if we already indirectly depend on it.
927 }
928
929 if (i == e)
930 PendingExports.push_back(Root);
931 }
932
933 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
934 &PendingExports[0],
935 PendingExports.size());
936 PendingExports.clear();
937 DAG.setRoot(Root);
938 return Root;
939 }
940
AssignOrderingToNode(const SDNode * Node)941 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
942 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
943 DAG.AssignOrdering(Node, SDNodeOrder);
944
945 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
946 AssignOrderingToNode(Node->getOperand(I).getNode());
947 }
948
visit(const Instruction & I)949 void SelectionDAGBuilder::visit(const Instruction &I) {
950 // Set up outgoing PHI node register values before emitting the terminator.
951 if (isa<TerminatorInst>(&I))
952 HandlePHINodesInSuccessorBlocks(I.getParent());
953
954 CurDebugLoc = I.getDebugLoc();
955
956 visit(I.getOpcode(), I);
957
958 if (!isa<TerminatorInst>(&I) && !HasTailCall)
959 CopyToExportRegsIfNeeded(&I);
960
961 CurDebugLoc = DebugLoc();
962 }
963
visitPHI(const PHINode &)964 void SelectionDAGBuilder::visitPHI(const PHINode &) {
965 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
966 }
967
visit(unsigned Opcode,const User & I)968 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
969 // Note: this doesn't use InstVisitor, because it has to work with
970 // ConstantExpr's in addition to instructions.
971 switch (Opcode) {
972 default: llvm_unreachable("Unknown instruction type encountered!");
973 // Build the switch statement using the Instruction.def file.
974 #define HANDLE_INST(NUM, OPCODE, CLASS) \
975 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
976 #include "llvm/IR/Instruction.def"
977 }
978
979 // Assign the ordering to the freshly created DAG nodes.
980 if (NodeMap.count(&I)) {
981 ++SDNodeOrder;
982 AssignOrderingToNode(getValue(&I).getNode());
983 }
984 }
985
986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989 SDValue Val) {
990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991 if (DDI.getDI()) {
992 const DbgValueInst *DI = DDI.getDI();
993 DebugLoc dl = DDI.getdl();
994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995 MDNode *Variable = DI->getVariable();
996 uint64_t Offset = DI->getOffset();
997 SDDbgValue *SDV;
998 if (Val.getNode()) {
999 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000 SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001 Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002 DAG.AddDbgValue(SDV, Val.getNode(), false);
1003 }
1004 } else
1005 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1006 DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007 }
1008 }
1009
1010 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)1011 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012 // If we already have an SDValue for this value, use it. It's important
1013 // to do this first, so that we don't create a CopyFromReg if we already
1014 // have a regular SDValue.
1015 SDValue &N = NodeMap[V];
1016 if (N.getNode()) return N;
1017
1018 // If there's a virtual register allocated and initialized for this
1019 // value, use it.
1020 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021 if (It != FuncInfo.ValueMap.end()) {
1022 unsigned InReg = It->second;
1023 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1024 SDValue Chain = DAG.getEntryNode();
1025 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1026 resolveDanglingDebugInfo(V, N);
1027 return N;
1028 }
1029
1030 // Otherwise create a new SDValue and remember it.
1031 SDValue Val = getValueImpl(V);
1032 NodeMap[V] = Val;
1033 resolveDanglingDebugInfo(V, Val);
1034 return Val;
1035 }
1036
1037 /// getNonRegisterValue - Return an SDValue for the given Value, but
1038 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1039 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1040 // If we already have an SDValue for this value, use it.
1041 SDValue &N = NodeMap[V];
1042 if (N.getNode()) return N;
1043
1044 // Otherwise create a new SDValue and remember it.
1045 SDValue Val = getValueImpl(V);
1046 NodeMap[V] = Val;
1047 resolveDanglingDebugInfo(V, Val);
1048 return Val;
1049 }
1050
1051 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1052 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1053 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1054 if (const Constant *C = dyn_cast<Constant>(V)) {
1055 EVT VT = TLI.getValueType(V->getType(), true);
1056
1057 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058 return DAG.getConstant(*CI, VT);
1059
1060 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1062
1063 if (isa<ConstantPointerNull>(C))
1064 return DAG.getConstant(0, TLI.getPointerTy());
1065
1066 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067 return DAG.getConstantFP(*CFP, VT);
1068
1069 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070 return DAG.getUNDEF(VT);
1071
1072 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073 visit(CE->getOpcode(), *CE);
1074 SDValue N1 = NodeMap[V];
1075 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076 return N1;
1077 }
1078
1079 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080 SmallVector<SDValue, 4> Constants;
1081 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082 OI != OE; ++OI) {
1083 SDNode *Val = getValue(*OI).getNode();
1084 // If the operand is an empty aggregate, there are no values.
1085 if (!Val) continue;
1086 // Add each leaf value from the operand to the Constants list
1087 // to form a flattened list of all the values.
1088 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089 Constants.push_back(SDValue(Val, i));
1090 }
1091
1092 return DAG.getMergeValues(&Constants[0], Constants.size(),
1093 getCurDebugLoc());
1094 }
1095
1096 if (const ConstantDataSequential *CDS =
1097 dyn_cast<ConstantDataSequential>(C)) {
1098 SmallVector<SDValue, 4> Ops;
1099 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101 // Add each leaf value from the operand to the Constants list
1102 // to form a flattened list of all the values.
1103 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104 Ops.push_back(SDValue(Val, i));
1105 }
1106
1107 if (isa<ArrayType>(CDS->getType()))
1108 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1109 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1110 VT, &Ops[0], Ops.size());
1111 }
1112
1113 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115 "Unknown struct or array constant!");
1116
1117 SmallVector<EVT, 4> ValueVTs;
1118 ComputeValueVTs(TLI, C->getType(), ValueVTs);
1119 unsigned NumElts = ValueVTs.size();
1120 if (NumElts == 0)
1121 return SDValue(); // empty struct
1122 SmallVector<SDValue, 4> Constants(NumElts);
1123 for (unsigned i = 0; i != NumElts; ++i) {
1124 EVT EltVT = ValueVTs[i];
1125 if (isa<UndefValue>(C))
1126 Constants[i] = DAG.getUNDEF(EltVT);
1127 else if (EltVT.isFloatingPoint())
1128 Constants[i] = DAG.getConstantFP(0, EltVT);
1129 else
1130 Constants[i] = DAG.getConstant(0, EltVT);
1131 }
1132
1133 return DAG.getMergeValues(&Constants[0], NumElts,
1134 getCurDebugLoc());
1135 }
1136
1137 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138 return DAG.getBlockAddress(BA, VT);
1139
1140 VectorType *VecTy = cast<VectorType>(V->getType());
1141 unsigned NumElements = VecTy->getNumElements();
1142
1143 // Now that we know the number and type of the elements, get that number of
1144 // elements into the Ops array based on what kind of constant it is.
1145 SmallVector<SDValue, 16> Ops;
1146 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147 for (unsigned i = 0; i != NumElements; ++i)
1148 Ops.push_back(getValue(CV->getOperand(i)));
1149 } else {
1150 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151 EVT EltVT = TLI.getValueType(VecTy->getElementType());
1152
1153 SDValue Op;
1154 if (EltVT.isFloatingPoint())
1155 Op = DAG.getConstantFP(0, EltVT);
1156 else
1157 Op = DAG.getConstant(0, EltVT);
1158 Ops.assign(NumElements, Op);
1159 }
1160
1161 // Create a BUILD_VECTOR node.
1162 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1163 VT, &Ops[0], Ops.size());
1164 }
1165
1166 // If this is a static alloca, generate it as the frameindex instead of
1167 // computation.
1168 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169 DenseMap<const AllocaInst*, int>::iterator SI =
1170 FuncInfo.StaticAllocaMap.find(AI);
1171 if (SI != FuncInfo.StaticAllocaMap.end())
1172 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1173 }
1174
1175 // If this is an instruction which fast-isel has deferred, select it now.
1176 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1179 SDValue Chain = DAG.getEntryNode();
1180 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1181 }
1182
1183 llvm_unreachable("Can't get register for value!");
1184 }
1185
visitRet(const ReturnInst & I)1186 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187 SDValue Chain = getControlRoot();
1188 SmallVector<ISD::OutputArg, 8> Outs;
1189 SmallVector<SDValue, 8> OutVals;
1190
1191 if (!FuncInfo.CanLowerReturn) {
1192 unsigned DemoteReg = FuncInfo.DemoteRegister;
1193 const Function *F = I.getParent()->getParent();
1194
1195 // Emit a store of the return value through the virtual register.
1196 // Leave Outs empty so that LowerReturn won't try to load return
1197 // registers the usual way.
1198 SmallVector<EVT, 1> PtrValueVTs;
1199 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1200 PtrValueVTs);
1201
1202 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1203 SDValue RetOp = getValue(I.getOperand(0));
1204
1205 SmallVector<EVT, 4> ValueVTs;
1206 SmallVector<uint64_t, 4> Offsets;
1207 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1208 unsigned NumValues = ValueVTs.size();
1209
1210 SmallVector<SDValue, 4> Chains(NumValues);
1211 for (unsigned i = 0; i != NumValues; ++i) {
1212 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1213 RetPtr.getValueType(), RetPtr,
1214 DAG.getIntPtrConstant(Offsets[i]));
1215 Chains[i] =
1216 DAG.getStore(Chain, getCurDebugLoc(),
1217 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1218 // FIXME: better loc info would be nice.
1219 Add, MachinePointerInfo(), false, false, 0);
1220 }
1221
1222 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1223 MVT::Other, &Chains[0], NumValues);
1224 } else if (I.getNumOperands() != 0) {
1225 SmallVector<EVT, 4> ValueVTs;
1226 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1227 unsigned NumValues = ValueVTs.size();
1228 if (NumValues) {
1229 SDValue RetOp = getValue(I.getOperand(0));
1230 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1231 EVT VT = ValueVTs[j];
1232
1233 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1234
1235 const Function *F = I.getParent()->getParent();
1236 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1237 Attribute::SExt))
1238 ExtendKind = ISD::SIGN_EXTEND;
1239 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1240 Attribute::ZExt))
1241 ExtendKind = ISD::ZERO_EXTEND;
1242
1243 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1244 VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1245
1246 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1247 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1248 SmallVector<SDValue, 4> Parts(NumParts);
1249 getCopyToParts(DAG, getCurDebugLoc(),
1250 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1251 &Parts[0], NumParts, PartVT, &I, ExtendKind);
1252
1253 // 'inreg' on function refers to return value
1254 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1255 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1256 Attribute::InReg))
1257 Flags.setInReg();
1258
1259 // Propagate extension type if any
1260 if (ExtendKind == ISD::SIGN_EXTEND)
1261 Flags.setSExt();
1262 else if (ExtendKind == ISD::ZERO_EXTEND)
1263 Flags.setZExt();
1264
1265 for (unsigned i = 0; i < NumParts; ++i) {
1266 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1267 /*isfixed=*/true, 0, 0));
1268 OutVals.push_back(Parts[i]);
1269 }
1270 }
1271 }
1272 }
1273
1274 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1275 CallingConv::ID CallConv =
1276 DAG.getMachineFunction().getFunction()->getCallingConv();
1277 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1278 Outs, OutVals, getCurDebugLoc(), DAG);
1279
1280 // Verify that the target's LowerReturn behaved as expected.
1281 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1282 "LowerReturn didn't return a valid chain!");
1283
1284 // Update the DAG with the new chain value resulting from return lowering.
1285 DAG.setRoot(Chain);
1286 }
1287
1288 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1289 /// created for it, emit nodes to copy the value into the virtual
1290 /// registers.
CopyToExportRegsIfNeeded(const Value * V)1291 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1292 // Skip empty types
1293 if (V->getType()->isEmptyTy())
1294 return;
1295
1296 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1297 if (VMI != FuncInfo.ValueMap.end()) {
1298 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1299 CopyValueToVirtualRegister(V, VMI->second);
1300 }
1301 }
1302
1303 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1304 /// the current basic block, add it to ValueMap now so that we'll get a
1305 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)1306 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1307 // No need to export constants.
1308 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1309
1310 // Already exported?
1311 if (FuncInfo.isExportedInst(V)) return;
1312
1313 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1314 CopyValueToVirtualRegister(V, Reg);
1315 }
1316
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)1317 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1318 const BasicBlock *FromBB) {
1319 // The operands of the setcc have to be in this block. We don't know
1320 // how to export them from some other block.
1321 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1322 // Can export from current BB.
1323 if (VI->getParent() == FromBB)
1324 return true;
1325
1326 // Is already exported, noop.
1327 return FuncInfo.isExportedInst(V);
1328 }
1329
1330 // If this is an argument, we can export it if the BB is the entry block or
1331 // if it is already exported.
1332 if (isa<Argument>(V)) {
1333 if (FromBB == &FromBB->getParent()->getEntryBlock())
1334 return true;
1335
1336 // Otherwise, can only export this if it is already exported.
1337 return FuncInfo.isExportedInst(V);
1338 }
1339
1340 // Otherwise, constants can always be exported.
1341 return true;
1342 }
1343
1344 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
getEdgeWeight(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const1345 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1346 const MachineBasicBlock *Dst) const {
1347 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1348 if (!BPI)
1349 return 0;
1350 const BasicBlock *SrcBB = Src->getBasicBlock();
1351 const BasicBlock *DstBB = Dst->getBasicBlock();
1352 return BPI->getEdgeWeight(SrcBB, DstBB);
1353 }
1354
1355 void SelectionDAGBuilder::
addSuccessorWithWeight(MachineBasicBlock * Src,MachineBasicBlock * Dst,uint32_t Weight)1356 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1357 uint32_t Weight /* = 0 */) {
1358 if (!Weight)
1359 Weight = getEdgeWeight(Src, Dst);
1360 Src->addSuccessor(Dst, Weight);
1361 }
1362
1363
InBlock(const Value * V,const BasicBlock * BB)1364 static bool InBlock(const Value *V, const BasicBlock *BB) {
1365 if (const Instruction *I = dyn_cast<Instruction>(V))
1366 return I->getParent() == BB;
1367 return true;
1368 }
1369
1370 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1371 /// This function emits a branch and is used at the leaves of an OR or an
1372 /// AND operator tree.
1373 ///
1374 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB)1375 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1376 MachineBasicBlock *TBB,
1377 MachineBasicBlock *FBB,
1378 MachineBasicBlock *CurBB,
1379 MachineBasicBlock *SwitchBB) {
1380 const BasicBlock *BB = CurBB->getBasicBlock();
1381
1382 // If the leaf of the tree is a comparison, merge the condition into
1383 // the caseblock.
1384 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1385 // The operands of the cmp have to be in this block. We don't know
1386 // how to export them from some other block. If this is the first block
1387 // of the sequence, no exporting is needed.
1388 if (CurBB == SwitchBB ||
1389 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1390 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1391 ISD::CondCode Condition;
1392 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1393 Condition = getICmpCondCode(IC->getPredicate());
1394 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1395 Condition = getFCmpCondCode(FC->getPredicate());
1396 if (TM.Options.NoNaNsFPMath)
1397 Condition = getFCmpCodeWithoutNaN(Condition);
1398 } else {
1399 Condition = ISD::SETEQ; // silence warning.
1400 llvm_unreachable("Unknown compare instruction");
1401 }
1402
1403 CaseBlock CB(Condition, BOp->getOperand(0),
1404 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1405 SwitchCases.push_back(CB);
1406 return;
1407 }
1408 }
1409
1410 // Create a CaseBlock record representing this branch.
1411 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1412 NULL, TBB, FBB, CurBB);
1413 SwitchCases.push_back(CB);
1414 }
1415
1416 /// FindMergedConditions - If Cond is an expression like
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,unsigned Opc)1417 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1418 MachineBasicBlock *TBB,
1419 MachineBasicBlock *FBB,
1420 MachineBasicBlock *CurBB,
1421 MachineBasicBlock *SwitchBB,
1422 unsigned Opc) {
1423 // If this node is not part of the or/and tree, emit it as a branch.
1424 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1425 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1426 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1427 BOp->getParent() != CurBB->getBasicBlock() ||
1428 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1429 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1430 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1431 return;
1432 }
1433
1434 // Create TmpBB after CurBB.
1435 MachineFunction::iterator BBI = CurBB;
1436 MachineFunction &MF = DAG.getMachineFunction();
1437 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1438 CurBB->getParent()->insert(++BBI, TmpBB);
1439
1440 if (Opc == Instruction::Or) {
1441 // Codegen X | Y as:
1442 // jmp_if_X TBB
1443 // jmp TmpBB
1444 // TmpBB:
1445 // jmp_if_Y TBB
1446 // jmp FBB
1447 //
1448
1449 // Emit the LHS condition.
1450 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1451
1452 // Emit the RHS condition into TmpBB.
1453 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1454 } else {
1455 assert(Opc == Instruction::And && "Unknown merge op!");
1456 // Codegen X & Y as:
1457 // jmp_if_X TmpBB
1458 // jmp FBB
1459 // TmpBB:
1460 // jmp_if_Y TBB
1461 // jmp FBB
1462 //
1463 // This requires creation of TmpBB after CurBB.
1464
1465 // Emit the LHS condition.
1466 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1467
1468 // Emit the RHS condition into TmpBB.
1469 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1470 }
1471 }
1472
1473 /// If the set of cases should be emitted as a series of branches, return true.
1474 /// If we should emit this as a bunch of and/or'd together conditions, return
1475 /// false.
1476 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)1477 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1478 if (Cases.size() != 2) return true;
1479
1480 // If this is two comparisons of the same values or'd or and'd together, they
1481 // will get folded into a single comparison, so don't emit two blocks.
1482 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1483 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1484 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1485 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1486 return false;
1487 }
1488
1489 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1490 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1491 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1492 Cases[0].CC == Cases[1].CC &&
1493 isa<Constant>(Cases[0].CmpRHS) &&
1494 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1495 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1496 return false;
1497 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1498 return false;
1499 }
1500
1501 return true;
1502 }
1503
visitBr(const BranchInst & I)1504 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1505 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1506
1507 // Update machine-CFG edges.
1508 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1509
1510 // Figure out which block is immediately after the current one.
1511 MachineBasicBlock *NextBlock = 0;
1512 MachineFunction::iterator BBI = BrMBB;
1513 if (++BBI != FuncInfo.MF->end())
1514 NextBlock = BBI;
1515
1516 if (I.isUnconditional()) {
1517 // Update machine-CFG edges.
1518 BrMBB->addSuccessor(Succ0MBB);
1519
1520 // If this is not a fall-through branch, emit the branch.
1521 if (Succ0MBB != NextBlock)
1522 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1523 MVT::Other, getControlRoot(),
1524 DAG.getBasicBlock(Succ0MBB)));
1525
1526 return;
1527 }
1528
1529 // If this condition is one of the special cases we handle, do special stuff
1530 // now.
1531 const Value *CondVal = I.getCondition();
1532 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1533
1534 // If this is a series of conditions that are or'd or and'd together, emit
1535 // this as a sequence of branches instead of setcc's with and/or operations.
1536 // As long as jumps are not expensive, this should improve performance.
1537 // For example, instead of something like:
1538 // cmp A, B
1539 // C = seteq
1540 // cmp D, E
1541 // F = setle
1542 // or C, F
1543 // jnz foo
1544 // Emit:
1545 // cmp A, B
1546 // je foo
1547 // cmp D, E
1548 // jle foo
1549 //
1550 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1551 if (!TLI.isJumpExpensive() &&
1552 BOp->hasOneUse() &&
1553 (BOp->getOpcode() == Instruction::And ||
1554 BOp->getOpcode() == Instruction::Or)) {
1555 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1556 BOp->getOpcode());
1557 // If the compares in later blocks need to use values not currently
1558 // exported from this block, export them now. This block should always
1559 // be the first entry.
1560 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1561
1562 // Allow some cases to be rejected.
1563 if (ShouldEmitAsBranches(SwitchCases)) {
1564 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1565 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1566 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1567 }
1568
1569 // Emit the branch for this block.
1570 visitSwitchCase(SwitchCases[0], BrMBB);
1571 SwitchCases.erase(SwitchCases.begin());
1572 return;
1573 }
1574
1575 // Okay, we decided not to do this, remove any inserted MBB's and clear
1576 // SwitchCases.
1577 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1578 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1579
1580 SwitchCases.clear();
1581 }
1582 }
1583
1584 // Create a CaseBlock record representing this branch.
1585 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1586 NULL, Succ0MBB, Succ1MBB, BrMBB);
1587
1588 // Use visitSwitchCase to actually insert the fast branch sequence for this
1589 // cond branch.
1590 visitSwitchCase(CB, BrMBB);
1591 }
1592
1593 /// visitSwitchCase - Emits the necessary code to represent a single node in
1594 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)1595 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1596 MachineBasicBlock *SwitchBB) {
1597 SDValue Cond;
1598 SDValue CondLHS = getValue(CB.CmpLHS);
1599 DebugLoc dl = getCurDebugLoc();
1600
1601 // Build the setcc now.
1602 if (CB.CmpMHS == NULL) {
1603 // Fold "(X == true)" to X and "(X == false)" to !X to
1604 // handle common cases produced by branch lowering.
1605 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1606 CB.CC == ISD::SETEQ)
1607 Cond = CondLHS;
1608 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1609 CB.CC == ISD::SETEQ) {
1610 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1611 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1612 } else
1613 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1614 } else {
1615 assert(CB.CC == ISD::SETCC_INVALID &&
1616 "Condition is undefined for to-the-range belonging check.");
1617
1618 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1619 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1620
1621 SDValue CmpOp = getValue(CB.CmpMHS);
1622 EVT VT = CmpOp.getValueType();
1623
1624 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1625 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1626 ISD::SETULE);
1627 } else {
1628 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1629 VT, CmpOp, DAG.getConstant(Low, VT));
1630 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1631 DAG.getConstant(High-Low, VT), ISD::SETULE);
1632 }
1633 }
1634
1635 // Update successor info
1636 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1637 // TrueBB and FalseBB are always different unless the incoming IR is
1638 // degenerate. This only happens when running llc on weird IR.
1639 if (CB.TrueBB != CB.FalseBB)
1640 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1641
1642 // Set NextBlock to be the MBB immediately after the current one, if any.
1643 // This is used to avoid emitting unnecessary branches to the next block.
1644 MachineBasicBlock *NextBlock = 0;
1645 MachineFunction::iterator BBI = SwitchBB;
1646 if (++BBI != FuncInfo.MF->end())
1647 NextBlock = BBI;
1648
1649 // If the lhs block is the next block, invert the condition so that we can
1650 // fall through to the lhs instead of the rhs block.
1651 if (CB.TrueBB == NextBlock) {
1652 std::swap(CB.TrueBB, CB.FalseBB);
1653 SDValue True = DAG.getConstant(1, Cond.getValueType());
1654 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1655 }
1656
1657 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1658 MVT::Other, getControlRoot(), Cond,
1659 DAG.getBasicBlock(CB.TrueBB));
1660
1661 // Insert the false branch. Do this even if it's a fall through branch,
1662 // this makes it easier to do DAG optimizations which require inverting
1663 // the branch condition.
1664 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1665 DAG.getBasicBlock(CB.FalseBB));
1666
1667 DAG.setRoot(BrCond);
1668 }
1669
1670 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(JumpTable & JT)1671 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1672 // Emit the code for the jump table
1673 assert(JT.Reg != -1U && "Should lower JT Header first!");
1674 EVT PTy = TLI.getPointerTy();
1675 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1676 JT.Reg, PTy);
1677 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1678 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1679 MVT::Other, Index.getValue(1),
1680 Table, Index);
1681 DAG.setRoot(BrJumpTable);
1682 }
1683
1684 /// visitJumpTableHeader - This function emits necessary code to produce index
1685 /// in the JumpTable from switch case.
visitJumpTableHeader(JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)1686 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1687 JumpTableHeader &JTH,
1688 MachineBasicBlock *SwitchBB) {
1689 // Subtract the lowest switch case value from the value being switched on and
1690 // conditional branch to default mbb if the result is greater than the
1691 // difference between smallest and largest cases.
1692 SDValue SwitchOp = getValue(JTH.SValue);
1693 EVT VT = SwitchOp.getValueType();
1694 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1695 DAG.getConstant(JTH.First, VT));
1696
1697 // The SDNode we just created, which holds the value being switched on minus
1698 // the smallest case value, needs to be copied to a virtual register so it
1699 // can be used as an index into the jump table in a subsequent basic block.
1700 // This value may be smaller or larger than the target's pointer type, and
1701 // therefore require extension or truncating.
1702 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1703
1704 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1705 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1706 JumpTableReg, SwitchOp);
1707 JT.Reg = JumpTableReg;
1708
1709 // Emit the range check for the jump table, and branch to the default block
1710 // for the switch statement if the value being switched on exceeds the largest
1711 // case in the switch.
1712 SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1713 TLI.getSetCCResultType(Sub.getValueType()), Sub,
1714 DAG.getConstant(JTH.Last-JTH.First,VT),
1715 ISD::SETUGT);
1716
1717 // Set NextBlock to be the MBB immediately after the current one, if any.
1718 // This is used to avoid emitting unnecessary branches to the next block.
1719 MachineBasicBlock *NextBlock = 0;
1720 MachineFunction::iterator BBI = SwitchBB;
1721
1722 if (++BBI != FuncInfo.MF->end())
1723 NextBlock = BBI;
1724
1725 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1726 MVT::Other, CopyTo, CMP,
1727 DAG.getBasicBlock(JT.Default));
1728
1729 if (JT.MBB != NextBlock)
1730 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1731 DAG.getBasicBlock(JT.MBB));
1732
1733 DAG.setRoot(BrCond);
1734 }
1735
1736 /// visitBitTestHeader - This function emits necessary code to produce value
1737 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)1738 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1739 MachineBasicBlock *SwitchBB) {
1740 // Subtract the minimum value
1741 SDValue SwitchOp = getValue(B.SValue);
1742 EVT VT = SwitchOp.getValueType();
1743 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1744 DAG.getConstant(B.First, VT));
1745
1746 // Check range
1747 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1748 TLI.getSetCCResultType(Sub.getValueType()),
1749 Sub, DAG.getConstant(B.Range, VT),
1750 ISD::SETUGT);
1751
1752 // Determine the type of the test operands.
1753 bool UsePtrType = false;
1754 if (!TLI.isTypeLegal(VT))
1755 UsePtrType = true;
1756 else {
1757 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1758 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1759 // Switch table case range are encoded into series of masks.
1760 // Just use pointer type, it's guaranteed to fit.
1761 UsePtrType = true;
1762 break;
1763 }
1764 }
1765 if (UsePtrType) {
1766 VT = TLI.getPointerTy();
1767 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1768 }
1769
1770 B.RegVT = VT.getSimpleVT();
1771 B.Reg = FuncInfo.CreateReg(B.RegVT);
1772 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1773 B.Reg, Sub);
1774
1775 // Set NextBlock to be the MBB immediately after the current one, if any.
1776 // This is used to avoid emitting unnecessary branches to the next block.
1777 MachineBasicBlock *NextBlock = 0;
1778 MachineFunction::iterator BBI = SwitchBB;
1779 if (++BBI != FuncInfo.MF->end())
1780 NextBlock = BBI;
1781
1782 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1783
1784 addSuccessorWithWeight(SwitchBB, B.Default);
1785 addSuccessorWithWeight(SwitchBB, MBB);
1786
1787 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1788 MVT::Other, CopyTo, RangeCmp,
1789 DAG.getBasicBlock(B.Default));
1790
1791 if (MBB != NextBlock)
1792 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1793 DAG.getBasicBlock(MBB));
1794
1795 DAG.setRoot(BrRange);
1796 }
1797
1798 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,uint32_t BranchWeightToNext,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)1799 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1800 MachineBasicBlock* NextMBB,
1801 uint32_t BranchWeightToNext,
1802 unsigned Reg,
1803 BitTestCase &B,
1804 MachineBasicBlock *SwitchBB) {
1805 MVT VT = BB.RegVT;
1806 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1807 Reg, VT);
1808 SDValue Cmp;
1809 unsigned PopCount = CountPopulation_64(B.Mask);
1810 if (PopCount == 1) {
1811 // Testing for a single bit; just compare the shift count with what it
1812 // would need to be to shift a 1 bit in that position.
1813 Cmp = DAG.getSetCC(getCurDebugLoc(),
1814 TLI.getSetCCResultType(VT),
1815 ShiftOp,
1816 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1817 ISD::SETEQ);
1818 } else if (PopCount == BB.Range) {
1819 // There is only one zero bit in the range, test for it directly.
1820 Cmp = DAG.getSetCC(getCurDebugLoc(),
1821 TLI.getSetCCResultType(VT),
1822 ShiftOp,
1823 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1824 ISD::SETNE);
1825 } else {
1826 // Make desired shift
1827 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1828 DAG.getConstant(1, VT), ShiftOp);
1829
1830 // Emit bit tests and jumps
1831 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1832 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1833 Cmp = DAG.getSetCC(getCurDebugLoc(),
1834 TLI.getSetCCResultType(VT),
1835 AndOp, DAG.getConstant(0, VT),
1836 ISD::SETNE);
1837 }
1838
1839 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1840 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1841 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1842 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1843
1844 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1845 MVT::Other, getControlRoot(),
1846 Cmp, DAG.getBasicBlock(B.TargetBB));
1847
1848 // Set NextBlock to be the MBB immediately after the current one, if any.
1849 // This is used to avoid emitting unnecessary branches to the next block.
1850 MachineBasicBlock *NextBlock = 0;
1851 MachineFunction::iterator BBI = SwitchBB;
1852 if (++BBI != FuncInfo.MF->end())
1853 NextBlock = BBI;
1854
1855 if (NextMBB != NextBlock)
1856 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1857 DAG.getBasicBlock(NextMBB));
1858
1859 DAG.setRoot(BrAnd);
1860 }
1861
visitInvoke(const InvokeInst & I)1862 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1863 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1864
1865 // Retrieve successors.
1866 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1867 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1868
1869 const Value *Callee(I.getCalledValue());
1870 const Function *Fn = dyn_cast<Function>(Callee);
1871 if (isa<InlineAsm>(Callee))
1872 visitInlineAsm(&I);
1873 else if (Fn && Fn->isIntrinsic()) {
1874 assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1875 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1876 } else
1877 LowerCallTo(&I, getValue(Callee), false, LandingPad);
1878
1879 // If the value of the invoke is used outside of its defining block, make it
1880 // available as a virtual register.
1881 CopyToExportRegsIfNeeded(&I);
1882
1883 // Update successor info
1884 addSuccessorWithWeight(InvokeMBB, Return);
1885 addSuccessorWithWeight(InvokeMBB, LandingPad);
1886
1887 // Drop into normal successor.
1888 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1889 MVT::Other, getControlRoot(),
1890 DAG.getBasicBlock(Return)));
1891 }
1892
visitResume(const ResumeInst & RI)1893 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1894 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1895 }
1896
visitLandingPad(const LandingPadInst & LP)1897 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1898 assert(FuncInfo.MBB->isLandingPad() &&
1899 "Call to landingpad not in landing pad!");
1900
1901 MachineBasicBlock *MBB = FuncInfo.MBB;
1902 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1903 AddLandingPadInfo(LP, MMI, MBB);
1904
1905 // If there aren't registers to copy the values into (e.g., during SjLj
1906 // exceptions), then don't bother to create these DAG nodes.
1907 if (TLI.getExceptionPointerRegister() == 0 &&
1908 TLI.getExceptionSelectorRegister() == 0)
1909 return;
1910
1911 SmallVector<EVT, 2> ValueVTs;
1912 ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1913
1914 // Insert the EXCEPTIONADDR instruction.
1915 assert(FuncInfo.MBB->isLandingPad() &&
1916 "Call to eh.exception not in landing pad!");
1917 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1918 SDValue Ops[2];
1919 Ops[0] = DAG.getRoot();
1920 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1921 SDValue Chain = Op1.getValue(1);
1922
1923 // Insert the EHSELECTION instruction.
1924 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1925 Ops[0] = Op1;
1926 Ops[1] = Chain;
1927 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1928 Chain = Op2.getValue(1);
1929 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1930
1931 Ops[0] = Op1;
1932 Ops[1] = Op2;
1933 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1934 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1935 &Ops[0], 2);
1936
1937 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1938 setValue(&LP, RetPair.first);
1939 DAG.setRoot(RetPair.second);
1940 }
1941
1942 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1943 /// small case ranges).
handleSmallSwitchRange(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)1944 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1945 CaseRecVector& WorkList,
1946 const Value* SV,
1947 MachineBasicBlock *Default,
1948 MachineBasicBlock *SwitchBB) {
1949 // Size is the number of Cases represented by this range.
1950 size_t Size = CR.Range.second - CR.Range.first;
1951 if (Size > 3)
1952 return false;
1953
1954 // Get the MachineFunction which holds the current MBB. This is used when
1955 // inserting any additional MBBs necessary to represent the switch.
1956 MachineFunction *CurMF = FuncInfo.MF;
1957
1958 // Figure out which block is immediately after the current one.
1959 MachineBasicBlock *NextBlock = 0;
1960 MachineFunction::iterator BBI = CR.CaseBB;
1961
1962 if (++BBI != FuncInfo.MF->end())
1963 NextBlock = BBI;
1964
1965 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1966 // If any two of the cases has the same destination, and if one value
1967 // is the same as the other, but has one bit unset that the other has set,
1968 // use bit manipulation to do two compares at once. For example:
1969 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1970 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1971 // TODO: Handle cases where CR.CaseBB != SwitchBB.
1972 if (Size == 2 && CR.CaseBB == SwitchBB) {
1973 Case &Small = *CR.Range.first;
1974 Case &Big = *(CR.Range.second-1);
1975
1976 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1977 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1978 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1979
1980 // Check that there is only one bit different.
1981 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1982 (SmallValue | BigValue) == BigValue) {
1983 // Isolate the common bit.
1984 APInt CommonBit = BigValue & ~SmallValue;
1985 assert((SmallValue | CommonBit) == BigValue &&
1986 CommonBit.countPopulation() == 1 && "Not a common bit?");
1987
1988 SDValue CondLHS = getValue(SV);
1989 EVT VT = CondLHS.getValueType();
1990 DebugLoc DL = getCurDebugLoc();
1991
1992 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1993 DAG.getConstant(CommonBit, VT));
1994 SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1995 Or, DAG.getConstant(BigValue, VT),
1996 ISD::SETEQ);
1997
1998 // Update successor info.
1999 // Both Small and Big will jump to Small.BB, so we sum up the weights.
2000 addSuccessorWithWeight(SwitchBB, Small.BB,
2001 Small.ExtraWeight + Big.ExtraWeight);
2002 addSuccessorWithWeight(SwitchBB, Default,
2003 // The default destination is the first successor in IR.
2004 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2005
2006 // Insert the true branch.
2007 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2008 getControlRoot(), Cond,
2009 DAG.getBasicBlock(Small.BB));
2010
2011 // Insert the false branch.
2012 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2013 DAG.getBasicBlock(Default));
2014
2015 DAG.setRoot(BrCond);
2016 return true;
2017 }
2018 }
2019 }
2020
2021 // Order cases by weight so the most likely case will be checked first.
2022 uint32_t UnhandledWeights = 0;
2023 if (BPI) {
2024 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2025 uint32_t IWeight = I->ExtraWeight;
2026 UnhandledWeights += IWeight;
2027 for (CaseItr J = CR.Range.first; J < I; ++J) {
2028 uint32_t JWeight = J->ExtraWeight;
2029 if (IWeight > JWeight)
2030 std::swap(*I, *J);
2031 }
2032 }
2033 }
2034 // Rearrange the case blocks so that the last one falls through if possible.
2035 Case &BackCase = *(CR.Range.second-1);
2036 if (Size > 1 &&
2037 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2038 // The last case block won't fall through into 'NextBlock' if we emit the
2039 // branches in this order. See if rearranging a case value would help.
2040 // We start at the bottom as it's the case with the least weight.
2041 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2042 if (I->BB == NextBlock) {
2043 std::swap(*I, BackCase);
2044 break;
2045 }
2046 }
2047 }
2048
2049 // Create a CaseBlock record representing a conditional branch to
2050 // the Case's target mbb if the value being switched on SV is equal
2051 // to C.
2052 MachineBasicBlock *CurBlock = CR.CaseBB;
2053 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2054 MachineBasicBlock *FallThrough;
2055 if (I != E-1) {
2056 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2057 CurMF->insert(BBI, FallThrough);
2058
2059 // Put SV in a virtual register to make it available from the new blocks.
2060 ExportFromCurrentBlock(SV);
2061 } else {
2062 // If the last case doesn't match, go to the default block.
2063 FallThrough = Default;
2064 }
2065
2066 const Value *RHS, *LHS, *MHS;
2067 ISD::CondCode CC;
2068 if (I->High == I->Low) {
2069 // This is just small small case range :) containing exactly 1 case
2070 CC = ISD::SETEQ;
2071 LHS = SV; RHS = I->High; MHS = NULL;
2072 } else {
2073 CC = ISD::SETCC_INVALID;
2074 LHS = I->Low; MHS = SV; RHS = I->High;
2075 }
2076
2077 // The false weight should be sum of all un-handled cases.
2078 UnhandledWeights -= I->ExtraWeight;
2079 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2080 /* me */ CurBlock,
2081 /* trueweight */ I->ExtraWeight,
2082 /* falseweight */ UnhandledWeights);
2083
2084 // If emitting the first comparison, just call visitSwitchCase to emit the
2085 // code into the current block. Otherwise, push the CaseBlock onto the
2086 // vector to be later processed by SDISel, and insert the node's MBB
2087 // before the next MBB.
2088 if (CurBlock == SwitchBB)
2089 visitSwitchCase(CB, SwitchBB);
2090 else
2091 SwitchCases.push_back(CB);
2092
2093 CurBlock = FallThrough;
2094 }
2095
2096 return true;
2097 }
2098
areJTsAllowed(const TargetLowering & TLI)2099 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2100 return TLI.supportJumpTables() &&
2101 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2102 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2103 }
2104
ComputeRange(const APInt & First,const APInt & Last)2105 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2106 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2107 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2108 return (LastExt - FirstExt + 1ULL);
2109 }
2110
2111 /// handleJTSwitchCase - Emit jumptable for current switch case range
handleJTSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2112 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2113 CaseRecVector &WorkList,
2114 const Value *SV,
2115 MachineBasicBlock *Default,
2116 MachineBasicBlock *SwitchBB) {
2117 Case& FrontCase = *CR.Range.first;
2118 Case& BackCase = *(CR.Range.second-1);
2119
2120 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2121 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2122
2123 APInt TSize(First.getBitWidth(), 0);
2124 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2125 TSize += I->size();
2126
2127 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2128 return false;
2129
2130 APInt Range = ComputeRange(First, Last);
2131 // The density is TSize / Range. Require at least 40%.
2132 // It should not be possible for IntTSize to saturate for sane code, but make
2133 // sure we handle Range saturation correctly.
2134 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2135 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2136 if (IntTSize * 10 < IntRange * 4)
2137 return false;
2138
2139 DEBUG(dbgs() << "Lowering jump table\n"
2140 << "First entry: " << First << ". Last entry: " << Last << '\n'
2141 << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2142
2143 // Get the MachineFunction which holds the current MBB. This is used when
2144 // inserting any additional MBBs necessary to represent the switch.
2145 MachineFunction *CurMF = FuncInfo.MF;
2146
2147 // Figure out which block is immediately after the current one.
2148 MachineFunction::iterator BBI = CR.CaseBB;
2149 ++BBI;
2150
2151 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2152
2153 // Create a new basic block to hold the code for loading the address
2154 // of the jump table, and jumping to it. Update successor information;
2155 // we will either branch to the default case for the switch, or the jump
2156 // table.
2157 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2158 CurMF->insert(BBI, JumpTableBB);
2159
2160 addSuccessorWithWeight(CR.CaseBB, Default);
2161 addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2162
2163 // Build a vector of destination BBs, corresponding to each target
2164 // of the jump table. If the value of the jump table slot corresponds to
2165 // a case statement, push the case's BB onto the vector, otherwise, push
2166 // the default BB.
2167 std::vector<MachineBasicBlock*> DestBBs;
2168 APInt TEI = First;
2169 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2170 const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2171 const APInt &High = cast<ConstantInt>(I->High)->getValue();
2172
2173 if (Low.ule(TEI) && TEI.ule(High)) {
2174 DestBBs.push_back(I->BB);
2175 if (TEI==High)
2176 ++I;
2177 } else {
2178 DestBBs.push_back(Default);
2179 }
2180 }
2181
2182 // Calculate weight for each unique destination in CR.
2183 DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2184 if (FuncInfo.BPI)
2185 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2186 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2187 DestWeights.find(I->BB);
2188 if (Itr != DestWeights.end())
2189 Itr->second += I->ExtraWeight;
2190 else
2191 DestWeights[I->BB] = I->ExtraWeight;
2192 }
2193
2194 // Update successor info. Add one edge to each unique successor.
2195 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2196 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2197 E = DestBBs.end(); I != E; ++I) {
2198 if (!SuccsHandled[(*I)->getNumber()]) {
2199 SuccsHandled[(*I)->getNumber()] = true;
2200 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2201 DestWeights.find(*I);
2202 addSuccessorWithWeight(JumpTableBB, *I,
2203 Itr != DestWeights.end() ? Itr->second : 0);
2204 }
2205 }
2206
2207 // Create a jump table index for this jump table.
2208 unsigned JTEncoding = TLI.getJumpTableEncoding();
2209 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2210 ->createJumpTableIndex(DestBBs);
2211
2212 // Set the jump table information so that we can codegen it as a second
2213 // MachineBasicBlock
2214 JumpTable JT(-1U, JTI, JumpTableBB, Default);
2215 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2216 if (CR.CaseBB == SwitchBB)
2217 visitJumpTableHeader(JT, JTH, SwitchBB);
2218
2219 JTCases.push_back(JumpTableBlock(JTH, JT));
2220 return true;
2221 }
2222
2223 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2224 /// 2 subtrees.
handleBTSplitSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2225 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2226 CaseRecVector& WorkList,
2227 const Value* SV,
2228 MachineBasicBlock *Default,
2229 MachineBasicBlock *SwitchBB) {
2230 // Get the MachineFunction which holds the current MBB. This is used when
2231 // inserting any additional MBBs necessary to represent the switch.
2232 MachineFunction *CurMF = FuncInfo.MF;
2233
2234 // Figure out which block is immediately after the current one.
2235 MachineFunction::iterator BBI = CR.CaseBB;
2236 ++BBI;
2237
2238 Case& FrontCase = *CR.Range.first;
2239 Case& BackCase = *(CR.Range.second-1);
2240 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2241
2242 // Size is the number of Cases represented by this range.
2243 unsigned Size = CR.Range.second - CR.Range.first;
2244
2245 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2246 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2247 double FMetric = 0;
2248 CaseItr Pivot = CR.Range.first + Size/2;
2249
2250 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2251 // (heuristically) allow us to emit JumpTable's later.
2252 APInt TSize(First.getBitWidth(), 0);
2253 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2254 I!=E; ++I)
2255 TSize += I->size();
2256
2257 APInt LSize = FrontCase.size();
2258 APInt RSize = TSize-LSize;
2259 DEBUG(dbgs() << "Selecting best pivot: \n"
2260 << "First: " << First << ", Last: " << Last <<'\n'
2261 << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2262 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2263 J!=E; ++I, ++J) {
2264 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2265 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2266 APInt Range = ComputeRange(LEnd, RBegin);
2267 assert((Range - 2ULL).isNonNegative() &&
2268 "Invalid case distance");
2269 // Use volatile double here to avoid excess precision issues on some hosts,
2270 // e.g. that use 80-bit X87 registers.
2271 volatile double LDensity =
2272 (double)LSize.roundToDouble() /
2273 (LEnd - First + 1ULL).roundToDouble();
2274 volatile double RDensity =
2275 (double)RSize.roundToDouble() /
2276 (Last - RBegin + 1ULL).roundToDouble();
2277 double Metric = Range.logBase2()*(LDensity+RDensity);
2278 // Should always split in some non-trivial place
2279 DEBUG(dbgs() <<"=>Step\n"
2280 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2281 << "LDensity: " << LDensity
2282 << ", RDensity: " << RDensity << '\n'
2283 << "Metric: " << Metric << '\n');
2284 if (FMetric < Metric) {
2285 Pivot = J;
2286 FMetric = Metric;
2287 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2288 }
2289
2290 LSize += J->size();
2291 RSize -= J->size();
2292 }
2293 if (areJTsAllowed(TLI)) {
2294 // If our case is dense we *really* should handle it earlier!
2295 assert((FMetric > 0) && "Should handle dense range earlier!");
2296 } else {
2297 Pivot = CR.Range.first + Size/2;
2298 }
2299
2300 CaseRange LHSR(CR.Range.first, Pivot);
2301 CaseRange RHSR(Pivot, CR.Range.second);
2302 const Constant *C = Pivot->Low;
2303 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2304
2305 // We know that we branch to the LHS if the Value being switched on is
2306 // less than the Pivot value, C. We use this to optimize our binary
2307 // tree a bit, by recognizing that if SV is greater than or equal to the
2308 // LHS's Case Value, and that Case Value is exactly one less than the
2309 // Pivot's Value, then we can branch directly to the LHS's Target,
2310 // rather than creating a leaf node for it.
2311 if ((LHSR.second - LHSR.first) == 1 &&
2312 LHSR.first->High == CR.GE &&
2313 cast<ConstantInt>(C)->getValue() ==
2314 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2315 TrueBB = LHSR.first->BB;
2316 } else {
2317 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2318 CurMF->insert(BBI, TrueBB);
2319 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2320
2321 // Put SV in a virtual register to make it available from the new blocks.
2322 ExportFromCurrentBlock(SV);
2323 }
2324
2325 // Similar to the optimization above, if the Value being switched on is
2326 // known to be less than the Constant CR.LT, and the current Case Value
2327 // is CR.LT - 1, then we can branch directly to the target block for
2328 // the current Case Value, rather than emitting a RHS leaf node for it.
2329 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2330 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2331 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2332 FalseBB = RHSR.first->BB;
2333 } else {
2334 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2335 CurMF->insert(BBI, FalseBB);
2336 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2337
2338 // Put SV in a virtual register to make it available from the new blocks.
2339 ExportFromCurrentBlock(SV);
2340 }
2341
2342 // Create a CaseBlock record representing a conditional branch to
2343 // the LHS node if the value being switched on SV is less than C.
2344 // Otherwise, branch to LHS.
2345 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2346
2347 if (CR.CaseBB == SwitchBB)
2348 visitSwitchCase(CB, SwitchBB);
2349 else
2350 SwitchCases.push_back(CB);
2351
2352 return true;
2353 }
2354
2355 /// handleBitTestsSwitchCase - if current case range has few destination and
2356 /// range span less, than machine word bitwidth, encode case range into series
2357 /// of masks and emit bit tests with these masks.
handleBitTestsSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2358 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2359 CaseRecVector& WorkList,
2360 const Value* SV,
2361 MachineBasicBlock* Default,
2362 MachineBasicBlock *SwitchBB){
2363 EVT PTy = TLI.getPointerTy();
2364 unsigned IntPtrBits = PTy.getSizeInBits();
2365
2366 Case& FrontCase = *CR.Range.first;
2367 Case& BackCase = *(CR.Range.second-1);
2368
2369 // Get the MachineFunction which holds the current MBB. This is used when
2370 // inserting any additional MBBs necessary to represent the switch.
2371 MachineFunction *CurMF = FuncInfo.MF;
2372
2373 // If target does not have legal shift left, do not emit bit tests at all.
2374 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2375 return false;
2376
2377 size_t numCmps = 0;
2378 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2379 I!=E; ++I) {
2380 // Single case counts one, case range - two.
2381 numCmps += (I->Low == I->High ? 1 : 2);
2382 }
2383
2384 // Count unique destinations
2385 SmallSet<MachineBasicBlock*, 4> Dests;
2386 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2387 Dests.insert(I->BB);
2388 if (Dests.size() > 3)
2389 // Don't bother the code below, if there are too much unique destinations
2390 return false;
2391 }
2392 DEBUG(dbgs() << "Total number of unique destinations: "
2393 << Dests.size() << '\n'
2394 << "Total number of comparisons: " << numCmps << '\n');
2395
2396 // Compute span of values.
2397 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2398 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2399 APInt cmpRange = maxValue - minValue;
2400
2401 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2402 << "Low bound: " << minValue << '\n'
2403 << "High bound: " << maxValue << '\n');
2404
2405 if (cmpRange.uge(IntPtrBits) ||
2406 (!(Dests.size() == 1 && numCmps >= 3) &&
2407 !(Dests.size() == 2 && numCmps >= 5) &&
2408 !(Dests.size() >= 3 && numCmps >= 6)))
2409 return false;
2410
2411 DEBUG(dbgs() << "Emitting bit tests\n");
2412 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2413
2414 // Optimize the case where all the case values fit in a
2415 // word without having to subtract minValue. In this case,
2416 // we can optimize away the subtraction.
2417 if (maxValue.ult(IntPtrBits)) {
2418 cmpRange = maxValue;
2419 } else {
2420 lowBound = minValue;
2421 }
2422
2423 CaseBitsVector CasesBits;
2424 unsigned i, count = 0;
2425
2426 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2427 MachineBasicBlock* Dest = I->BB;
2428 for (i = 0; i < count; ++i)
2429 if (Dest == CasesBits[i].BB)
2430 break;
2431
2432 if (i == count) {
2433 assert((count < 3) && "Too much destinations to test!");
2434 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2435 count++;
2436 }
2437
2438 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2439 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2440
2441 uint64_t lo = (lowValue - lowBound).getZExtValue();
2442 uint64_t hi = (highValue - lowBound).getZExtValue();
2443 CasesBits[i].ExtraWeight += I->ExtraWeight;
2444
2445 for (uint64_t j = lo; j <= hi; j++) {
2446 CasesBits[i].Mask |= 1ULL << j;
2447 CasesBits[i].Bits++;
2448 }
2449
2450 }
2451 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2452
2453 BitTestInfo BTC;
2454
2455 // Figure out which block is immediately after the current one.
2456 MachineFunction::iterator BBI = CR.CaseBB;
2457 ++BBI;
2458
2459 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2460
2461 DEBUG(dbgs() << "Cases:\n");
2462 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2463 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2464 << ", Bits: " << CasesBits[i].Bits
2465 << ", BB: " << CasesBits[i].BB << '\n');
2466
2467 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2468 CurMF->insert(BBI, CaseBB);
2469 BTC.push_back(BitTestCase(CasesBits[i].Mask,
2470 CaseBB,
2471 CasesBits[i].BB, CasesBits[i].ExtraWeight));
2472
2473 // Put SV in a virtual register to make it available from the new blocks.
2474 ExportFromCurrentBlock(SV);
2475 }
2476
2477 BitTestBlock BTB(lowBound, cmpRange, SV,
2478 -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2479 CR.CaseBB, Default, BTC);
2480
2481 if (CR.CaseBB == SwitchBB)
2482 visitBitTestHeader(BTB, SwitchBB);
2483
2484 BitTestCases.push_back(BTB);
2485
2486 return true;
2487 }
2488
2489 /// Clusterify - Transform simple list of Cases into list of CaseRange's
Clusterify(CaseVector & Cases,const SwitchInst & SI)2490 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2491 const SwitchInst& SI) {
2492
2493 /// Use a shorter form of declaration, and also
2494 /// show the we want to use CRSBuilder as Clusterifier.
2495 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2496
2497 Clusterifier TheClusterifier;
2498
2499 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2500 // Start with "simple" cases
2501 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2502 i != e; ++i) {
2503 const BasicBlock *SuccBB = i.getCaseSuccessor();
2504 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2505
2506 TheClusterifier.add(i.getCaseValueEx(), SMBB,
2507 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2508 }
2509
2510 TheClusterifier.optimize();
2511
2512 size_t numCmps = 0;
2513 for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2514 e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2515 Clusterifier::Cluster &C = *i;
2516 // Update edge weight for the cluster.
2517 unsigned W = C.first.Weight;
2518
2519 // FIXME: Currently work with ConstantInt based numbers.
2520 // Changing it to APInt based is a pretty heavy for this commit.
2521 Cases.push_back(Case(C.first.getLow().toConstantInt(),
2522 C.first.getHigh().toConstantInt(), C.second, W));
2523
2524 if (C.first.getLow() != C.first.getHigh())
2525 // A range counts double, since it requires two compares.
2526 ++numCmps;
2527 }
2528
2529 return numCmps;
2530 }
2531
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)2532 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2533 MachineBasicBlock *Last) {
2534 // Update JTCases.
2535 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2536 if (JTCases[i].first.HeaderBB == First)
2537 JTCases[i].first.HeaderBB = Last;
2538
2539 // Update BitTestCases.
2540 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2541 if (BitTestCases[i].Parent == First)
2542 BitTestCases[i].Parent = Last;
2543 }
2544
visitSwitch(const SwitchInst & SI)2545 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2546 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2547
2548 // Figure out which block is immediately after the current one.
2549 MachineBasicBlock *NextBlock = 0;
2550 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2551
2552 // If there is only the default destination, branch to it if it is not the
2553 // next basic block. Otherwise, just fall through.
2554 if (!SI.getNumCases()) {
2555 // Update machine-CFG edges.
2556
2557 // If this is not a fall-through branch, emit the branch.
2558 SwitchMBB->addSuccessor(Default);
2559 if (Default != NextBlock)
2560 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2561 MVT::Other, getControlRoot(),
2562 DAG.getBasicBlock(Default)));
2563
2564 return;
2565 }
2566
2567 // If there are any non-default case statements, create a vector of Cases
2568 // representing each one, and sort the vector so that we can efficiently
2569 // create a binary search tree from them.
2570 CaseVector Cases;
2571 size_t numCmps = Clusterify(Cases, SI);
2572 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2573 << ". Total compares: " << numCmps << '\n');
2574 (void)numCmps;
2575
2576 // Get the Value to be switched on and default basic blocks, which will be
2577 // inserted into CaseBlock records, representing basic blocks in the binary
2578 // search tree.
2579 const Value *SV = SI.getCondition();
2580
2581 // Push the initial CaseRec onto the worklist
2582 CaseRecVector WorkList;
2583 WorkList.push_back(CaseRec(SwitchMBB,0,0,
2584 CaseRange(Cases.begin(),Cases.end())));
2585
2586 while (!WorkList.empty()) {
2587 // Grab a record representing a case range to process off the worklist
2588 CaseRec CR = WorkList.back();
2589 WorkList.pop_back();
2590
2591 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2592 continue;
2593
2594 // If the range has few cases (two or less) emit a series of specific
2595 // tests.
2596 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2597 continue;
2598
2599 // If the switch has more than N blocks, and is at least 40% dense, and the
2600 // target supports indirect branches, then emit a jump table rather than
2601 // lowering the switch to a binary tree of conditional branches.
2602 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2603 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2604 continue;
2605
2606 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2607 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2608 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2609 }
2610 }
2611
visitIndirectBr(const IndirectBrInst & I)2612 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2613 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2614
2615 // Update machine-CFG edges with unique successors.
2616 SmallSet<BasicBlock*, 32> Done;
2617 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2618 BasicBlock *BB = I.getSuccessor(i);
2619 bool Inserted = Done.insert(BB);
2620 if (!Inserted)
2621 continue;
2622
2623 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2624 addSuccessorWithWeight(IndirectBrMBB, Succ);
2625 }
2626
2627 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2628 MVT::Other, getControlRoot(),
2629 getValue(I.getAddress())));
2630 }
2631
visitFSub(const User & I)2632 void SelectionDAGBuilder::visitFSub(const User &I) {
2633 // -0.0 - X --> fneg
2634 Type *Ty = I.getType();
2635 if (isa<Constant>(I.getOperand(0)) &&
2636 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2637 SDValue Op2 = getValue(I.getOperand(1));
2638 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2639 Op2.getValueType(), Op2));
2640 return;
2641 }
2642
2643 visitBinary(I, ISD::FSUB);
2644 }
2645
visitBinary(const User & I,unsigned OpCode)2646 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2647 SDValue Op1 = getValue(I.getOperand(0));
2648 SDValue Op2 = getValue(I.getOperand(1));
2649 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2650 Op1.getValueType(), Op1, Op2));
2651 }
2652
visitShift(const User & I,unsigned Opcode)2653 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2654 SDValue Op1 = getValue(I.getOperand(0));
2655 SDValue Op2 = getValue(I.getOperand(1));
2656
2657 EVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2658
2659 // Coerce the shift amount to the right type if we can.
2660 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2661 unsigned ShiftSize = ShiftTy.getSizeInBits();
2662 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2663 DebugLoc DL = getCurDebugLoc();
2664
2665 // If the operand is smaller than the shift count type, promote it.
2666 if (ShiftSize > Op2Size)
2667 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2668
2669 // If the operand is larger than the shift count type but the shift
2670 // count type has enough bits to represent any shift value, truncate
2671 // it now. This is a common case and it exposes the truncate to
2672 // optimization early.
2673 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2674 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2675 // Otherwise we'll need to temporarily settle for some other convenient
2676 // type. Type legalization will make adjustments once the shiftee is split.
2677 else
2678 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2679 }
2680
2681 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2682 Op1.getValueType(), Op1, Op2));
2683 }
2684
visitSDiv(const User & I)2685 void SelectionDAGBuilder::visitSDiv(const User &I) {
2686 SDValue Op1 = getValue(I.getOperand(0));
2687 SDValue Op2 = getValue(I.getOperand(1));
2688
2689 // Turn exact SDivs into multiplications.
2690 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2691 // exact bit.
2692 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2693 !isa<ConstantSDNode>(Op1) &&
2694 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2695 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2696 else
2697 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2698 Op1, Op2));
2699 }
2700
visitICmp(const User & I)2701 void SelectionDAGBuilder::visitICmp(const User &I) {
2702 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2703 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2704 predicate = IC->getPredicate();
2705 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2706 predicate = ICmpInst::Predicate(IC->getPredicate());
2707 SDValue Op1 = getValue(I.getOperand(0));
2708 SDValue Op2 = getValue(I.getOperand(1));
2709 ISD::CondCode Opcode = getICmpCondCode(predicate);
2710
2711 EVT DestVT = TLI.getValueType(I.getType());
2712 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2713 }
2714
visitFCmp(const User & I)2715 void SelectionDAGBuilder::visitFCmp(const User &I) {
2716 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2717 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2718 predicate = FC->getPredicate();
2719 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2720 predicate = FCmpInst::Predicate(FC->getPredicate());
2721 SDValue Op1 = getValue(I.getOperand(0));
2722 SDValue Op2 = getValue(I.getOperand(1));
2723 ISD::CondCode Condition = getFCmpCondCode(predicate);
2724 if (TM.Options.NoNaNsFPMath)
2725 Condition = getFCmpCodeWithoutNaN(Condition);
2726 EVT DestVT = TLI.getValueType(I.getType());
2727 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2728 }
2729
visitSelect(const User & I)2730 void SelectionDAGBuilder::visitSelect(const User &I) {
2731 SmallVector<EVT, 4> ValueVTs;
2732 ComputeValueVTs(TLI, I.getType(), ValueVTs);
2733 unsigned NumValues = ValueVTs.size();
2734 if (NumValues == 0) return;
2735
2736 SmallVector<SDValue, 4> Values(NumValues);
2737 SDValue Cond = getValue(I.getOperand(0));
2738 SDValue TrueVal = getValue(I.getOperand(1));
2739 SDValue FalseVal = getValue(I.getOperand(2));
2740 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2741 ISD::VSELECT : ISD::SELECT;
2742
2743 for (unsigned i = 0; i != NumValues; ++i)
2744 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2745 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2746 Cond,
2747 SDValue(TrueVal.getNode(),
2748 TrueVal.getResNo() + i),
2749 SDValue(FalseVal.getNode(),
2750 FalseVal.getResNo() + i));
2751
2752 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2753 DAG.getVTList(&ValueVTs[0], NumValues),
2754 &Values[0], NumValues));
2755 }
2756
visitTrunc(const User & I)2757 void SelectionDAGBuilder::visitTrunc(const User &I) {
2758 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2759 SDValue N = getValue(I.getOperand(0));
2760 EVT DestVT = TLI.getValueType(I.getType());
2761 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2762 }
2763
visitZExt(const User & I)2764 void SelectionDAGBuilder::visitZExt(const User &I) {
2765 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2766 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2767 SDValue N = getValue(I.getOperand(0));
2768 EVT DestVT = TLI.getValueType(I.getType());
2769 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2770 }
2771
visitSExt(const User & I)2772 void SelectionDAGBuilder::visitSExt(const User &I) {
2773 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2774 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2775 SDValue N = getValue(I.getOperand(0));
2776 EVT DestVT = TLI.getValueType(I.getType());
2777 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2778 }
2779
visitFPTrunc(const User & I)2780 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2781 // FPTrunc is never a no-op cast, no need to check
2782 SDValue N = getValue(I.getOperand(0));
2783 EVT DestVT = TLI.getValueType(I.getType());
2784 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2785 DestVT, N,
2786 DAG.getTargetConstant(0, TLI.getPointerTy())));
2787 }
2788
visitFPExt(const User & I)2789 void SelectionDAGBuilder::visitFPExt(const User &I){
2790 // FPExt is never a no-op cast, no need to check
2791 SDValue N = getValue(I.getOperand(0));
2792 EVT DestVT = TLI.getValueType(I.getType());
2793 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2794 }
2795
visitFPToUI(const User & I)2796 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2797 // FPToUI is never a no-op cast, no need to check
2798 SDValue N = getValue(I.getOperand(0));
2799 EVT DestVT = TLI.getValueType(I.getType());
2800 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2801 }
2802
visitFPToSI(const User & I)2803 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2804 // FPToSI is never a no-op cast, no need to check
2805 SDValue N = getValue(I.getOperand(0));
2806 EVT DestVT = TLI.getValueType(I.getType());
2807 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2808 }
2809
visitUIToFP(const User & I)2810 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2811 // UIToFP is never a no-op cast, no need to check
2812 SDValue N = getValue(I.getOperand(0));
2813 EVT DestVT = TLI.getValueType(I.getType());
2814 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2815 }
2816
visitSIToFP(const User & I)2817 void SelectionDAGBuilder::visitSIToFP(const User &I){
2818 // SIToFP is never a no-op cast, no need to check
2819 SDValue N = getValue(I.getOperand(0));
2820 EVT DestVT = TLI.getValueType(I.getType());
2821 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2822 }
2823
visitPtrToInt(const User & I)2824 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2825 // What to do depends on the size of the integer and the size of the pointer.
2826 // We can either truncate, zero extend, or no-op, accordingly.
2827 SDValue N = getValue(I.getOperand(0));
2828 EVT DestVT = TLI.getValueType(I.getType());
2829 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2830 }
2831
visitIntToPtr(const User & I)2832 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2833 // What to do depends on the size of the integer and the size of the pointer.
2834 // We can either truncate, zero extend, or no-op, accordingly.
2835 SDValue N = getValue(I.getOperand(0));
2836 EVT DestVT = TLI.getValueType(I.getType());
2837 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2838 }
2839
visitBitCast(const User & I)2840 void SelectionDAGBuilder::visitBitCast(const User &I) {
2841 SDValue N = getValue(I.getOperand(0));
2842 EVT DestVT = TLI.getValueType(I.getType());
2843
2844 // BitCast assures us that source and destination are the same size so this is
2845 // either a BITCAST or a no-op.
2846 if (DestVT != N.getValueType())
2847 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2848 DestVT, N)); // convert types.
2849 else
2850 setValue(&I, N); // noop cast.
2851 }
2852
visitInsertElement(const User & I)2853 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2854 SDValue InVec = getValue(I.getOperand(0));
2855 SDValue InVal = getValue(I.getOperand(1));
2856 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2857 TLI.getPointerTy(),
2858 getValue(I.getOperand(2)));
2859 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2860 TLI.getValueType(I.getType()),
2861 InVec, InVal, InIdx));
2862 }
2863
visitExtractElement(const User & I)2864 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2865 SDValue InVec = getValue(I.getOperand(0));
2866 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2867 TLI.getPointerTy(),
2868 getValue(I.getOperand(1)));
2869 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2870 TLI.getValueType(I.getType()), InVec, InIdx));
2871 }
2872
2873 // Utility for visitShuffleVector - Return true if every element in Mask,
2874 // beginning from position Pos and ending in Pos+Size, falls within the
2875 // specified sequential range [L, L+Pos). or is undef.
isSequentialInRange(const SmallVectorImpl<int> & Mask,unsigned Pos,unsigned Size,int Low)2876 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2877 unsigned Pos, unsigned Size, int Low) {
2878 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2879 if (Mask[i] >= 0 && Mask[i] != Low)
2880 return false;
2881 return true;
2882 }
2883
visitShuffleVector(const User & I)2884 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2885 SDValue Src1 = getValue(I.getOperand(0));
2886 SDValue Src2 = getValue(I.getOperand(1));
2887
2888 SmallVector<int, 8> Mask;
2889 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2890 unsigned MaskNumElts = Mask.size();
2891
2892 EVT VT = TLI.getValueType(I.getType());
2893 EVT SrcVT = Src1.getValueType();
2894 unsigned SrcNumElts = SrcVT.getVectorNumElements();
2895
2896 if (SrcNumElts == MaskNumElts) {
2897 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2898 &Mask[0]));
2899 return;
2900 }
2901
2902 // Normalize the shuffle vector since mask and vector length don't match.
2903 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2904 // Mask is longer than the source vectors and is a multiple of the source
2905 // vectors. We can use concatenate vector to make the mask and vectors
2906 // lengths match.
2907 if (SrcNumElts*2 == MaskNumElts) {
2908 // First check for Src1 in low and Src2 in high
2909 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2910 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2911 // The shuffle is concatenating two vectors together.
2912 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2913 VT, Src1, Src2));
2914 return;
2915 }
2916 // Then check for Src2 in low and Src1 in high
2917 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2918 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2919 // The shuffle is concatenating two vectors together.
2920 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2921 VT, Src2, Src1));
2922 return;
2923 }
2924 }
2925
2926 // Pad both vectors with undefs to make them the same length as the mask.
2927 unsigned NumConcat = MaskNumElts / SrcNumElts;
2928 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2929 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2930 SDValue UndefVal = DAG.getUNDEF(SrcVT);
2931
2932 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2933 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2934 MOps1[0] = Src1;
2935 MOps2[0] = Src2;
2936
2937 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2938 getCurDebugLoc(), VT,
2939 &MOps1[0], NumConcat);
2940 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2941 getCurDebugLoc(), VT,
2942 &MOps2[0], NumConcat);
2943
2944 // Readjust mask for new input vector length.
2945 SmallVector<int, 8> MappedOps;
2946 for (unsigned i = 0; i != MaskNumElts; ++i) {
2947 int Idx = Mask[i];
2948 if (Idx >= (int)SrcNumElts)
2949 Idx -= SrcNumElts - MaskNumElts;
2950 MappedOps.push_back(Idx);
2951 }
2952
2953 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2954 &MappedOps[0]));
2955 return;
2956 }
2957
2958 if (SrcNumElts > MaskNumElts) {
2959 // Analyze the access pattern of the vector to see if we can extract
2960 // two subvectors and do the shuffle. The analysis is done by calculating
2961 // the range of elements the mask access on both vectors.
2962 int MinRange[2] = { static_cast<int>(SrcNumElts),
2963 static_cast<int>(SrcNumElts)};
2964 int MaxRange[2] = {-1, -1};
2965
2966 for (unsigned i = 0; i != MaskNumElts; ++i) {
2967 int Idx = Mask[i];
2968 unsigned Input = 0;
2969 if (Idx < 0)
2970 continue;
2971
2972 if (Idx >= (int)SrcNumElts) {
2973 Input = 1;
2974 Idx -= SrcNumElts;
2975 }
2976 if (Idx > MaxRange[Input])
2977 MaxRange[Input] = Idx;
2978 if (Idx < MinRange[Input])
2979 MinRange[Input] = Idx;
2980 }
2981
2982 // Check if the access is smaller than the vector size and can we find
2983 // a reasonable extract index.
2984 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
2985 // Extract.
2986 int StartIdx[2]; // StartIdx to extract from
2987 for (unsigned Input = 0; Input < 2; ++Input) {
2988 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2989 RangeUse[Input] = 0; // Unused
2990 StartIdx[Input] = 0;
2991 continue;
2992 }
2993
2994 // Find a good start index that is a multiple of the mask length. Then
2995 // see if the rest of the elements are in range.
2996 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2997 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2998 StartIdx[Input] + MaskNumElts <= SrcNumElts)
2999 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3000 }
3001
3002 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3003 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3004 return;
3005 }
3006 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3007 // Extract appropriate subvector and generate a vector shuffle
3008 for (unsigned Input = 0; Input < 2; ++Input) {
3009 SDValue &Src = Input == 0 ? Src1 : Src2;
3010 if (RangeUse[Input] == 0)
3011 Src = DAG.getUNDEF(VT);
3012 else
3013 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3014 Src, DAG.getIntPtrConstant(StartIdx[Input]));
3015 }
3016
3017 // Calculate new mask.
3018 SmallVector<int, 8> MappedOps;
3019 for (unsigned i = 0; i != MaskNumElts; ++i) {
3020 int Idx = Mask[i];
3021 if (Idx >= 0) {
3022 if (Idx < (int)SrcNumElts)
3023 Idx -= StartIdx[0];
3024 else
3025 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3026 }
3027 MappedOps.push_back(Idx);
3028 }
3029
3030 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3031 &MappedOps[0]));
3032 return;
3033 }
3034 }
3035
3036 // We can't use either concat vectors or extract subvectors so fall back to
3037 // replacing the shuffle with extract and build vector.
3038 // to insert and build vector.
3039 EVT EltVT = VT.getVectorElementType();
3040 EVT PtrVT = TLI.getPointerTy();
3041 SmallVector<SDValue,8> Ops;
3042 for (unsigned i = 0; i != MaskNumElts; ++i) {
3043 int Idx = Mask[i];
3044 SDValue Res;
3045
3046 if (Idx < 0) {
3047 Res = DAG.getUNDEF(EltVT);
3048 } else {
3049 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3050 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3051
3052 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3053 EltVT, Src, DAG.getConstant(Idx, PtrVT));
3054 }
3055
3056 Ops.push_back(Res);
3057 }
3058
3059 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3060 VT, &Ops[0], Ops.size()));
3061 }
3062
visitInsertValue(const InsertValueInst & I)3063 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3064 const Value *Op0 = I.getOperand(0);
3065 const Value *Op1 = I.getOperand(1);
3066 Type *AggTy = I.getType();
3067 Type *ValTy = Op1->getType();
3068 bool IntoUndef = isa<UndefValue>(Op0);
3069 bool FromUndef = isa<UndefValue>(Op1);
3070
3071 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3072
3073 SmallVector<EVT, 4> AggValueVTs;
3074 ComputeValueVTs(TLI, AggTy, AggValueVTs);
3075 SmallVector<EVT, 4> ValValueVTs;
3076 ComputeValueVTs(TLI, ValTy, ValValueVTs);
3077
3078 unsigned NumAggValues = AggValueVTs.size();
3079 unsigned NumValValues = ValValueVTs.size();
3080 SmallVector<SDValue, 4> Values(NumAggValues);
3081
3082 SDValue Agg = getValue(Op0);
3083 unsigned i = 0;
3084 // Copy the beginning value(s) from the original aggregate.
3085 for (; i != LinearIndex; ++i)
3086 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3087 SDValue(Agg.getNode(), Agg.getResNo() + i);
3088 // Copy values from the inserted value(s).
3089 if (NumValValues) {
3090 SDValue Val = getValue(Op1);
3091 for (; i != LinearIndex + NumValValues; ++i)
3092 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3093 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3094 }
3095 // Copy remaining value(s) from the original aggregate.
3096 for (; i != NumAggValues; ++i)
3097 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3098 SDValue(Agg.getNode(), Agg.getResNo() + i);
3099
3100 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3101 DAG.getVTList(&AggValueVTs[0], NumAggValues),
3102 &Values[0], NumAggValues));
3103 }
3104
visitExtractValue(const ExtractValueInst & I)3105 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3106 const Value *Op0 = I.getOperand(0);
3107 Type *AggTy = Op0->getType();
3108 Type *ValTy = I.getType();
3109 bool OutOfUndef = isa<UndefValue>(Op0);
3110
3111 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3112
3113 SmallVector<EVT, 4> ValValueVTs;
3114 ComputeValueVTs(TLI, ValTy, ValValueVTs);
3115
3116 unsigned NumValValues = ValValueVTs.size();
3117
3118 // Ignore a extractvalue that produces an empty object
3119 if (!NumValValues) {
3120 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3121 return;
3122 }
3123
3124 SmallVector<SDValue, 4> Values(NumValValues);
3125
3126 SDValue Agg = getValue(Op0);
3127 // Copy out the selected value(s).
3128 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3129 Values[i - LinearIndex] =
3130 OutOfUndef ?
3131 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3132 SDValue(Agg.getNode(), Agg.getResNo() + i);
3133
3134 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3135 DAG.getVTList(&ValValueVTs[0], NumValValues),
3136 &Values[0], NumValValues));
3137 }
3138
visitGetElementPtr(const User & I)3139 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3140 SDValue N = getValue(I.getOperand(0));
3141 // Note that the pointer operand may be a vector of pointers. Take the scalar
3142 // element which holds a pointer.
3143 Type *Ty = I.getOperand(0)->getType()->getScalarType();
3144
3145 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3146 OI != E; ++OI) {
3147 const Value *Idx = *OI;
3148 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3149 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3150 if (Field) {
3151 // N = N + Offset
3152 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3153 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3154 DAG.getConstant(Offset, N.getValueType()));
3155 }
3156
3157 Ty = StTy->getElementType(Field);
3158 } else {
3159 Ty = cast<SequentialType>(Ty)->getElementType();
3160
3161 // If this is a constant subscript, handle it quickly.
3162 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3163 if (CI->isZero()) continue;
3164 uint64_t Offs =
3165 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3166 SDValue OffsVal;
3167 EVT PTy = TLI.getPointerTy();
3168 unsigned PtrBits = PTy.getSizeInBits();
3169 if (PtrBits < 64)
3170 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3171 TLI.getPointerTy(),
3172 DAG.getConstant(Offs, MVT::i64));
3173 else
3174 OffsVal = DAG.getIntPtrConstant(Offs);
3175
3176 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3177 OffsVal);
3178 continue;
3179 }
3180
3181 // N = N + Idx * ElementSize;
3182 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3183 TD->getTypeAllocSize(Ty));
3184 SDValue IdxN = getValue(Idx);
3185
3186 // If the index is smaller or larger than intptr_t, truncate or extend
3187 // it.
3188 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3189
3190 // If this is a multiply by a power of two, turn it into a shl
3191 // immediately. This is a very common case.
3192 if (ElementSize != 1) {
3193 if (ElementSize.isPowerOf2()) {
3194 unsigned Amt = ElementSize.logBase2();
3195 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3196 N.getValueType(), IdxN,
3197 DAG.getConstant(Amt, IdxN.getValueType()));
3198 } else {
3199 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3200 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3201 N.getValueType(), IdxN, Scale);
3202 }
3203 }
3204
3205 N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3206 N.getValueType(), N, IdxN);
3207 }
3208 }
3209
3210 setValue(&I, N);
3211 }
3212
visitAlloca(const AllocaInst & I)3213 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3214 // If this is a fixed sized alloca in the entry block of the function,
3215 // allocate it statically on the stack.
3216 if (FuncInfo.StaticAllocaMap.count(&I))
3217 return; // getValue will auto-populate this.
3218
3219 Type *Ty = I.getAllocatedType();
3220 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3221 unsigned Align =
3222 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3223 I.getAlignment());
3224
3225 SDValue AllocSize = getValue(I.getArraySize());
3226
3227 EVT IntPtr = TLI.getPointerTy();
3228 if (AllocSize.getValueType() != IntPtr)
3229 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3230
3231 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3232 AllocSize,
3233 DAG.getConstant(TySize, IntPtr));
3234
3235 // Handle alignment. If the requested alignment is less than or equal to
3236 // the stack alignment, ignore it. If the size is greater than or equal to
3237 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3238 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3239 if (Align <= StackAlign)
3240 Align = 0;
3241
3242 // Round the size of the allocation up to the stack alignment size
3243 // by add SA-1 to the size.
3244 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3245 AllocSize.getValueType(), AllocSize,
3246 DAG.getIntPtrConstant(StackAlign-1));
3247
3248 // Mask out the low bits for alignment purposes.
3249 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3250 AllocSize.getValueType(), AllocSize,
3251 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3252
3253 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3254 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3255 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3256 VTs, Ops, 3);
3257 setValue(&I, DSA);
3258 DAG.setRoot(DSA.getValue(1));
3259
3260 // Inform the Frame Information that we have just allocated a variable-sized
3261 // object.
3262 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3263 }
3264
visitLoad(const LoadInst & I)3265 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3266 if (I.isAtomic())
3267 return visitAtomicLoad(I);
3268
3269 const Value *SV = I.getOperand(0);
3270 SDValue Ptr = getValue(SV);
3271
3272 Type *Ty = I.getType();
3273
3274 bool isVolatile = I.isVolatile();
3275 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3276 bool isInvariant = I.getMetadata("invariant.load") != 0;
3277 unsigned Alignment = I.getAlignment();
3278 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3279 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3280
3281 SmallVector<EVT, 4> ValueVTs;
3282 SmallVector<uint64_t, 4> Offsets;
3283 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3284 unsigned NumValues = ValueVTs.size();
3285 if (NumValues == 0)
3286 return;
3287
3288 SDValue Root;
3289 bool ConstantMemory = false;
3290 if (I.isVolatile() || NumValues > MaxParallelChains)
3291 // Serialize volatile loads with other side effects.
3292 Root = getRoot();
3293 else if (AA->pointsToConstantMemory(
3294 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3295 // Do not serialize (non-volatile) loads of constant memory with anything.
3296 Root = DAG.getEntryNode();
3297 ConstantMemory = true;
3298 } else {
3299 // Do not serialize non-volatile loads against each other.
3300 Root = DAG.getRoot();
3301 }
3302
3303 SmallVector<SDValue, 4> Values(NumValues);
3304 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3305 NumValues));
3306 EVT PtrVT = Ptr.getValueType();
3307 unsigned ChainI = 0;
3308 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3309 // Serializing loads here may result in excessive register pressure, and
3310 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3311 // could recover a bit by hoisting nodes upward in the chain by recognizing
3312 // they are side-effect free or do not alias. The optimizer should really
3313 // avoid this case by converting large object/array copies to llvm.memcpy
3314 // (MaxParallelChains should always remain as failsafe).
3315 if (ChainI == MaxParallelChains) {
3316 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3317 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3318 MVT::Other, &Chains[0], ChainI);
3319 Root = Chain;
3320 ChainI = 0;
3321 }
3322 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3323 PtrVT, Ptr,
3324 DAG.getConstant(Offsets[i], PtrVT));
3325 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3326 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3327 isNonTemporal, isInvariant, Alignment, TBAAInfo,
3328 Ranges);
3329
3330 Values[i] = L;
3331 Chains[ChainI] = L.getValue(1);
3332 }
3333
3334 if (!ConstantMemory) {
3335 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3336 MVT::Other, &Chains[0], ChainI);
3337 if (isVolatile)
3338 DAG.setRoot(Chain);
3339 else
3340 PendingLoads.push_back(Chain);
3341 }
3342
3343 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3344 DAG.getVTList(&ValueVTs[0], NumValues),
3345 &Values[0], NumValues));
3346 }
3347
visitStore(const StoreInst & I)3348 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3349 if (I.isAtomic())
3350 return visitAtomicStore(I);
3351
3352 const Value *SrcV = I.getOperand(0);
3353 const Value *PtrV = I.getOperand(1);
3354
3355 SmallVector<EVT, 4> ValueVTs;
3356 SmallVector<uint64_t, 4> Offsets;
3357 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3358 unsigned NumValues = ValueVTs.size();
3359 if (NumValues == 0)
3360 return;
3361
3362 // Get the lowered operands. Note that we do this after
3363 // checking if NumResults is zero, because with zero results
3364 // the operands won't have values in the map.
3365 SDValue Src = getValue(SrcV);
3366 SDValue Ptr = getValue(PtrV);
3367
3368 SDValue Root = getRoot();
3369 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3370 NumValues));
3371 EVT PtrVT = Ptr.getValueType();
3372 bool isVolatile = I.isVolatile();
3373 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3374 unsigned Alignment = I.getAlignment();
3375 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3376
3377 unsigned ChainI = 0;
3378 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3379 // See visitLoad comments.
3380 if (ChainI == MaxParallelChains) {
3381 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3382 MVT::Other, &Chains[0], ChainI);
3383 Root = Chain;
3384 ChainI = 0;
3385 }
3386 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3387 DAG.getConstant(Offsets[i], PtrVT));
3388 SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3389 SDValue(Src.getNode(), Src.getResNo() + i),
3390 Add, MachinePointerInfo(PtrV, Offsets[i]),
3391 isVolatile, isNonTemporal, Alignment, TBAAInfo);
3392 Chains[ChainI] = St;
3393 }
3394
3395 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3396 MVT::Other, &Chains[0], ChainI);
3397 ++SDNodeOrder;
3398 AssignOrderingToNode(StoreNode.getNode());
3399 DAG.setRoot(StoreNode);
3400 }
3401
InsertFenceForAtomic(SDValue Chain,AtomicOrdering Order,SynchronizationScope Scope,bool Before,DebugLoc dl,SelectionDAG & DAG,const TargetLowering & TLI)3402 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3403 SynchronizationScope Scope,
3404 bool Before, DebugLoc dl,
3405 SelectionDAG &DAG,
3406 const TargetLowering &TLI) {
3407 // Fence, if necessary
3408 if (Before) {
3409 if (Order == AcquireRelease || Order == SequentiallyConsistent)
3410 Order = Release;
3411 else if (Order == Acquire || Order == Monotonic)
3412 return Chain;
3413 } else {
3414 if (Order == AcquireRelease)
3415 Order = Acquire;
3416 else if (Order == Release || Order == Monotonic)
3417 return Chain;
3418 }
3419 SDValue Ops[3];
3420 Ops[0] = Chain;
3421 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3422 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3423 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3424 }
3425
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)3426 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3427 DebugLoc dl = getCurDebugLoc();
3428 AtomicOrdering Order = I.getOrdering();
3429 SynchronizationScope Scope = I.getSynchScope();
3430
3431 SDValue InChain = getRoot();
3432
3433 if (TLI.getInsertFencesForAtomic())
3434 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3435 DAG, TLI);
3436
3437 SDValue L =
3438 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3439 getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3440 InChain,
3441 getValue(I.getPointerOperand()),
3442 getValue(I.getCompareOperand()),
3443 getValue(I.getNewValOperand()),
3444 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3445 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3446 Scope);
3447
3448 SDValue OutChain = L.getValue(1);
3449
3450 if (TLI.getInsertFencesForAtomic())
3451 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3452 DAG, TLI);
3453
3454 setValue(&I, L);
3455 DAG.setRoot(OutChain);
3456 }
3457
visitAtomicRMW(const AtomicRMWInst & I)3458 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3459 DebugLoc dl = getCurDebugLoc();
3460 ISD::NodeType NT;
3461 switch (I.getOperation()) {
3462 default: llvm_unreachable("Unknown atomicrmw operation");
3463 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3464 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
3465 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
3466 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
3467 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3468 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
3469 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
3470 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
3471 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
3472 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3473 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3474 }
3475 AtomicOrdering Order = I.getOrdering();
3476 SynchronizationScope Scope = I.getSynchScope();
3477
3478 SDValue InChain = getRoot();
3479
3480 if (TLI.getInsertFencesForAtomic())
3481 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3482 DAG, TLI);
3483
3484 SDValue L =
3485 DAG.getAtomic(NT, dl,
3486 getValue(I.getValOperand()).getValueType().getSimpleVT(),
3487 InChain,
3488 getValue(I.getPointerOperand()),
3489 getValue(I.getValOperand()),
3490 I.getPointerOperand(), 0 /* Alignment */,
3491 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3492 Scope);
3493
3494 SDValue OutChain = L.getValue(1);
3495
3496 if (TLI.getInsertFencesForAtomic())
3497 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3498 DAG, TLI);
3499
3500 setValue(&I, L);
3501 DAG.setRoot(OutChain);
3502 }
3503
visitFence(const FenceInst & I)3504 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3505 DebugLoc dl = getCurDebugLoc();
3506 SDValue Ops[3];
3507 Ops[0] = getRoot();
3508 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3509 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3510 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3511 }
3512
visitAtomicLoad(const LoadInst & I)3513 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3514 DebugLoc dl = getCurDebugLoc();
3515 AtomicOrdering Order = I.getOrdering();
3516 SynchronizationScope Scope = I.getSynchScope();
3517
3518 SDValue InChain = getRoot();
3519
3520 EVT VT = TLI.getValueType(I.getType());
3521
3522 if (I.getAlignment() < VT.getSizeInBits() / 8)
3523 report_fatal_error("Cannot generate unaligned atomic load");
3524
3525 SDValue L =
3526 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3527 getValue(I.getPointerOperand()),
3528 I.getPointerOperand(), I.getAlignment(),
3529 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3530 Scope);
3531
3532 SDValue OutChain = L.getValue(1);
3533
3534 if (TLI.getInsertFencesForAtomic())
3535 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3536 DAG, TLI);
3537
3538 setValue(&I, L);
3539 DAG.setRoot(OutChain);
3540 }
3541
visitAtomicStore(const StoreInst & I)3542 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3543 DebugLoc dl = getCurDebugLoc();
3544
3545 AtomicOrdering Order = I.getOrdering();
3546 SynchronizationScope Scope = I.getSynchScope();
3547
3548 SDValue InChain = getRoot();
3549
3550 EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3551
3552 if (I.getAlignment() < VT.getSizeInBits() / 8)
3553 report_fatal_error("Cannot generate unaligned atomic store");
3554
3555 if (TLI.getInsertFencesForAtomic())
3556 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3557 DAG, TLI);
3558
3559 SDValue OutChain =
3560 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3561 InChain,
3562 getValue(I.getPointerOperand()),
3563 getValue(I.getValueOperand()),
3564 I.getPointerOperand(), I.getAlignment(),
3565 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3566 Scope);
3567
3568 if (TLI.getInsertFencesForAtomic())
3569 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3570 DAG, TLI);
3571
3572 DAG.setRoot(OutChain);
3573 }
3574
3575 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3576 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)3577 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3578 unsigned Intrinsic) {
3579 bool HasChain = !I.doesNotAccessMemory();
3580 bool OnlyLoad = HasChain && I.onlyReadsMemory();
3581
3582 // Build the operand list.
3583 SmallVector<SDValue, 8> Ops;
3584 if (HasChain) { // If this intrinsic has side-effects, chainify it.
3585 if (OnlyLoad) {
3586 // We don't need to serialize loads against other loads.
3587 Ops.push_back(DAG.getRoot());
3588 } else {
3589 Ops.push_back(getRoot());
3590 }
3591 }
3592
3593 // Info is set by getTgtMemInstrinsic
3594 TargetLowering::IntrinsicInfo Info;
3595 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3596
3597 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3598 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3599 Info.opc == ISD::INTRINSIC_W_CHAIN)
3600 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3601
3602 // Add all operands of the call to the operand list.
3603 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3604 SDValue Op = getValue(I.getArgOperand(i));
3605 Ops.push_back(Op);
3606 }
3607
3608 SmallVector<EVT, 4> ValueVTs;
3609 ComputeValueVTs(TLI, I.getType(), ValueVTs);
3610
3611 if (HasChain)
3612 ValueVTs.push_back(MVT::Other);
3613
3614 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3615
3616 // Create the node.
3617 SDValue Result;
3618 if (IsTgtIntrinsic) {
3619 // This is target intrinsic that touches memory
3620 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3621 VTs, &Ops[0], Ops.size(),
3622 Info.memVT,
3623 MachinePointerInfo(Info.ptrVal, Info.offset),
3624 Info.align, Info.vol,
3625 Info.readMem, Info.writeMem);
3626 } else if (!HasChain) {
3627 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3628 VTs, &Ops[0], Ops.size());
3629 } else if (!I.getType()->isVoidTy()) {
3630 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3631 VTs, &Ops[0], Ops.size());
3632 } else {
3633 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3634 VTs, &Ops[0], Ops.size());
3635 }
3636
3637 if (HasChain) {
3638 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3639 if (OnlyLoad)
3640 PendingLoads.push_back(Chain);
3641 else
3642 DAG.setRoot(Chain);
3643 }
3644
3645 if (!I.getType()->isVoidTy()) {
3646 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3647 EVT VT = TLI.getValueType(PTy);
3648 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3649 }
3650
3651 setValue(&I, Result);
3652 } else {
3653 // Assign order to result here. If the intrinsic does not produce a result,
3654 // it won't be mapped to a SDNode and visit() will not assign it an order
3655 // number.
3656 ++SDNodeOrder;
3657 AssignOrderingToNode(Result.getNode());
3658 }
3659 }
3660
3661 /// GetSignificand - Get the significand and build it into a floating-point
3662 /// number with exponent of 1:
3663 ///
3664 /// Op = (Op & 0x007fffff) | 0x3f800000;
3665 ///
3666 /// where Op is the hexadecimal representation of floating point value.
3667 static SDValue
GetSignificand(SelectionDAG & DAG,SDValue Op,DebugLoc dl)3668 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3669 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3670 DAG.getConstant(0x007fffff, MVT::i32));
3671 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3672 DAG.getConstant(0x3f800000, MVT::i32));
3673 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3674 }
3675
3676 /// GetExponent - Get the exponent:
3677 ///
3678 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3679 ///
3680 /// where Op is the hexadecimal representation of floating point value.
3681 static SDValue
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,DebugLoc dl)3682 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3683 DebugLoc dl) {
3684 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3685 DAG.getConstant(0x7f800000, MVT::i32));
3686 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3687 DAG.getConstant(23, TLI.getPointerTy()));
3688 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3689 DAG.getConstant(127, MVT::i32));
3690 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3691 }
3692
3693 /// getF32Constant - Get 32-bit floating point constant.
3694 static SDValue
getF32Constant(SelectionDAG & DAG,unsigned Flt)3695 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3696 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3697 MVT::f32);
3698 }
3699
3700 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3701 /// limited-precision mode.
expandExp(DebugLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)3702 static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3703 const TargetLowering &TLI) {
3704 if (Op.getValueType() == MVT::f32 &&
3705 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3706
3707 // Put the exponent in the right bit position for later addition to the
3708 // final result:
3709 //
3710 // #define LOG2OFe 1.4426950f
3711 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3712 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3713 getF32Constant(DAG, 0x3fb8aa3b));
3714 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3715
3716 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3717 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3718 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3719
3720 // IntegerPartOfX <<= 23;
3721 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3722 DAG.getConstant(23, TLI.getPointerTy()));
3723
3724 SDValue TwoToFracPartOfX;
3725 if (LimitFloatPrecision <= 6) {
3726 // For floating-point precision of 6:
3727 //
3728 // TwoToFractionalPartOfX =
3729 // 0.997535578f +
3730 // (0.735607626f + 0.252464424f * x) * x;
3731 //
3732 // error 0.0144103317, which is 6 bits
3733 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3734 getF32Constant(DAG, 0x3e814304));
3735 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3736 getF32Constant(DAG, 0x3f3c50c8));
3737 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3738 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3739 getF32Constant(DAG, 0x3f7f5e7e));
3740 } else if (LimitFloatPrecision <= 12) {
3741 // For floating-point precision of 12:
3742 //
3743 // TwoToFractionalPartOfX =
3744 // 0.999892986f +
3745 // (0.696457318f +
3746 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3747 //
3748 // 0.000107046256 error, which is 13 to 14 bits
3749 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3750 getF32Constant(DAG, 0x3da235e3));
3751 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3752 getF32Constant(DAG, 0x3e65b8f3));
3753 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3754 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3755 getF32Constant(DAG, 0x3f324b07));
3756 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3757 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3758 getF32Constant(DAG, 0x3f7ff8fd));
3759 } else { // LimitFloatPrecision <= 18
3760 // For floating-point precision of 18:
3761 //
3762 // TwoToFractionalPartOfX =
3763 // 0.999999982f +
3764 // (0.693148872f +
3765 // (0.240227044f +
3766 // (0.554906021e-1f +
3767 // (0.961591928e-2f +
3768 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3769 //
3770 // error 2.47208000*10^(-7), which is better than 18 bits
3771 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3772 getF32Constant(DAG, 0x3924b03e));
3773 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3774 getF32Constant(DAG, 0x3ab24b87));
3775 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3776 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3777 getF32Constant(DAG, 0x3c1d8c17));
3778 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3779 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3780 getF32Constant(DAG, 0x3d634a1d));
3781 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3782 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3783 getF32Constant(DAG, 0x3e75fe14));
3784 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3785 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3786 getF32Constant(DAG, 0x3f317234));
3787 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3788 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3789 getF32Constant(DAG, 0x3f800000));
3790 }
3791
3792 // Add the exponent into the result in integer domain.
3793 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3794 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3795 DAG.getNode(ISD::ADD, dl, MVT::i32,
3796 t13, IntegerPartOfX));
3797 }
3798
3799 // No special expansion.
3800 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3801 }
3802
3803 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3804 /// limited-precision mode.
expandLog(DebugLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)3805 static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3806 const TargetLowering &TLI) {
3807 if (Op.getValueType() == MVT::f32 &&
3808 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3809 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3810
3811 // Scale the exponent by log(2) [0.69314718f].
3812 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3813 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3814 getF32Constant(DAG, 0x3f317218));
3815
3816 // Get the significand and build it into a floating-point number with
3817 // exponent of 1.
3818 SDValue X = GetSignificand(DAG, Op1, dl);
3819
3820 SDValue LogOfMantissa;
3821 if (LimitFloatPrecision <= 6) {
3822 // For floating-point precision of 6:
3823 //
3824 // LogofMantissa =
3825 // -1.1609546f +
3826 // (1.4034025f - 0.23903021f * x) * x;
3827 //
3828 // error 0.0034276066, which is better than 8 bits
3829 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3830 getF32Constant(DAG, 0xbe74c456));
3831 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3832 getF32Constant(DAG, 0x3fb3a2b1));
3833 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3834 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3835 getF32Constant(DAG, 0x3f949a29));
3836 } else if (LimitFloatPrecision <= 12) {
3837 // For floating-point precision of 12:
3838 //
3839 // LogOfMantissa =
3840 // -1.7417939f +
3841 // (2.8212026f +
3842 // (-1.4699568f +
3843 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3844 //
3845 // error 0.000061011436, which is 14 bits
3846 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3847 getF32Constant(DAG, 0xbd67b6d6));
3848 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3849 getF32Constant(DAG, 0x3ee4f4b8));
3850 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3851 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3852 getF32Constant(DAG, 0x3fbc278b));
3853 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3854 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3855 getF32Constant(DAG, 0x40348e95));
3856 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3857 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3858 getF32Constant(DAG, 0x3fdef31a));
3859 } else { // LimitFloatPrecision <= 18
3860 // For floating-point precision of 18:
3861 //
3862 // LogOfMantissa =
3863 // -2.1072184f +
3864 // (4.2372794f +
3865 // (-3.7029485f +
3866 // (2.2781945f +
3867 // (-0.87823314f +
3868 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3869 //
3870 // error 0.0000023660568, which is better than 18 bits
3871 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3872 getF32Constant(DAG, 0xbc91e5ac));
3873 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3874 getF32Constant(DAG, 0x3e4350aa));
3875 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3876 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3877 getF32Constant(DAG, 0x3f60d3e3));
3878 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3879 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3880 getF32Constant(DAG, 0x4011cdf0));
3881 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3882 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3883 getF32Constant(DAG, 0x406cfd1c));
3884 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3885 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3886 getF32Constant(DAG, 0x408797cb));
3887 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3888 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3889 getF32Constant(DAG, 0x4006dcab));
3890 }
3891
3892 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3893 }
3894
3895 // No special expansion.
3896 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3897 }
3898
3899 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3900 /// limited-precision mode.
expandLog2(DebugLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)3901 static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3902 const TargetLowering &TLI) {
3903 if (Op.getValueType() == MVT::f32 &&
3904 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3905 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3906
3907 // Get the exponent.
3908 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3909
3910 // Get the significand and build it into a floating-point number with
3911 // exponent of 1.
3912 SDValue X = GetSignificand(DAG, Op1, dl);
3913
3914 // Different possible minimax approximations of significand in
3915 // floating-point for various degrees of accuracy over [1,2].
3916 SDValue Log2ofMantissa;
3917 if (LimitFloatPrecision <= 6) {
3918 // For floating-point precision of 6:
3919 //
3920 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3921 //
3922 // error 0.0049451742, which is more than 7 bits
3923 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3924 getF32Constant(DAG, 0xbeb08fe0));
3925 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3926 getF32Constant(DAG, 0x40019463));
3927 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3928 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3929 getF32Constant(DAG, 0x3fd6633d));
3930 } else if (LimitFloatPrecision <= 12) {
3931 // For floating-point precision of 12:
3932 //
3933 // Log2ofMantissa =
3934 // -2.51285454f +
3935 // (4.07009056f +
3936 // (-2.12067489f +
3937 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3938 //
3939 // error 0.0000876136000, which is better than 13 bits
3940 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3941 getF32Constant(DAG, 0xbda7262e));
3942 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3943 getF32Constant(DAG, 0x3f25280b));
3944 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3945 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3946 getF32Constant(DAG, 0x4007b923));
3947 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3948 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3949 getF32Constant(DAG, 0x40823e2f));
3950 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3951 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3952 getF32Constant(DAG, 0x4020d29c));
3953 } else { // LimitFloatPrecision <= 18
3954 // For floating-point precision of 18:
3955 //
3956 // Log2ofMantissa =
3957 // -3.0400495f +
3958 // (6.1129976f +
3959 // (-5.3420409f +
3960 // (3.2865683f +
3961 // (-1.2669343f +
3962 // (0.27515199f -
3963 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3964 //
3965 // error 0.0000018516, which is better than 18 bits
3966 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3967 getF32Constant(DAG, 0xbcd2769e));
3968 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3969 getF32Constant(DAG, 0x3e8ce0b9));
3970 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3971 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3972 getF32Constant(DAG, 0x3fa22ae7));
3973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3975 getF32Constant(DAG, 0x40525723));
3976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3977 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3978 getF32Constant(DAG, 0x40aaf200));
3979 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3980 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3981 getF32Constant(DAG, 0x40c39dad));
3982 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3983 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3984 getF32Constant(DAG, 0x4042902c));
3985 }
3986
3987 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3988 }
3989
3990 // No special expansion.
3991 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3992 }
3993
3994 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3995 /// limited-precision mode.
expandLog10(DebugLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)3996 static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3997 const TargetLowering &TLI) {
3998 if (Op.getValueType() == MVT::f32 &&
3999 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4000 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4001
4002 // Scale the exponent by log10(2) [0.30102999f].
4003 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4004 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4005 getF32Constant(DAG, 0x3e9a209a));
4006
4007 // Get the significand and build it into a floating-point number with
4008 // exponent of 1.
4009 SDValue X = GetSignificand(DAG, Op1, dl);
4010
4011 SDValue Log10ofMantissa;
4012 if (LimitFloatPrecision <= 6) {
4013 // For floating-point precision of 6:
4014 //
4015 // Log10ofMantissa =
4016 // -0.50419619f +
4017 // (0.60948995f - 0.10380950f * x) * x;
4018 //
4019 // error 0.0014886165, which is 6 bits
4020 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4021 getF32Constant(DAG, 0xbdd49a13));
4022 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4023 getF32Constant(DAG, 0x3f1c0789));
4024 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4025 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4026 getF32Constant(DAG, 0x3f011300));
4027 } else if (LimitFloatPrecision <= 12) {
4028 // For floating-point precision of 12:
4029 //
4030 // Log10ofMantissa =
4031 // -0.64831180f +
4032 // (0.91751397f +
4033 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4034 //
4035 // error 0.00019228036, which is better than 12 bits
4036 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4037 getF32Constant(DAG, 0x3d431f31));
4038 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4039 getF32Constant(DAG, 0x3ea21fb2));
4040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4041 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4042 getF32Constant(DAG, 0x3f6ae232));
4043 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4044 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4045 getF32Constant(DAG, 0x3f25f7c3));
4046 } else { // LimitFloatPrecision <= 18
4047 // For floating-point precision of 18:
4048 //
4049 // Log10ofMantissa =
4050 // -0.84299375f +
4051 // (1.5327582f +
4052 // (-1.0688956f +
4053 // (0.49102474f +
4054 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4055 //
4056 // error 0.0000037995730, which is better than 18 bits
4057 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4058 getF32Constant(DAG, 0x3c5d51ce));
4059 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4060 getF32Constant(DAG, 0x3e00685a));
4061 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4062 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4063 getF32Constant(DAG, 0x3efb6798));
4064 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4065 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4066 getF32Constant(DAG, 0x3f88d192));
4067 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4068 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4069 getF32Constant(DAG, 0x3fc4316c));
4070 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4071 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4072 getF32Constant(DAG, 0x3f57ce70));
4073 }
4074
4075 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4076 }
4077
4078 // No special expansion.
4079 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4080 }
4081
4082 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4083 /// limited-precision mode.
expandExp2(DebugLoc dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4084 static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
4085 const TargetLowering &TLI) {
4086 if (Op.getValueType() == MVT::f32 &&
4087 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4088 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4089
4090 // FractionalPartOfX = x - (float)IntegerPartOfX;
4091 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4092 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4093
4094 // IntegerPartOfX <<= 23;
4095 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4096 DAG.getConstant(23, TLI.getPointerTy()));
4097
4098 SDValue TwoToFractionalPartOfX;
4099 if (LimitFloatPrecision <= 6) {
4100 // For floating-point precision of 6:
4101 //
4102 // TwoToFractionalPartOfX =
4103 // 0.997535578f +
4104 // (0.735607626f + 0.252464424f * x) * x;
4105 //
4106 // error 0.0144103317, which is 6 bits
4107 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4108 getF32Constant(DAG, 0x3e814304));
4109 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4110 getF32Constant(DAG, 0x3f3c50c8));
4111 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4112 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4113 getF32Constant(DAG, 0x3f7f5e7e));
4114 } else if (LimitFloatPrecision <= 12) {
4115 // For floating-point precision of 12:
4116 //
4117 // TwoToFractionalPartOfX =
4118 // 0.999892986f +
4119 // (0.696457318f +
4120 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4121 //
4122 // error 0.000107046256, which is 13 to 14 bits
4123 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4124 getF32Constant(DAG, 0x3da235e3));
4125 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4126 getF32Constant(DAG, 0x3e65b8f3));
4127 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4128 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4129 getF32Constant(DAG, 0x3f324b07));
4130 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4131 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4132 getF32Constant(DAG, 0x3f7ff8fd));
4133 } else { // LimitFloatPrecision <= 18
4134 // For floating-point precision of 18:
4135 //
4136 // TwoToFractionalPartOfX =
4137 // 0.999999982f +
4138 // (0.693148872f +
4139 // (0.240227044f +
4140 // (0.554906021e-1f +
4141 // (0.961591928e-2f +
4142 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4143 // error 2.47208000*10^(-7), which is better than 18 bits
4144 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4145 getF32Constant(DAG, 0x3924b03e));
4146 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4147 getF32Constant(DAG, 0x3ab24b87));
4148 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4149 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4150 getF32Constant(DAG, 0x3c1d8c17));
4151 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4152 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4153 getF32Constant(DAG, 0x3d634a1d));
4154 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4155 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4156 getF32Constant(DAG, 0x3e75fe14));
4157 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4158 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4159 getF32Constant(DAG, 0x3f317234));
4160 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4161 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4162 getF32Constant(DAG, 0x3f800000));
4163 }
4164
4165 // Add the exponent into the result in integer domain.
4166 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4167 TwoToFractionalPartOfX);
4168 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4169 DAG.getNode(ISD::ADD, dl, MVT::i32,
4170 t13, IntegerPartOfX));
4171 }
4172
4173 // No special expansion.
4174 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4175 }
4176
4177 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4178 /// limited-precision mode with x == 10.0f.
expandPow(DebugLoc dl,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const TargetLowering & TLI)4179 static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS,
4180 SelectionDAG &DAG, const TargetLowering &TLI) {
4181 bool IsExp10 = false;
4182 if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4183 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4184 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4185 APFloat Ten(10.0f);
4186 IsExp10 = LHSC->isExactlyValue(Ten);
4187 }
4188 }
4189
4190 if (IsExp10) {
4191 // Put the exponent in the right bit position for later addition to the
4192 // final result:
4193 //
4194 // #define LOG2OF10 3.3219281f
4195 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
4196 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4197 getF32Constant(DAG, 0x40549a78));
4198 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4199
4200 // FractionalPartOfX = x - (float)IntegerPartOfX;
4201 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4202 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4203
4204 // IntegerPartOfX <<= 23;
4205 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4206 DAG.getConstant(23, TLI.getPointerTy()));
4207
4208 SDValue TwoToFractionalPartOfX;
4209 if (LimitFloatPrecision <= 6) {
4210 // For floating-point precision of 6:
4211 //
4212 // twoToFractionalPartOfX =
4213 // 0.997535578f +
4214 // (0.735607626f + 0.252464424f * x) * x;
4215 //
4216 // error 0.0144103317, which is 6 bits
4217 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4218 getF32Constant(DAG, 0x3e814304));
4219 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4220 getF32Constant(DAG, 0x3f3c50c8));
4221 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4222 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4223 getF32Constant(DAG, 0x3f7f5e7e));
4224 } else if (LimitFloatPrecision <= 12) {
4225 // For floating-point precision of 12:
4226 //
4227 // TwoToFractionalPartOfX =
4228 // 0.999892986f +
4229 // (0.696457318f +
4230 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4231 //
4232 // error 0.000107046256, which is 13 to 14 bits
4233 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4234 getF32Constant(DAG, 0x3da235e3));
4235 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4236 getF32Constant(DAG, 0x3e65b8f3));
4237 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4238 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4239 getF32Constant(DAG, 0x3f324b07));
4240 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4241 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4242 getF32Constant(DAG, 0x3f7ff8fd));
4243 } else { // LimitFloatPrecision <= 18
4244 // For floating-point precision of 18:
4245 //
4246 // TwoToFractionalPartOfX =
4247 // 0.999999982f +
4248 // (0.693148872f +
4249 // (0.240227044f +
4250 // (0.554906021e-1f +
4251 // (0.961591928e-2f +
4252 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4253 // error 2.47208000*10^(-7), which is better than 18 bits
4254 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4255 getF32Constant(DAG, 0x3924b03e));
4256 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4257 getF32Constant(DAG, 0x3ab24b87));
4258 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4259 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4260 getF32Constant(DAG, 0x3c1d8c17));
4261 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4262 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4263 getF32Constant(DAG, 0x3d634a1d));
4264 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4265 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4266 getF32Constant(DAG, 0x3e75fe14));
4267 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4268 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4269 getF32Constant(DAG, 0x3f317234));
4270 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4271 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4272 getF32Constant(DAG, 0x3f800000));
4273 }
4274
4275 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4276 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4277 DAG.getNode(ISD::ADD, dl, MVT::i32,
4278 t13, IntegerPartOfX));
4279 }
4280
4281 // No special expansion.
4282 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4283 }
4284
4285
4286 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(DebugLoc DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)4287 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4288 SelectionDAG &DAG) {
4289 // If RHS is a constant, we can expand this out to a multiplication tree,
4290 // otherwise we end up lowering to a call to __powidf2 (for example). When
4291 // optimizing for size, we only want to do this if the expansion would produce
4292 // a small number of multiplies, otherwise we do the full expansion.
4293 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4294 // Get the exponent as a positive value.
4295 unsigned Val = RHSC->getSExtValue();
4296 if ((int)Val < 0) Val = -Val;
4297
4298 // powi(x, 0) -> 1.0
4299 if (Val == 0)
4300 return DAG.getConstantFP(1.0, LHS.getValueType());
4301
4302 const Function *F = DAG.getMachineFunction().getFunction();
4303 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4304 Attribute::OptimizeForSize) ||
4305 // If optimizing for size, don't insert too many multiplies. This
4306 // inserts up to 5 multiplies.
4307 CountPopulation_32(Val)+Log2_32(Val) < 7) {
4308 // We use the simple binary decomposition method to generate the multiply
4309 // sequence. There are more optimal ways to do this (for example,
4310 // powi(x,15) generates one more multiply than it should), but this has
4311 // the benefit of being both really simple and much better than a libcall.
4312 SDValue Res; // Logically starts equal to 1.0
4313 SDValue CurSquare = LHS;
4314 while (Val) {
4315 if (Val & 1) {
4316 if (Res.getNode())
4317 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4318 else
4319 Res = CurSquare; // 1.0*CurSquare.
4320 }
4321
4322 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4323 CurSquare, CurSquare);
4324 Val >>= 1;
4325 }
4326
4327 // If the original was negative, invert the result, producing 1/(x*x*x).
4328 if (RHSC->getSExtValue() < 0)
4329 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4330 DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4331 return Res;
4332 }
4333 }
4334
4335 // Otherwise, expand to a libcall.
4336 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4337 }
4338
4339 // getTruncatedArgReg - Find underlying register used for an truncated
4340 // argument.
getTruncatedArgReg(const SDValue & N)4341 static unsigned getTruncatedArgReg(const SDValue &N) {
4342 if (N.getOpcode() != ISD::TRUNCATE)
4343 return 0;
4344
4345 const SDValue &Ext = N.getOperand(0);
4346 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4347 const SDValue &CFR = Ext.getOperand(0);
4348 if (CFR.getOpcode() == ISD::CopyFromReg)
4349 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4350 if (CFR.getOpcode() == ISD::TRUNCATE)
4351 return getTruncatedArgReg(CFR);
4352 }
4353 return 0;
4354 }
4355
4356 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4357 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4358 /// At the end of instruction selection, they will be inserted to the entry BB.
4359 bool
EmitFuncArgumentDbgValue(const Value * V,MDNode * Variable,int64_t Offset,const SDValue & N)4360 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4361 int64_t Offset,
4362 const SDValue &N) {
4363 const Argument *Arg = dyn_cast<Argument>(V);
4364 if (!Arg)
4365 return false;
4366
4367 MachineFunction &MF = DAG.getMachineFunction();
4368 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4369 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4370
4371 // Ignore inlined function arguments here.
4372 DIVariable DV(Variable);
4373 if (DV.isInlinedFnArgument(MF.getFunction()))
4374 return false;
4375
4376 unsigned Reg = 0;
4377 // Some arguments' frame index is recorded during argument lowering.
4378 Offset = FuncInfo.getArgumentFrameIndex(Arg);
4379 if (Offset)
4380 Reg = TRI->getFrameRegister(MF);
4381
4382 if (!Reg && N.getNode()) {
4383 if (N.getOpcode() == ISD::CopyFromReg)
4384 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4385 else
4386 Reg = getTruncatedArgReg(N);
4387 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4388 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4389 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4390 if (PR)
4391 Reg = PR;
4392 }
4393 }
4394
4395 if (!Reg) {
4396 // Check if ValueMap has reg number.
4397 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4398 if (VMI != FuncInfo.ValueMap.end())
4399 Reg = VMI->second;
4400 }
4401
4402 if (!Reg && N.getNode()) {
4403 // Check if frame index is available.
4404 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4405 if (FrameIndexSDNode *FINode =
4406 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4407 Reg = TRI->getFrameRegister(MF);
4408 Offset = FINode->getIndex();
4409 }
4410 }
4411
4412 if (!Reg)
4413 return false;
4414
4415 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4416 TII->get(TargetOpcode::DBG_VALUE))
4417 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4418 FuncInfo.ArgDbgValues.push_back(&*MIB);
4419 return true;
4420 }
4421
4422 // VisualStudio defines setjmp as _setjmp
4423 #if defined(_MSC_VER) && defined(setjmp) && \
4424 !defined(setjmp_undefined_for_msvc)
4425 # pragma push_macro("setjmp")
4426 # undef setjmp
4427 # define setjmp_undefined_for_msvc
4428 #endif
4429
4430 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4431 /// we want to emit this as a call to a named external function, return the name
4432 /// otherwise lower it and return null.
4433 const char *
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)4434 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4435 DebugLoc dl = getCurDebugLoc();
4436 SDValue Res;
4437
4438 switch (Intrinsic) {
4439 default:
4440 // By default, turn this into a target intrinsic node.
4441 visitTargetIntrinsic(I, Intrinsic);
4442 return 0;
4443 case Intrinsic::vastart: visitVAStart(I); return 0;
4444 case Intrinsic::vaend: visitVAEnd(I); return 0;
4445 case Intrinsic::vacopy: visitVACopy(I); return 0;
4446 case Intrinsic::returnaddress:
4447 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4448 getValue(I.getArgOperand(0))));
4449 return 0;
4450 case Intrinsic::frameaddress:
4451 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4452 getValue(I.getArgOperand(0))));
4453 return 0;
4454 case Intrinsic::setjmp:
4455 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4456 case Intrinsic::longjmp:
4457 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4458 case Intrinsic::memcpy: {
4459 // Assert for address < 256 since we support only user defined address
4460 // spaces.
4461 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4462 < 256 &&
4463 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4464 < 256 &&
4465 "Unknown address space");
4466 SDValue Op1 = getValue(I.getArgOperand(0));
4467 SDValue Op2 = getValue(I.getArgOperand(1));
4468 SDValue Op3 = getValue(I.getArgOperand(2));
4469 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4470 if (!Align)
4471 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4472 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4473 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4474 MachinePointerInfo(I.getArgOperand(0)),
4475 MachinePointerInfo(I.getArgOperand(1))));
4476 return 0;
4477 }
4478 case Intrinsic::memset: {
4479 // Assert for address < 256 since we support only user defined address
4480 // spaces.
4481 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4482 < 256 &&
4483 "Unknown address space");
4484 SDValue Op1 = getValue(I.getArgOperand(0));
4485 SDValue Op2 = getValue(I.getArgOperand(1));
4486 SDValue Op3 = getValue(I.getArgOperand(2));
4487 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4488 if (!Align)
4489 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4490 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4491 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4492 MachinePointerInfo(I.getArgOperand(0))));
4493 return 0;
4494 }
4495 case Intrinsic::memmove: {
4496 // Assert for address < 256 since we support only user defined address
4497 // spaces.
4498 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4499 < 256 &&
4500 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4501 < 256 &&
4502 "Unknown address space");
4503 SDValue Op1 = getValue(I.getArgOperand(0));
4504 SDValue Op2 = getValue(I.getArgOperand(1));
4505 SDValue Op3 = getValue(I.getArgOperand(2));
4506 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4507 if (!Align)
4508 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4509 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4510 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4511 MachinePointerInfo(I.getArgOperand(0)),
4512 MachinePointerInfo(I.getArgOperand(1))));
4513 return 0;
4514 }
4515 case Intrinsic::dbg_declare: {
4516 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4517 MDNode *Variable = DI.getVariable();
4518 const Value *Address = DI.getAddress();
4519 if (!Address || !DIVariable(Variable).Verify()) {
4520 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4521 return 0;
4522 }
4523
4524 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4525 // but do not always have a corresponding SDNode built. The SDNodeOrder
4526 // absolute, but not relative, values are different depending on whether
4527 // debug info exists.
4528 ++SDNodeOrder;
4529
4530 // Check if address has undef value.
4531 if (isa<UndefValue>(Address) ||
4532 (Address->use_empty() && !isa<Argument>(Address))) {
4533 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4534 return 0;
4535 }
4536
4537 SDValue &N = NodeMap[Address];
4538 if (!N.getNode() && isa<Argument>(Address))
4539 // Check unused arguments map.
4540 N = UnusedArgNodeMap[Address];
4541 SDDbgValue *SDV;
4542 if (N.getNode()) {
4543 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4544 Address = BCI->getOperand(0);
4545 // Parameters are handled specially.
4546 bool isParameter =
4547 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4548 isa<Argument>(Address));
4549
4550 const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4551
4552 if (isParameter && !AI) {
4553 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4554 if (FINode)
4555 // Byval parameter. We have a frame index at this point.
4556 SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4557 0, dl, SDNodeOrder);
4558 else {
4559 // Address is an argument, so try to emit its dbg value using
4560 // virtual register info from the FuncInfo.ValueMap.
4561 EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4562 return 0;
4563 }
4564 } else if (AI)
4565 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4566 0, dl, SDNodeOrder);
4567 else {
4568 // Can't do anything with other non-AI cases yet.
4569 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4570 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4571 DEBUG(Address->dump());
4572 return 0;
4573 }
4574 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4575 } else {
4576 // If Address is an argument then try to emit its dbg value using
4577 // virtual register info from the FuncInfo.ValueMap.
4578 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4579 // If variable is pinned by a alloca in dominating bb then
4580 // use StaticAllocaMap.
4581 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4582 if (AI->getParent() != DI.getParent()) {
4583 DenseMap<const AllocaInst*, int>::iterator SI =
4584 FuncInfo.StaticAllocaMap.find(AI);
4585 if (SI != FuncInfo.StaticAllocaMap.end()) {
4586 SDV = DAG.getDbgValue(Variable, SI->second,
4587 0, dl, SDNodeOrder);
4588 DAG.AddDbgValue(SDV, 0, false);
4589 return 0;
4590 }
4591 }
4592 }
4593 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4594 }
4595 }
4596 return 0;
4597 }
4598 case Intrinsic::dbg_value: {
4599 const DbgValueInst &DI = cast<DbgValueInst>(I);
4600 if (!DIVariable(DI.getVariable()).Verify())
4601 return 0;
4602
4603 MDNode *Variable = DI.getVariable();
4604 uint64_t Offset = DI.getOffset();
4605 const Value *V = DI.getValue();
4606 if (!V)
4607 return 0;
4608
4609 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4610 // but do not always have a corresponding SDNode built. The SDNodeOrder
4611 // absolute, but not relative, values are different depending on whether
4612 // debug info exists.
4613 ++SDNodeOrder;
4614 SDDbgValue *SDV;
4615 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4616 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4617 DAG.AddDbgValue(SDV, 0, false);
4618 } else {
4619 // Do not use getValue() in here; we don't want to generate code at
4620 // this point if it hasn't been done yet.
4621 SDValue N = NodeMap[V];
4622 if (!N.getNode() && isa<Argument>(V))
4623 // Check unused arguments map.
4624 N = UnusedArgNodeMap[V];
4625 if (N.getNode()) {
4626 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4627 SDV = DAG.getDbgValue(Variable, N.getNode(),
4628 N.getResNo(), Offset, dl, SDNodeOrder);
4629 DAG.AddDbgValue(SDV, N.getNode(), false);
4630 }
4631 } else if (!V->use_empty() ) {
4632 // Do not call getValue(V) yet, as we don't want to generate code.
4633 // Remember it for later.
4634 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4635 DanglingDebugInfoMap[V] = DDI;
4636 } else {
4637 // We may expand this to cover more cases. One case where we have no
4638 // data available is an unreferenced parameter.
4639 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4640 }
4641 }
4642
4643 // Build a debug info table entry.
4644 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4645 V = BCI->getOperand(0);
4646 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4647 // Don't handle byval struct arguments or VLAs, for example.
4648 if (!AI) {
4649 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
4650 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
4651 return 0;
4652 }
4653 DenseMap<const AllocaInst*, int>::iterator SI =
4654 FuncInfo.StaticAllocaMap.find(AI);
4655 if (SI == FuncInfo.StaticAllocaMap.end())
4656 return 0; // VLAs.
4657 int FI = SI->second;
4658
4659 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4660 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4661 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4662 return 0;
4663 }
4664
4665 case Intrinsic::eh_typeid_for: {
4666 // Find the type id for the given typeinfo.
4667 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4668 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4669 Res = DAG.getConstant(TypeID, MVT::i32);
4670 setValue(&I, Res);
4671 return 0;
4672 }
4673
4674 case Intrinsic::eh_return_i32:
4675 case Intrinsic::eh_return_i64:
4676 DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4677 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4678 MVT::Other,
4679 getControlRoot(),
4680 getValue(I.getArgOperand(0)),
4681 getValue(I.getArgOperand(1))));
4682 return 0;
4683 case Intrinsic::eh_unwind_init:
4684 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4685 return 0;
4686 case Intrinsic::eh_dwarf_cfa: {
4687 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4688 TLI.getPointerTy());
4689 SDValue Offset = DAG.getNode(ISD::ADD, dl,
4690 TLI.getPointerTy(),
4691 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4692 TLI.getPointerTy()),
4693 CfaArg);
4694 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4695 TLI.getPointerTy(),
4696 DAG.getConstant(0, TLI.getPointerTy()));
4697 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4698 FA, Offset));
4699 return 0;
4700 }
4701 case Intrinsic::eh_sjlj_callsite: {
4702 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4703 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4704 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4705 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4706
4707 MMI.setCurrentCallSite(CI->getZExtValue());
4708 return 0;
4709 }
4710 case Intrinsic::eh_sjlj_functioncontext: {
4711 // Get and store the index of the function context.
4712 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4713 AllocaInst *FnCtx =
4714 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4715 int FI = FuncInfo.StaticAllocaMap[FnCtx];
4716 MFI->setFunctionContextIndex(FI);
4717 return 0;
4718 }
4719 case Intrinsic::eh_sjlj_setjmp: {
4720 SDValue Ops[2];
4721 Ops[0] = getRoot();
4722 Ops[1] = getValue(I.getArgOperand(0));
4723 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4724 DAG.getVTList(MVT::i32, MVT::Other),
4725 Ops, 2);
4726 setValue(&I, Op.getValue(0));
4727 DAG.setRoot(Op.getValue(1));
4728 return 0;
4729 }
4730 case Intrinsic::eh_sjlj_longjmp: {
4731 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4732 getRoot(), getValue(I.getArgOperand(0))));
4733 return 0;
4734 }
4735
4736 case Intrinsic::x86_mmx_pslli_w:
4737 case Intrinsic::x86_mmx_pslli_d:
4738 case Intrinsic::x86_mmx_pslli_q:
4739 case Intrinsic::x86_mmx_psrli_w:
4740 case Intrinsic::x86_mmx_psrli_d:
4741 case Intrinsic::x86_mmx_psrli_q:
4742 case Intrinsic::x86_mmx_psrai_w:
4743 case Intrinsic::x86_mmx_psrai_d: {
4744 SDValue ShAmt = getValue(I.getArgOperand(1));
4745 if (isa<ConstantSDNode>(ShAmt)) {
4746 visitTargetIntrinsic(I, Intrinsic);
4747 return 0;
4748 }
4749 unsigned NewIntrinsic = 0;
4750 EVT ShAmtVT = MVT::v2i32;
4751 switch (Intrinsic) {
4752 case Intrinsic::x86_mmx_pslli_w:
4753 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4754 break;
4755 case Intrinsic::x86_mmx_pslli_d:
4756 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4757 break;
4758 case Intrinsic::x86_mmx_pslli_q:
4759 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4760 break;
4761 case Intrinsic::x86_mmx_psrli_w:
4762 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4763 break;
4764 case Intrinsic::x86_mmx_psrli_d:
4765 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4766 break;
4767 case Intrinsic::x86_mmx_psrli_q:
4768 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4769 break;
4770 case Intrinsic::x86_mmx_psrai_w:
4771 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4772 break;
4773 case Intrinsic::x86_mmx_psrai_d:
4774 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4775 break;
4776 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4777 }
4778
4779 // The vector shift intrinsics with scalars uses 32b shift amounts but
4780 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4781 // to be zero.
4782 // We must do this early because v2i32 is not a legal type.
4783 SDValue ShOps[2];
4784 ShOps[0] = ShAmt;
4785 ShOps[1] = DAG.getConstant(0, MVT::i32);
4786 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4787 EVT DestVT = TLI.getValueType(I.getType());
4788 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4789 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4790 DAG.getConstant(NewIntrinsic, MVT::i32),
4791 getValue(I.getArgOperand(0)), ShAmt);
4792 setValue(&I, Res);
4793 return 0;
4794 }
4795 case Intrinsic::x86_avx_vinsertf128_pd_256:
4796 case Intrinsic::x86_avx_vinsertf128_ps_256:
4797 case Intrinsic::x86_avx_vinsertf128_si_256:
4798 case Intrinsic::x86_avx2_vinserti128: {
4799 EVT DestVT = TLI.getValueType(I.getType());
4800 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4801 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4802 ElVT.getVectorNumElements();
4803 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4804 getValue(I.getArgOperand(0)),
4805 getValue(I.getArgOperand(1)),
4806 DAG.getIntPtrConstant(Idx));
4807 setValue(&I, Res);
4808 return 0;
4809 }
4810 case Intrinsic::x86_avx_vextractf128_pd_256:
4811 case Intrinsic::x86_avx_vextractf128_ps_256:
4812 case Intrinsic::x86_avx_vextractf128_si_256:
4813 case Intrinsic::x86_avx2_vextracti128: {
4814 EVT DestVT = TLI.getValueType(I.getType());
4815 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4816 DestVT.getVectorNumElements();
4817 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4818 getValue(I.getArgOperand(0)),
4819 DAG.getIntPtrConstant(Idx));
4820 setValue(&I, Res);
4821 return 0;
4822 }
4823 case Intrinsic::convertff:
4824 case Intrinsic::convertfsi:
4825 case Intrinsic::convertfui:
4826 case Intrinsic::convertsif:
4827 case Intrinsic::convertuif:
4828 case Intrinsic::convertss:
4829 case Intrinsic::convertsu:
4830 case Intrinsic::convertus:
4831 case Intrinsic::convertuu: {
4832 ISD::CvtCode Code = ISD::CVT_INVALID;
4833 switch (Intrinsic) {
4834 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4835 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
4836 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4837 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4838 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4839 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4840 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
4841 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
4842 case Intrinsic::convertus: Code = ISD::CVT_US; break;
4843 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
4844 }
4845 EVT DestVT = TLI.getValueType(I.getType());
4846 const Value *Op1 = I.getArgOperand(0);
4847 Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
4848 DAG.getValueType(DestVT),
4849 DAG.getValueType(getValue(Op1).getValueType()),
4850 getValue(I.getArgOperand(1)),
4851 getValue(I.getArgOperand(2)),
4852 Code);
4853 setValue(&I, Res);
4854 return 0;
4855 }
4856 case Intrinsic::powi:
4857 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4858 getValue(I.getArgOperand(1)), DAG));
4859 return 0;
4860 case Intrinsic::log:
4861 setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4862 return 0;
4863 case Intrinsic::log2:
4864 setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4865 return 0;
4866 case Intrinsic::log10:
4867 setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4868 return 0;
4869 case Intrinsic::exp:
4870 setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4871 return 0;
4872 case Intrinsic::exp2:
4873 setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4874 return 0;
4875 case Intrinsic::pow:
4876 setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)),
4877 getValue(I.getArgOperand(1)), DAG, TLI));
4878 return 0;
4879 case Intrinsic::sqrt:
4880 case Intrinsic::fabs:
4881 case Intrinsic::sin:
4882 case Intrinsic::cos:
4883 case Intrinsic::floor:
4884 case Intrinsic::ceil:
4885 case Intrinsic::trunc:
4886 case Intrinsic::rint:
4887 case Intrinsic::nearbyint: {
4888 unsigned Opcode;
4889 switch (Intrinsic) {
4890 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4891 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
4892 case Intrinsic::fabs: Opcode = ISD::FABS; break;
4893 case Intrinsic::sin: Opcode = ISD::FSIN; break;
4894 case Intrinsic::cos: Opcode = ISD::FCOS; break;
4895 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
4896 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
4897 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
4898 case Intrinsic::rint: Opcode = ISD::FRINT; break;
4899 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4900 }
4901
4902 setValue(&I, DAG.getNode(Opcode, dl,
4903 getValue(I.getArgOperand(0)).getValueType(),
4904 getValue(I.getArgOperand(0))));
4905 return 0;
4906 }
4907 case Intrinsic::fma:
4908 setValue(&I, DAG.getNode(ISD::FMA, dl,
4909 getValue(I.getArgOperand(0)).getValueType(),
4910 getValue(I.getArgOperand(0)),
4911 getValue(I.getArgOperand(1)),
4912 getValue(I.getArgOperand(2))));
4913 return 0;
4914 case Intrinsic::fmuladd: {
4915 EVT VT = TLI.getValueType(I.getType());
4916 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4917 TLI.isOperationLegalOrCustom(ISD::FMA, VT) &&
4918 TLI.isFMAFasterThanMulAndAdd(VT)){
4919 setValue(&I, DAG.getNode(ISD::FMA, dl,
4920 getValue(I.getArgOperand(0)).getValueType(),
4921 getValue(I.getArgOperand(0)),
4922 getValue(I.getArgOperand(1)),
4923 getValue(I.getArgOperand(2))));
4924 } else {
4925 SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4926 getValue(I.getArgOperand(0)).getValueType(),
4927 getValue(I.getArgOperand(0)),
4928 getValue(I.getArgOperand(1)));
4929 SDValue Add = DAG.getNode(ISD::FADD, dl,
4930 getValue(I.getArgOperand(0)).getValueType(),
4931 Mul,
4932 getValue(I.getArgOperand(2)));
4933 setValue(&I, Add);
4934 }
4935 return 0;
4936 }
4937 case Intrinsic::convert_to_fp16:
4938 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4939 MVT::i16, getValue(I.getArgOperand(0))));
4940 return 0;
4941 case Intrinsic::convert_from_fp16:
4942 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4943 MVT::f32, getValue(I.getArgOperand(0))));
4944 return 0;
4945 case Intrinsic::pcmarker: {
4946 SDValue Tmp = getValue(I.getArgOperand(0));
4947 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4948 return 0;
4949 }
4950 case Intrinsic::readcyclecounter: {
4951 SDValue Op = getRoot();
4952 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4953 DAG.getVTList(MVT::i64, MVT::Other),
4954 &Op, 1);
4955 setValue(&I, Res);
4956 DAG.setRoot(Res.getValue(1));
4957 return 0;
4958 }
4959 case Intrinsic::bswap:
4960 setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4961 getValue(I.getArgOperand(0)).getValueType(),
4962 getValue(I.getArgOperand(0))));
4963 return 0;
4964 case Intrinsic::cttz: {
4965 SDValue Arg = getValue(I.getArgOperand(0));
4966 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4967 EVT Ty = Arg.getValueType();
4968 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4969 dl, Ty, Arg));
4970 return 0;
4971 }
4972 case Intrinsic::ctlz: {
4973 SDValue Arg = getValue(I.getArgOperand(0));
4974 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4975 EVT Ty = Arg.getValueType();
4976 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4977 dl, Ty, Arg));
4978 return 0;
4979 }
4980 case Intrinsic::ctpop: {
4981 SDValue Arg = getValue(I.getArgOperand(0));
4982 EVT Ty = Arg.getValueType();
4983 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4984 return 0;
4985 }
4986 case Intrinsic::stacksave: {
4987 SDValue Op = getRoot();
4988 Res = DAG.getNode(ISD::STACKSAVE, dl,
4989 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4990 setValue(&I, Res);
4991 DAG.setRoot(Res.getValue(1));
4992 return 0;
4993 }
4994 case Intrinsic::stackrestore: {
4995 Res = getValue(I.getArgOperand(0));
4996 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4997 return 0;
4998 }
4999 case Intrinsic::stackprotector: {
5000 // Emit code into the DAG to store the stack guard onto the stack.
5001 MachineFunction &MF = DAG.getMachineFunction();
5002 MachineFrameInfo *MFI = MF.getFrameInfo();
5003 EVT PtrTy = TLI.getPointerTy();
5004
5005 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
5006 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5007
5008 int FI = FuncInfo.StaticAllocaMap[Slot];
5009 MFI->setStackProtectorIndex(FI);
5010
5011 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5012
5013 // Store the stack protector onto the stack.
5014 Res = DAG.getStore(getRoot(), dl, Src, FIN,
5015 MachinePointerInfo::getFixedStack(FI),
5016 true, false, 0);
5017 setValue(&I, Res);
5018 DAG.setRoot(Res);
5019 return 0;
5020 }
5021 case Intrinsic::objectsize: {
5022 // If we don't know by now, we're never going to know.
5023 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5024
5025 assert(CI && "Non-constant type in __builtin_object_size?");
5026
5027 SDValue Arg = getValue(I.getCalledValue());
5028 EVT Ty = Arg.getValueType();
5029
5030 if (CI->isZero())
5031 Res = DAG.getConstant(-1ULL, Ty);
5032 else
5033 Res = DAG.getConstant(0, Ty);
5034
5035 setValue(&I, Res);
5036 return 0;
5037 }
5038 case Intrinsic::var_annotation:
5039 // Discard annotate attributes
5040 return 0;
5041
5042 case Intrinsic::init_trampoline: {
5043 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5044
5045 SDValue Ops[6];
5046 Ops[0] = getRoot();
5047 Ops[1] = getValue(I.getArgOperand(0));
5048 Ops[2] = getValue(I.getArgOperand(1));
5049 Ops[3] = getValue(I.getArgOperand(2));
5050 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5051 Ops[5] = DAG.getSrcValue(F);
5052
5053 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5054
5055 DAG.setRoot(Res);
5056 return 0;
5057 }
5058 case Intrinsic::adjust_trampoline: {
5059 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5060 TLI.getPointerTy(),
5061 getValue(I.getArgOperand(0))));
5062 return 0;
5063 }
5064 case Intrinsic::gcroot:
5065 if (GFI) {
5066 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5067 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5068
5069 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5070 GFI->addStackRoot(FI->getIndex(), TypeMap);
5071 }
5072 return 0;
5073 case Intrinsic::gcread:
5074 case Intrinsic::gcwrite:
5075 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5076 case Intrinsic::flt_rounds:
5077 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5078 return 0;
5079
5080 case Intrinsic::expect: {
5081 // Just replace __builtin_expect(exp, c) with EXP.
5082 setValue(&I, getValue(I.getArgOperand(0)));
5083 return 0;
5084 }
5085
5086 case Intrinsic::debugtrap:
5087 case Intrinsic::trap: {
5088 StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5089 if (TrapFuncName.empty()) {
5090 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5091 ISD::TRAP : ISD::DEBUGTRAP;
5092 DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5093 return 0;
5094 }
5095 TargetLowering::ArgListTy Args;
5096 TargetLowering::
5097 CallLoweringInfo CLI(getRoot(), I.getType(),
5098 false, false, false, false, 0, CallingConv::C,
5099 /*isTailCall=*/false,
5100 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5101 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5102 Args, DAG, dl);
5103 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5104 DAG.setRoot(Result.second);
5105 return 0;
5106 }
5107
5108 case Intrinsic::uadd_with_overflow:
5109 case Intrinsic::sadd_with_overflow:
5110 case Intrinsic::usub_with_overflow:
5111 case Intrinsic::ssub_with_overflow:
5112 case Intrinsic::umul_with_overflow:
5113 case Intrinsic::smul_with_overflow: {
5114 ISD::NodeType Op;
5115 switch (Intrinsic) {
5116 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5117 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5118 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5119 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5120 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5121 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5122 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5123 }
5124 SDValue Op1 = getValue(I.getArgOperand(0));
5125 SDValue Op2 = getValue(I.getArgOperand(1));
5126
5127 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5128 setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
5129 return 0;
5130 }
5131 case Intrinsic::prefetch: {
5132 SDValue Ops[5];
5133 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5134 Ops[0] = getRoot();
5135 Ops[1] = getValue(I.getArgOperand(0));
5136 Ops[2] = getValue(I.getArgOperand(1));
5137 Ops[3] = getValue(I.getArgOperand(2));
5138 Ops[4] = getValue(I.getArgOperand(3));
5139 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5140 DAG.getVTList(MVT::Other),
5141 &Ops[0], 5,
5142 EVT::getIntegerVT(*Context, 8),
5143 MachinePointerInfo(I.getArgOperand(0)),
5144 0, /* align */
5145 false, /* volatile */
5146 rw==0, /* read */
5147 rw==1)); /* write */
5148 return 0;
5149 }
5150 case Intrinsic::lifetime_start:
5151 case Intrinsic::lifetime_end: {
5152 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5153 // Stack coloring is not enabled in O0, discard region information.
5154 if (TM.getOptLevel() == CodeGenOpt::None)
5155 return 0;
5156
5157 SmallVector<Value *, 4> Allocas;
5158 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5159
5160 for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5161 E = Allocas.end(); Object != E; ++Object) {
5162 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5163
5164 // Could not find an Alloca.
5165 if (!LifetimeObject)
5166 continue;
5167
5168 int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5169
5170 SDValue Ops[2];
5171 Ops[0] = getRoot();
5172 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5173 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5174
5175 Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5176 DAG.setRoot(Res);
5177 }
5178 return 0;
5179 }
5180 case Intrinsic::invariant_start:
5181 // Discard region information.
5182 setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5183 return 0;
5184 case Intrinsic::invariant_end:
5185 // Discard region information.
5186 return 0;
5187 case Intrinsic::donothing:
5188 // ignore
5189 return 0;
5190 }
5191 }
5192
LowerCallTo(ImmutableCallSite CS,SDValue Callee,bool isTailCall,MachineBasicBlock * LandingPad)5193 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5194 bool isTailCall,
5195 MachineBasicBlock *LandingPad) {
5196 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5197 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5198 Type *RetTy = FTy->getReturnType();
5199 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5200 MCSymbol *BeginLabel = 0;
5201
5202 TargetLowering::ArgListTy Args;
5203 TargetLowering::ArgListEntry Entry;
5204 Args.reserve(CS.arg_size());
5205
5206 // Check whether the function can return without sret-demotion.
5207 SmallVector<ISD::OutputArg, 4> Outs;
5208 GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI);
5209
5210 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5211 DAG.getMachineFunction(),
5212 FTy->isVarArg(), Outs,
5213 FTy->getContext());
5214
5215 SDValue DemoteStackSlot;
5216 int DemoteStackIdx = -100;
5217
5218 if (!CanLowerReturn) {
5219 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5220 FTy->getReturnType());
5221 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(
5222 FTy->getReturnType());
5223 MachineFunction &MF = DAG.getMachineFunction();
5224 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5225 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5226
5227 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5228 Entry.Node = DemoteStackSlot;
5229 Entry.Ty = StackSlotPtrType;
5230 Entry.isSExt = false;
5231 Entry.isZExt = false;
5232 Entry.isInReg = false;
5233 Entry.isSRet = true;
5234 Entry.isNest = false;
5235 Entry.isByVal = false;
5236 Entry.Alignment = Align;
5237 Args.push_back(Entry);
5238 RetTy = Type::getVoidTy(FTy->getContext());
5239 }
5240
5241 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5242 i != e; ++i) {
5243 const Value *V = *i;
5244
5245 // Skip empty types
5246 if (V->getType()->isEmptyTy())
5247 continue;
5248
5249 SDValue ArgNode = getValue(V);
5250 Entry.Node = ArgNode; Entry.Ty = V->getType();
5251
5252 unsigned attrInd = i - CS.arg_begin() + 1;
5253 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
5254 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
5255 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5256 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
5257 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
5258 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5259 Entry.Alignment = CS.getParamAlignment(attrInd);
5260 Args.push_back(Entry);
5261 }
5262
5263 if (LandingPad) {
5264 // Insert a label before the invoke call to mark the try range. This can be
5265 // used to detect deletion of the invoke via the MachineModuleInfo.
5266 BeginLabel = MMI.getContext().CreateTempSymbol();
5267
5268 // For SjLj, keep track of which landing pads go with which invokes
5269 // so as to maintain the ordering of pads in the LSDA.
5270 unsigned CallSiteIndex = MMI.getCurrentCallSite();
5271 if (CallSiteIndex) {
5272 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5273 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5274
5275 // Now that the call site is handled, stop tracking it.
5276 MMI.setCurrentCallSite(0);
5277 }
5278
5279 // Both PendingLoads and PendingExports must be flushed here;
5280 // this call might not return.
5281 (void)getRoot();
5282 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5283 }
5284
5285 // Check if target-independent constraints permit a tail call here.
5286 // Target-dependent constraints are checked within TLI.LowerCallTo.
5287 if (isTailCall && !isInTailCallPosition(CS, TLI))
5288 isTailCall = false;
5289
5290 TargetLowering::
5291 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5292 getCurDebugLoc(), CS);
5293 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5294 assert((isTailCall || Result.second.getNode()) &&
5295 "Non-null chain expected with non-tail call!");
5296 assert((Result.second.getNode() || !Result.first.getNode()) &&
5297 "Null value expected with tail call!");
5298 if (Result.first.getNode()) {
5299 setValue(CS.getInstruction(), Result.first);
5300 } else if (!CanLowerReturn && Result.second.getNode()) {
5301 // The instruction result is the result of loading from the
5302 // hidden sret parameter.
5303 SmallVector<EVT, 1> PVTs;
5304 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5305
5306 ComputeValueVTs(TLI, PtrRetTy, PVTs);
5307 assert(PVTs.size() == 1 && "Pointers should fit in one register");
5308 EVT PtrVT = PVTs[0];
5309
5310 SmallVector<EVT, 4> RetTys;
5311 SmallVector<uint64_t, 4> Offsets;
5312 RetTy = FTy->getReturnType();
5313 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5314
5315 unsigned NumValues = RetTys.size();
5316 SmallVector<SDValue, 4> Values(NumValues);
5317 SmallVector<SDValue, 4> Chains(NumValues);
5318
5319 for (unsigned i = 0; i < NumValues; ++i) {
5320 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5321 DemoteStackSlot,
5322 DAG.getConstant(Offsets[i], PtrVT));
5323 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5324 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5325 false, false, false, 1);
5326 Values[i] = L;
5327 Chains[i] = L.getValue(1);
5328 }
5329
5330 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5331 MVT::Other, &Chains[0], NumValues);
5332 PendingLoads.push_back(Chain);
5333
5334 setValue(CS.getInstruction(),
5335 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5336 DAG.getVTList(&RetTys[0], RetTys.size()),
5337 &Values[0], Values.size()));
5338 }
5339
5340 // Assign order to nodes here. If the call does not produce a result, it won't
5341 // be mapped to a SDNode and visit() will not assign it an order number.
5342 if (!Result.second.getNode()) {
5343 // As a special case, a null chain means that a tail call has been emitted and
5344 // the DAG root is already updated.
5345 HasTailCall = true;
5346 ++SDNodeOrder;
5347 AssignOrderingToNode(DAG.getRoot().getNode());
5348 } else {
5349 DAG.setRoot(Result.second);
5350 ++SDNodeOrder;
5351 AssignOrderingToNode(Result.second.getNode());
5352 }
5353
5354 if (LandingPad) {
5355 // Insert a label at the end of the invoke call to mark the try range. This
5356 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5357 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5358 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5359
5360 // Inform MachineModuleInfo of range.
5361 MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5362 }
5363 }
5364
5365 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5366 /// value is equal or not-equal to zero.
IsOnlyUsedInZeroEqualityComparison(const Value * V)5367 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5368 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5369 UI != E; ++UI) {
5370 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5371 if (IC->isEquality())
5372 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5373 if (C->isNullValue())
5374 continue;
5375 // Unknown instruction.
5376 return false;
5377 }
5378 return true;
5379 }
5380
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,Type * LoadTy,SelectionDAGBuilder & Builder)5381 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5382 Type *LoadTy,
5383 SelectionDAGBuilder &Builder) {
5384
5385 // Check to see if this load can be trivially constant folded, e.g. if the
5386 // input is from a string literal.
5387 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5388 // Cast pointer to the type we really want to load.
5389 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5390 PointerType::getUnqual(LoadTy));
5391
5392 if (const Constant *LoadCst =
5393 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5394 Builder.TD))
5395 return Builder.getValue(LoadCst);
5396 }
5397
5398 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5399 // still constant memory, the input chain can be the entry node.
5400 SDValue Root;
5401 bool ConstantMemory = false;
5402
5403 // Do not serialize (non-volatile) loads of constant memory with anything.
5404 if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5405 Root = Builder.DAG.getEntryNode();
5406 ConstantMemory = true;
5407 } else {
5408 // Do not serialize non-volatile loads against each other.
5409 Root = Builder.DAG.getRoot();
5410 }
5411
5412 SDValue Ptr = Builder.getValue(PtrVal);
5413 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5414 Ptr, MachinePointerInfo(PtrVal),
5415 false /*volatile*/,
5416 false /*nontemporal*/,
5417 false /*isinvariant*/, 1 /* align=1 */);
5418
5419 if (!ConstantMemory)
5420 Builder.PendingLoads.push_back(LoadVal.getValue(1));
5421 return LoadVal;
5422 }
5423
5424
5425 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5426 /// If so, return true and lower it, otherwise return false and it will be
5427 /// lowered like a normal call.
visitMemCmpCall(const CallInst & I)5428 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5429 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5430 if (I.getNumArgOperands() != 3)
5431 return false;
5432
5433 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5434 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5435 !I.getArgOperand(2)->getType()->isIntegerTy() ||
5436 !I.getType()->isIntegerTy())
5437 return false;
5438
5439 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5440
5441 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5442 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5443 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5444 bool ActuallyDoIt = true;
5445 MVT LoadVT;
5446 Type *LoadTy;
5447 switch (Size->getZExtValue()) {
5448 default:
5449 LoadVT = MVT::Other;
5450 LoadTy = 0;
5451 ActuallyDoIt = false;
5452 break;
5453 case 2:
5454 LoadVT = MVT::i16;
5455 LoadTy = Type::getInt16Ty(Size->getContext());
5456 break;
5457 case 4:
5458 LoadVT = MVT::i32;
5459 LoadTy = Type::getInt32Ty(Size->getContext());
5460 break;
5461 case 8:
5462 LoadVT = MVT::i64;
5463 LoadTy = Type::getInt64Ty(Size->getContext());
5464 break;
5465 /*
5466 case 16:
5467 LoadVT = MVT::v4i32;
5468 LoadTy = Type::getInt32Ty(Size->getContext());
5469 LoadTy = VectorType::get(LoadTy, 4);
5470 break;
5471 */
5472 }
5473
5474 // This turns into unaligned loads. We only do this if the target natively
5475 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5476 // we'll only produce a small number of byte loads.
5477
5478 // Require that we can find a legal MVT, and only do this if the target
5479 // supports unaligned loads of that type. Expanding into byte loads would
5480 // bloat the code.
5481 if (ActuallyDoIt && Size->getZExtValue() > 4) {
5482 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5483 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5484 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5485 ActuallyDoIt = false;
5486 }
5487
5488 if (ActuallyDoIt) {
5489 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5490 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5491
5492 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5493 ISD::SETNE);
5494 EVT CallVT = TLI.getValueType(I.getType(), true);
5495 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5496 return true;
5497 }
5498 }
5499
5500
5501 return false;
5502 }
5503
5504 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5505 /// operation (as expected), translate it to an SDNode with the specified opcode
5506 /// and return true.
visitUnaryFloatCall(const CallInst & I,unsigned Opcode)5507 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5508 unsigned Opcode) {
5509 // Sanity check that it really is a unary floating-point call.
5510 if (I.getNumArgOperands() != 1 ||
5511 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5512 I.getType() != I.getArgOperand(0)->getType() ||
5513 !I.onlyReadsMemory())
5514 return false;
5515
5516 SDValue Tmp = getValue(I.getArgOperand(0));
5517 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5518 return true;
5519 }
5520
visitCall(const CallInst & I)5521 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5522 // Handle inline assembly differently.
5523 if (isa<InlineAsm>(I.getCalledValue())) {
5524 visitInlineAsm(&I);
5525 return;
5526 }
5527
5528 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5529 ComputeUsesVAFloatArgument(I, &MMI);
5530
5531 const char *RenameFn = 0;
5532 if (Function *F = I.getCalledFunction()) {
5533 if (F->isDeclaration()) {
5534 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5535 if (unsigned IID = II->getIntrinsicID(F)) {
5536 RenameFn = visitIntrinsicCall(I, IID);
5537 if (!RenameFn)
5538 return;
5539 }
5540 }
5541 if (unsigned IID = F->getIntrinsicID()) {
5542 RenameFn = visitIntrinsicCall(I, IID);
5543 if (!RenameFn)
5544 return;
5545 }
5546 }
5547
5548 // Check for well-known libc/libm calls. If the function is internal, it
5549 // can't be a library call.
5550 LibFunc::Func Func;
5551 if (!F->hasLocalLinkage() && F->hasName() &&
5552 LibInfo->getLibFunc(F->getName(), Func) &&
5553 LibInfo->hasOptimizedCodeGen(Func)) {
5554 switch (Func) {
5555 default: break;
5556 case LibFunc::copysign:
5557 case LibFunc::copysignf:
5558 case LibFunc::copysignl:
5559 if (I.getNumArgOperands() == 2 && // Basic sanity checks.
5560 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5561 I.getType() == I.getArgOperand(0)->getType() &&
5562 I.getType() == I.getArgOperand(1)->getType() &&
5563 I.onlyReadsMemory()) {
5564 SDValue LHS = getValue(I.getArgOperand(0));
5565 SDValue RHS = getValue(I.getArgOperand(1));
5566 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5567 LHS.getValueType(), LHS, RHS));
5568 return;
5569 }
5570 break;
5571 case LibFunc::fabs:
5572 case LibFunc::fabsf:
5573 case LibFunc::fabsl:
5574 if (visitUnaryFloatCall(I, ISD::FABS))
5575 return;
5576 break;
5577 case LibFunc::sin:
5578 case LibFunc::sinf:
5579 case LibFunc::sinl:
5580 if (visitUnaryFloatCall(I, ISD::FSIN))
5581 return;
5582 break;
5583 case LibFunc::cos:
5584 case LibFunc::cosf:
5585 case LibFunc::cosl:
5586 if (visitUnaryFloatCall(I, ISD::FCOS))
5587 return;
5588 break;
5589 case LibFunc::sqrt:
5590 case LibFunc::sqrtf:
5591 case LibFunc::sqrtl:
5592 if (visitUnaryFloatCall(I, ISD::FSQRT))
5593 return;
5594 break;
5595 case LibFunc::floor:
5596 case LibFunc::floorf:
5597 case LibFunc::floorl:
5598 if (visitUnaryFloatCall(I, ISD::FFLOOR))
5599 return;
5600 break;
5601 case LibFunc::nearbyint:
5602 case LibFunc::nearbyintf:
5603 case LibFunc::nearbyintl:
5604 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5605 return;
5606 break;
5607 case LibFunc::ceil:
5608 case LibFunc::ceilf:
5609 case LibFunc::ceill:
5610 if (visitUnaryFloatCall(I, ISD::FCEIL))
5611 return;
5612 break;
5613 case LibFunc::rint:
5614 case LibFunc::rintf:
5615 case LibFunc::rintl:
5616 if (visitUnaryFloatCall(I, ISD::FRINT))
5617 return;
5618 break;
5619 case LibFunc::trunc:
5620 case LibFunc::truncf:
5621 case LibFunc::truncl:
5622 if (visitUnaryFloatCall(I, ISD::FTRUNC))
5623 return;
5624 break;
5625 case LibFunc::log2:
5626 case LibFunc::log2f:
5627 case LibFunc::log2l:
5628 if (visitUnaryFloatCall(I, ISD::FLOG2))
5629 return;
5630 break;
5631 case LibFunc::exp2:
5632 case LibFunc::exp2f:
5633 case LibFunc::exp2l:
5634 if (visitUnaryFloatCall(I, ISD::FEXP2))
5635 return;
5636 break;
5637 case LibFunc::memcmp:
5638 if (visitMemCmpCall(I))
5639 return;
5640 break;
5641 }
5642 }
5643 }
5644
5645 SDValue Callee;
5646 if (!RenameFn)
5647 Callee = getValue(I.getCalledValue());
5648 else
5649 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5650
5651 // Check if we can potentially perform a tail call. More detailed checking is
5652 // be done within LowerCallTo, after more information about the call is known.
5653 LowerCallTo(&I, Callee, I.isTailCall());
5654 }
5655
5656 namespace {
5657
5658 /// AsmOperandInfo - This contains information for each constraint that we are
5659 /// lowering.
5660 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5661 public:
5662 /// CallOperand - If this is the result output operand or a clobber
5663 /// this is null, otherwise it is the incoming operand to the CallInst.
5664 /// This gets modified as the asm is processed.
5665 SDValue CallOperand;
5666
5667 /// AssignedRegs - If this is a register or register class operand, this
5668 /// contains the set of register corresponding to the operand.
5669 RegsForValue AssignedRegs;
5670
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)5671 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5672 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5673 }
5674
5675 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5676 /// corresponds to. If there is no Value* for this operand, it returns
5677 /// MVT::Other.
getCallOperandValEVT(LLVMContext & Context,const TargetLowering & TLI,const DataLayout * TD) const5678 EVT getCallOperandValEVT(LLVMContext &Context,
5679 const TargetLowering &TLI,
5680 const DataLayout *TD) const {
5681 if (CallOperandVal == 0) return MVT::Other;
5682
5683 if (isa<BasicBlock>(CallOperandVal))
5684 return TLI.getPointerTy();
5685
5686 llvm::Type *OpTy = CallOperandVal->getType();
5687
5688 // FIXME: code duplicated from TargetLowering::ParseConstraints().
5689 // If this is an indirect operand, the operand is a pointer to the
5690 // accessed type.
5691 if (isIndirect) {
5692 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5693 if (!PtrTy)
5694 report_fatal_error("Indirect operand for inline asm not a pointer!");
5695 OpTy = PtrTy->getElementType();
5696 }
5697
5698 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5699 if (StructType *STy = dyn_cast<StructType>(OpTy))
5700 if (STy->getNumElements() == 1)
5701 OpTy = STy->getElementType(0);
5702
5703 // If OpTy is not a single value, it may be a struct/union that we
5704 // can tile with integers.
5705 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5706 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5707 switch (BitSize) {
5708 default: break;
5709 case 1:
5710 case 8:
5711 case 16:
5712 case 32:
5713 case 64:
5714 case 128:
5715 OpTy = IntegerType::get(Context, BitSize);
5716 break;
5717 }
5718 }
5719
5720 return TLI.getValueType(OpTy, true);
5721 }
5722 };
5723
5724 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5725
5726 } // end anonymous namespace
5727
5728 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5729 /// specified operand. We prefer to assign virtual registers, to allow the
5730 /// register allocator to handle the assignment process. However, if the asm
5731 /// uses features that we can't model on machineinstrs, we have SDISel do the
5732 /// allocation. This produces generally horrible, but correct, code.
5733 ///
5734 /// OpInfo describes the operand.
5735 ///
GetRegistersForValue(SelectionDAG & DAG,const TargetLowering & TLI,DebugLoc DL,SDISelAsmOperandInfo & OpInfo)5736 static void GetRegistersForValue(SelectionDAG &DAG,
5737 const TargetLowering &TLI,
5738 DebugLoc DL,
5739 SDISelAsmOperandInfo &OpInfo) {
5740 LLVMContext &Context = *DAG.getContext();
5741
5742 MachineFunction &MF = DAG.getMachineFunction();
5743 SmallVector<unsigned, 4> Regs;
5744
5745 // If this is a constraint for a single physreg, or a constraint for a
5746 // register class, find it.
5747 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5748 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5749 OpInfo.ConstraintVT);
5750
5751 unsigned NumRegs = 1;
5752 if (OpInfo.ConstraintVT != MVT::Other) {
5753 // If this is a FP input in an integer register (or visa versa) insert a bit
5754 // cast of the input value. More generally, handle any case where the input
5755 // value disagrees with the register class we plan to stick this in.
5756 if (OpInfo.Type == InlineAsm::isInput &&
5757 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5758 // Try to convert to the first EVT that the reg class contains. If the
5759 // types are identical size, use a bitcast to convert (e.g. two differing
5760 // vector types).
5761 MVT RegVT = *PhysReg.second->vt_begin();
5762 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5763 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5764 RegVT, OpInfo.CallOperand);
5765 OpInfo.ConstraintVT = RegVT;
5766 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5767 // If the input is a FP value and we want it in FP registers, do a
5768 // bitcast to the corresponding integer type. This turns an f64 value
5769 // into i64, which can be passed with two i32 values on a 32-bit
5770 // machine.
5771 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5772 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5773 RegVT, OpInfo.CallOperand);
5774 OpInfo.ConstraintVT = RegVT;
5775 }
5776 }
5777
5778 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5779 }
5780
5781 MVT RegVT;
5782 EVT ValueVT = OpInfo.ConstraintVT;
5783
5784 // If this is a constraint for a specific physical register, like {r17},
5785 // assign it now.
5786 if (unsigned AssignedReg = PhysReg.first) {
5787 const TargetRegisterClass *RC = PhysReg.second;
5788 if (OpInfo.ConstraintVT == MVT::Other)
5789 ValueVT = *RC->vt_begin();
5790
5791 // Get the actual register value type. This is important, because the user
5792 // may have asked for (e.g.) the AX register in i32 type. We need to
5793 // remember that AX is actually i16 to get the right extension.
5794 RegVT = *RC->vt_begin();
5795
5796 // This is a explicit reference to a physical register.
5797 Regs.push_back(AssignedReg);
5798
5799 // If this is an expanded reference, add the rest of the regs to Regs.
5800 if (NumRegs != 1) {
5801 TargetRegisterClass::iterator I = RC->begin();
5802 for (; *I != AssignedReg; ++I)
5803 assert(I != RC->end() && "Didn't find reg!");
5804
5805 // Already added the first reg.
5806 --NumRegs; ++I;
5807 for (; NumRegs; --NumRegs, ++I) {
5808 assert(I != RC->end() && "Ran out of registers to allocate!");
5809 Regs.push_back(*I);
5810 }
5811 }
5812
5813 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5814 return;
5815 }
5816
5817 // Otherwise, if this was a reference to an LLVM register class, create vregs
5818 // for this reference.
5819 if (const TargetRegisterClass *RC = PhysReg.second) {
5820 RegVT = *RC->vt_begin();
5821 if (OpInfo.ConstraintVT == MVT::Other)
5822 ValueVT = RegVT;
5823
5824 // Create the appropriate number of virtual registers.
5825 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5826 for (; NumRegs; --NumRegs)
5827 Regs.push_back(RegInfo.createVirtualRegister(RC));
5828
5829 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5830 return;
5831 }
5832
5833 // Otherwise, we couldn't allocate enough registers for this.
5834 }
5835
5836 /// visitInlineAsm - Handle a call to an InlineAsm object.
5837 ///
visitInlineAsm(ImmutableCallSite CS)5838 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5839 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5840
5841 /// ConstraintOperands - Information about all of the constraints.
5842 SDISelAsmOperandInfoVector ConstraintOperands;
5843
5844 TargetLowering::AsmOperandInfoVector
5845 TargetConstraints = TLI.ParseConstraints(CS);
5846
5847 bool hasMemory = false;
5848
5849 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5850 unsigned ResNo = 0; // ResNo - The result number of the next output.
5851 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5852 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5853 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5854
5855 MVT OpVT = MVT::Other;
5856
5857 // Compute the value type for each operand.
5858 switch (OpInfo.Type) {
5859 case InlineAsm::isOutput:
5860 // Indirect outputs just consume an argument.
5861 if (OpInfo.isIndirect) {
5862 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5863 break;
5864 }
5865
5866 // The return value of the call is this value. As such, there is no
5867 // corresponding argument.
5868 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5869 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5870 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
5871 } else {
5872 assert(ResNo == 0 && "Asm only has one result!");
5873 OpVT = TLI.getSimpleValueType(CS.getType());
5874 }
5875 ++ResNo;
5876 break;
5877 case InlineAsm::isInput:
5878 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5879 break;
5880 case InlineAsm::isClobber:
5881 // Nothing to do.
5882 break;
5883 }
5884
5885 // If this is an input or an indirect output, process the call argument.
5886 // BasicBlocks are labels, currently appearing only in asm's.
5887 if (OpInfo.CallOperandVal) {
5888 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5889 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5890 } else {
5891 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5892 }
5893
5894 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD).
5895 getSimpleVT();
5896 }
5897
5898 OpInfo.ConstraintVT = OpVT;
5899
5900 // Indirect operand accesses access memory.
5901 if (OpInfo.isIndirect)
5902 hasMemory = true;
5903 else {
5904 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5905 TargetLowering::ConstraintType
5906 CType = TLI.getConstraintType(OpInfo.Codes[j]);
5907 if (CType == TargetLowering::C_Memory) {
5908 hasMemory = true;
5909 break;
5910 }
5911 }
5912 }
5913 }
5914
5915 SDValue Chain, Flag;
5916
5917 // We won't need to flush pending loads if this asm doesn't touch
5918 // memory and is nonvolatile.
5919 if (hasMemory || IA->hasSideEffects())
5920 Chain = getRoot();
5921 else
5922 Chain = DAG.getRoot();
5923
5924 // Second pass over the constraints: compute which constraint option to use
5925 // and assign registers to constraints that want a specific physreg.
5926 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5927 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5928
5929 // If this is an output operand with a matching input operand, look up the
5930 // matching input. If their types mismatch, e.g. one is an integer, the
5931 // other is floating point, or their sizes are different, flag it as an
5932 // error.
5933 if (OpInfo.hasMatchingInput()) {
5934 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5935
5936 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5937 std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5938 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5939 OpInfo.ConstraintVT);
5940 std::pair<unsigned, const TargetRegisterClass*> InputRC =
5941 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5942 Input.ConstraintVT);
5943 if ((OpInfo.ConstraintVT.isInteger() !=
5944 Input.ConstraintVT.isInteger()) ||
5945 (MatchRC.second != InputRC.second)) {
5946 report_fatal_error("Unsupported asm: input constraint"
5947 " with a matching output constraint of"
5948 " incompatible type!");
5949 }
5950 Input.ConstraintVT = OpInfo.ConstraintVT;
5951 }
5952 }
5953
5954 // Compute the constraint code and ConstraintType to use.
5955 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5956
5957 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5958 OpInfo.Type == InlineAsm::isClobber)
5959 continue;
5960
5961 // If this is a memory input, and if the operand is not indirect, do what we
5962 // need to to provide an address for the memory input.
5963 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5964 !OpInfo.isIndirect) {
5965 assert((OpInfo.isMultipleAlternative ||
5966 (OpInfo.Type == InlineAsm::isInput)) &&
5967 "Can only indirectify direct input operands!");
5968
5969 // Memory operands really want the address of the value. If we don't have
5970 // an indirect input, put it in the constpool if we can, otherwise spill
5971 // it to a stack slot.
5972 // TODO: This isn't quite right. We need to handle these according to
5973 // the addressing mode that the constraint wants. Also, this may take
5974 // an additional register for the computation and we don't want that
5975 // either.
5976
5977 // If the operand is a float, integer, or vector constant, spill to a
5978 // constant pool entry to get its address.
5979 const Value *OpVal = OpInfo.CallOperandVal;
5980 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5981 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5982 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5983 TLI.getPointerTy());
5984 } else {
5985 // Otherwise, create a stack slot and emit a store to it before the
5986 // asm.
5987 Type *Ty = OpVal->getType();
5988 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5989 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5990 MachineFunction &MF = DAG.getMachineFunction();
5991 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5992 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5993 Chain = DAG.getStore(Chain, getCurDebugLoc(),
5994 OpInfo.CallOperand, StackSlot,
5995 MachinePointerInfo::getFixedStack(SSFI),
5996 false, false, 0);
5997 OpInfo.CallOperand = StackSlot;
5998 }
5999
6000 // There is no longer a Value* corresponding to this operand.
6001 OpInfo.CallOperandVal = 0;
6002
6003 // It is now an indirect operand.
6004 OpInfo.isIndirect = true;
6005 }
6006
6007 // If this constraint is for a specific register, allocate it before
6008 // anything else.
6009 if (OpInfo.ConstraintType == TargetLowering::C_Register)
6010 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6011 }
6012
6013 // Second pass - Loop over all of the operands, assigning virtual or physregs
6014 // to register class operands.
6015 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6016 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6017
6018 // C_Register operands have already been allocated, Other/Memory don't need
6019 // to be.
6020 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6021 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6022 }
6023
6024 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6025 std::vector<SDValue> AsmNodeOperands;
6026 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
6027 AsmNodeOperands.push_back(
6028 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6029 TLI.getPointerTy()));
6030
6031 // If we have a !srcloc metadata node associated with it, we want to attach
6032 // this to the ultimately generated inline asm machineinstr. To do this, we
6033 // pass in the third operand as this (potentially null) inline asm MDNode.
6034 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6035 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6036
6037 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6038 // bits as operand 3.
6039 unsigned ExtraInfo = 0;
6040 if (IA->hasSideEffects())
6041 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6042 if (IA->isAlignStack())
6043 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6044 // Set the asm dialect.
6045 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6046
6047 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6048 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6049 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6050
6051 // Compute the constraint code and ConstraintType to use.
6052 TLI.ComputeConstraintToUse(OpInfo, SDValue());
6053
6054 // Ideally, we would only check against memory constraints. However, the
6055 // meaning of an other constraint can be target-specific and we can't easily
6056 // reason about it. Therefore, be conservative and set MayLoad/MayStore
6057 // for other constriants as well.
6058 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6059 OpInfo.ConstraintType == TargetLowering::C_Other) {
6060 if (OpInfo.Type == InlineAsm::isInput)
6061 ExtraInfo |= InlineAsm::Extra_MayLoad;
6062 else if (OpInfo.Type == InlineAsm::isOutput)
6063 ExtraInfo |= InlineAsm::Extra_MayStore;
6064 else if (OpInfo.Type == InlineAsm::isClobber)
6065 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6066 }
6067 }
6068
6069 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6070 TLI.getPointerTy()));
6071
6072 // Loop over all of the inputs, copying the operand values into the
6073 // appropriate registers and processing the output regs.
6074 RegsForValue RetValRegs;
6075
6076 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6077 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6078
6079 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6080 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6081
6082 switch (OpInfo.Type) {
6083 case InlineAsm::isOutput: {
6084 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6085 OpInfo.ConstraintType != TargetLowering::C_Register) {
6086 // Memory output, or 'other' output (e.g. 'X' constraint).
6087 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6088
6089 // Add information to the INLINEASM node to know about this output.
6090 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6091 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6092 TLI.getPointerTy()));
6093 AsmNodeOperands.push_back(OpInfo.CallOperand);
6094 break;
6095 }
6096
6097 // Otherwise, this is a register or register class output.
6098
6099 // Copy the output from the appropriate register. Find a register that
6100 // we can use.
6101 if (OpInfo.AssignedRegs.Regs.empty()) {
6102 LLVMContext &Ctx = *DAG.getContext();
6103 Ctx.emitError(CS.getInstruction(),
6104 "couldn't allocate output register for constraint '" +
6105 Twine(OpInfo.ConstraintCode) + "'");
6106 break;
6107 }
6108
6109 // If this is an indirect operand, store through the pointer after the
6110 // asm.
6111 if (OpInfo.isIndirect) {
6112 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6113 OpInfo.CallOperandVal));
6114 } else {
6115 // This is the result value of the call.
6116 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6117 // Concatenate this output onto the outputs list.
6118 RetValRegs.append(OpInfo.AssignedRegs);
6119 }
6120
6121 // Add information to the INLINEASM node to know that this register is
6122 // set.
6123 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6124 InlineAsm::Kind_RegDefEarlyClobber :
6125 InlineAsm::Kind_RegDef,
6126 false,
6127 0,
6128 DAG,
6129 AsmNodeOperands);
6130 break;
6131 }
6132 case InlineAsm::isInput: {
6133 SDValue InOperandVal = OpInfo.CallOperand;
6134
6135 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
6136 // If this is required to match an output register we have already set,
6137 // just use its register.
6138 unsigned OperandNo = OpInfo.getMatchedOperand();
6139
6140 // Scan until we find the definition we already emitted of this operand.
6141 // When we find it, create a RegsForValue operand.
6142 unsigned CurOp = InlineAsm::Op_FirstOperand;
6143 for (; OperandNo; --OperandNo) {
6144 // Advance to the next operand.
6145 unsigned OpFlag =
6146 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6147 assert((InlineAsm::isRegDefKind(OpFlag) ||
6148 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6149 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6150 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6151 }
6152
6153 unsigned OpFlag =
6154 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6155 if (InlineAsm::isRegDefKind(OpFlag) ||
6156 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6157 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6158 if (OpInfo.isIndirect) {
6159 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6160 LLVMContext &Ctx = *DAG.getContext();
6161 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6162 " don't know how to handle tied "
6163 "indirect register inputs");
6164 report_fatal_error("Cannot handle indirect register inputs!");
6165 }
6166
6167 RegsForValue MatchedRegs;
6168 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6169 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6170 MatchedRegs.RegVTs.push_back(RegVT);
6171 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6172 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6173 i != e; ++i)
6174 MatchedRegs.Regs.push_back
6175 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6176
6177 // Use the produced MatchedRegs object to
6178 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6179 Chain, &Flag, CS.getInstruction());
6180 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6181 true, OpInfo.getMatchedOperand(),
6182 DAG, AsmNodeOperands);
6183 break;
6184 }
6185
6186 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6187 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6188 "Unexpected number of operands");
6189 // Add information to the INLINEASM node to know about this input.
6190 // See InlineAsm.h isUseOperandTiedToDef.
6191 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6192 OpInfo.getMatchedOperand());
6193 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6194 TLI.getPointerTy()));
6195 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6196 break;
6197 }
6198
6199 // Treat indirect 'X' constraint as memory.
6200 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6201 OpInfo.isIndirect)
6202 OpInfo.ConstraintType = TargetLowering::C_Memory;
6203
6204 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6205 std::vector<SDValue> Ops;
6206 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6207 Ops, DAG);
6208 if (Ops.empty()) {
6209 LLVMContext &Ctx = *DAG.getContext();
6210 Ctx.emitError(CS.getInstruction(),
6211 "invalid operand for inline asm constraint '" +
6212 Twine(OpInfo.ConstraintCode) + "'");
6213 break;
6214 }
6215
6216 // Add information to the INLINEASM node to know about this input.
6217 unsigned ResOpType =
6218 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6219 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6220 TLI.getPointerTy()));
6221 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6222 break;
6223 }
6224
6225 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6226 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6227 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6228 "Memory operands expect pointer values");
6229
6230 // Add information to the INLINEASM node to know about this input.
6231 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6232 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6233 TLI.getPointerTy()));
6234 AsmNodeOperands.push_back(InOperandVal);
6235 break;
6236 }
6237
6238 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6239 OpInfo.ConstraintType == TargetLowering::C_Register) &&
6240 "Unknown constraint type!");
6241
6242 // TODO: Support this.
6243 if (OpInfo.isIndirect) {
6244 LLVMContext &Ctx = *DAG.getContext();
6245 Ctx.emitError(CS.getInstruction(),
6246 "Don't know how to handle indirect register inputs yet "
6247 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6248 break;
6249 }
6250
6251 // Copy the input into the appropriate registers.
6252 if (OpInfo.AssignedRegs.Regs.empty()) {
6253 LLVMContext &Ctx = *DAG.getContext();
6254 Ctx.emitError(CS.getInstruction(),
6255 "couldn't allocate input reg for constraint '" +
6256 Twine(OpInfo.ConstraintCode) + "'");
6257 break;
6258 }
6259
6260 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6261 Chain, &Flag, CS.getInstruction());
6262
6263 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6264 DAG, AsmNodeOperands);
6265 break;
6266 }
6267 case InlineAsm::isClobber: {
6268 // Add the clobbered value to the operand list, so that the register
6269 // allocator is aware that the physreg got clobbered.
6270 if (!OpInfo.AssignedRegs.Regs.empty())
6271 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6272 false, 0, DAG,
6273 AsmNodeOperands);
6274 break;
6275 }
6276 }
6277 }
6278
6279 // Finish up input operands. Set the input chain and add the flag last.
6280 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6281 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6282
6283 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6284 DAG.getVTList(MVT::Other, MVT::Glue),
6285 &AsmNodeOperands[0], AsmNodeOperands.size());
6286 Flag = Chain.getValue(1);
6287
6288 // If this asm returns a register value, copy the result from that register
6289 // and set it as the value of the call.
6290 if (!RetValRegs.Regs.empty()) {
6291 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6292 Chain, &Flag, CS.getInstruction());
6293
6294 // FIXME: Why don't we do this for inline asms with MRVs?
6295 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6296 EVT ResultType = TLI.getValueType(CS.getType());
6297
6298 // If any of the results of the inline asm is a vector, it may have the
6299 // wrong width/num elts. This can happen for register classes that can
6300 // contain multiple different value types. The preg or vreg allocated may
6301 // not have the same VT as was expected. Convert it to the right type
6302 // with bit_convert.
6303 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6304 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6305 ResultType, Val);
6306
6307 } else if (ResultType != Val.getValueType() &&
6308 ResultType.isInteger() && Val.getValueType().isInteger()) {
6309 // If a result value was tied to an input value, the computed result may
6310 // have a wider width than the expected result. Extract the relevant
6311 // portion.
6312 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6313 }
6314
6315 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6316 }
6317
6318 setValue(CS.getInstruction(), Val);
6319 // Don't need to use this as a chain in this case.
6320 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6321 return;
6322 }
6323
6324 std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6325
6326 // Process indirect outputs, first output all of the flagged copies out of
6327 // physregs.
6328 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6329 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6330 const Value *Ptr = IndirectStoresToEmit[i].second;
6331 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6332 Chain, &Flag, IA);
6333 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6334 }
6335
6336 // Emit the non-flagged stores from the physregs.
6337 SmallVector<SDValue, 8> OutChains;
6338 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6339 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6340 StoresToEmit[i].first,
6341 getValue(StoresToEmit[i].second),
6342 MachinePointerInfo(StoresToEmit[i].second),
6343 false, false, 0);
6344 OutChains.push_back(Val);
6345 }
6346
6347 if (!OutChains.empty())
6348 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6349 &OutChains[0], OutChains.size());
6350
6351 DAG.setRoot(Chain);
6352 }
6353
visitVAStart(const CallInst & I)6354 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6355 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6356 MVT::Other, getRoot(),
6357 getValue(I.getArgOperand(0)),
6358 DAG.getSrcValue(I.getArgOperand(0))));
6359 }
6360
visitVAArg(const VAArgInst & I)6361 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6362 const DataLayout &TD = *TLI.getDataLayout();
6363 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6364 getRoot(), getValue(I.getOperand(0)),
6365 DAG.getSrcValue(I.getOperand(0)),
6366 TD.getABITypeAlignment(I.getType()));
6367 setValue(&I, V);
6368 DAG.setRoot(V.getValue(1));
6369 }
6370
visitVAEnd(const CallInst & I)6371 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6372 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6373 MVT::Other, getRoot(),
6374 getValue(I.getArgOperand(0)),
6375 DAG.getSrcValue(I.getArgOperand(0))));
6376 }
6377
visitVACopy(const CallInst & I)6378 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6379 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6380 MVT::Other, getRoot(),
6381 getValue(I.getArgOperand(0)),
6382 getValue(I.getArgOperand(1)),
6383 DAG.getSrcValue(I.getArgOperand(0)),
6384 DAG.getSrcValue(I.getArgOperand(1))));
6385 }
6386
6387 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6388 /// implementation, which just calls LowerCall.
6389 /// FIXME: When all targets are
6390 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6391 std::pair<SDValue, SDValue>
LowerCallTo(TargetLowering::CallLoweringInfo & CLI) const6392 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6393 // Handle all of the outgoing arguments.
6394 CLI.Outs.clear();
6395 CLI.OutVals.clear();
6396 ArgListTy &Args = CLI.Args;
6397 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6398 SmallVector<EVT, 4> ValueVTs;
6399 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6400 for (unsigned Value = 0, NumValues = ValueVTs.size();
6401 Value != NumValues; ++Value) {
6402 EVT VT = ValueVTs[Value];
6403 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6404 SDValue Op = SDValue(Args[i].Node.getNode(),
6405 Args[i].Node.getResNo() + Value);
6406 ISD::ArgFlagsTy Flags;
6407 unsigned OriginalAlignment =
6408 getDataLayout()->getABITypeAlignment(ArgTy);
6409
6410 if (Args[i].isZExt)
6411 Flags.setZExt();
6412 if (Args[i].isSExt)
6413 Flags.setSExt();
6414 if (Args[i].isInReg)
6415 Flags.setInReg();
6416 if (Args[i].isSRet)
6417 Flags.setSRet();
6418 if (Args[i].isByVal) {
6419 Flags.setByVal();
6420 PointerType *Ty = cast<PointerType>(Args[i].Ty);
6421 Type *ElementTy = Ty->getElementType();
6422 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6423 // For ByVal, alignment should come from FE. BE will guess if this
6424 // info is not there but there are cases it cannot get right.
6425 unsigned FrameAlign;
6426 if (Args[i].Alignment)
6427 FrameAlign = Args[i].Alignment;
6428 else
6429 FrameAlign = getByValTypeAlignment(ElementTy);
6430 Flags.setByValAlign(FrameAlign);
6431 }
6432 if (Args[i].isNest)
6433 Flags.setNest();
6434 Flags.setOrigAlign(OriginalAlignment);
6435
6436 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6437 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6438 SmallVector<SDValue, 4> Parts(NumParts);
6439 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6440
6441 if (Args[i].isSExt)
6442 ExtendKind = ISD::SIGN_EXTEND;
6443 else if (Args[i].isZExt)
6444 ExtendKind = ISD::ZERO_EXTEND;
6445
6446 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6447 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6448
6449 for (unsigned j = 0; j != NumParts; ++j) {
6450 // if it isn't first piece, alignment must be 1
6451 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6452 i < CLI.NumFixedArgs,
6453 i, j*Parts[j].getValueType().getStoreSize());
6454 if (NumParts > 1 && j == 0)
6455 MyFlags.Flags.setSplit();
6456 else if (j != 0)
6457 MyFlags.Flags.setOrigAlign(1);
6458
6459 CLI.Outs.push_back(MyFlags);
6460 CLI.OutVals.push_back(Parts[j]);
6461 }
6462 }
6463 }
6464
6465 // Handle the incoming return values from the call.
6466 CLI.Ins.clear();
6467 SmallVector<EVT, 4> RetTys;
6468 ComputeValueVTs(*this, CLI.RetTy, RetTys);
6469 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6470 EVT VT = RetTys[I];
6471 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6472 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6473 for (unsigned i = 0; i != NumRegs; ++i) {
6474 ISD::InputArg MyFlags;
6475 MyFlags.VT = RegisterVT;
6476 MyFlags.Used = CLI.IsReturnValueUsed;
6477 if (CLI.RetSExt)
6478 MyFlags.Flags.setSExt();
6479 if (CLI.RetZExt)
6480 MyFlags.Flags.setZExt();
6481 if (CLI.IsInReg)
6482 MyFlags.Flags.setInReg();
6483 CLI.Ins.push_back(MyFlags);
6484 }
6485 }
6486
6487 SmallVector<SDValue, 4> InVals;
6488 CLI.Chain = LowerCall(CLI, InVals);
6489
6490 // Verify that the target's LowerCall behaved as expected.
6491 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6492 "LowerCall didn't return a valid chain!");
6493 assert((!CLI.IsTailCall || InVals.empty()) &&
6494 "LowerCall emitted a return value for a tail call!");
6495 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6496 "LowerCall didn't emit the correct number of values!");
6497
6498 // For a tail call, the return value is merely live-out and there aren't
6499 // any nodes in the DAG representing it. Return a special value to
6500 // indicate that a tail call has been emitted and no more Instructions
6501 // should be processed in the current block.
6502 if (CLI.IsTailCall) {
6503 CLI.DAG.setRoot(CLI.Chain);
6504 return std::make_pair(SDValue(), SDValue());
6505 }
6506
6507 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6508 assert(InVals[i].getNode() &&
6509 "LowerCall emitted a null value!");
6510 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6511 "LowerCall emitted a value with the wrong type!");
6512 });
6513
6514 // Collect the legal value parts into potentially illegal values
6515 // that correspond to the original function's return values.
6516 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6517 if (CLI.RetSExt)
6518 AssertOp = ISD::AssertSext;
6519 else if (CLI.RetZExt)
6520 AssertOp = ISD::AssertZext;
6521 SmallVector<SDValue, 4> ReturnValues;
6522 unsigned CurReg = 0;
6523 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6524 EVT VT = RetTys[I];
6525 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6526 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6527
6528 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6529 NumRegs, RegisterVT, VT, NULL,
6530 AssertOp));
6531 CurReg += NumRegs;
6532 }
6533
6534 // For a function returning void, there is no return value. We can't create
6535 // such a node, so we just return a null return value in that case. In
6536 // that case, nothing will actually look at the value.
6537 if (ReturnValues.empty())
6538 return std::make_pair(SDValue(), CLI.Chain);
6539
6540 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6541 CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6542 &ReturnValues[0], ReturnValues.size());
6543 return std::make_pair(Res, CLI.Chain);
6544 }
6545
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const6546 void TargetLowering::LowerOperationWrapper(SDNode *N,
6547 SmallVectorImpl<SDValue> &Results,
6548 SelectionDAG &DAG) const {
6549 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6550 if (Res.getNode())
6551 Results.push_back(Res);
6552 }
6553
LowerOperation(SDValue Op,SelectionDAG & DAG) const6554 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6555 llvm_unreachable("LowerOperation not implemented for this target!");
6556 }
6557
6558 void
CopyValueToVirtualRegister(const Value * V,unsigned Reg)6559 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6560 SDValue Op = getNonRegisterValue(V);
6561 assert((Op.getOpcode() != ISD::CopyFromReg ||
6562 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6563 "Copy from a reg to the same reg!");
6564 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6565
6566 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6567 SDValue Chain = DAG.getEntryNode();
6568 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6569 PendingExports.push_back(Chain);
6570 }
6571
6572 #include "llvm/CodeGen/SelectionDAGISel.h"
6573
6574 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6575 /// entry block, return true. This includes arguments used by switches, since
6576 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A,bool FastISel)6577 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6578 // With FastISel active, we may be splitting blocks, so force creation
6579 // of virtual registers for all non-dead arguments.
6580 if (FastISel)
6581 return A->use_empty();
6582
6583 const BasicBlock *Entry = A->getParent()->begin();
6584 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6585 UI != E; ++UI) {
6586 const User *U = *UI;
6587 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6588 return false; // Use not in entry block.
6589 }
6590 return true;
6591 }
6592
LowerArguments(const Function & F)6593 void SelectionDAGISel::LowerArguments(const Function &F) {
6594 SelectionDAG &DAG = SDB->DAG;
6595 DebugLoc dl = SDB->getCurDebugLoc();
6596 const DataLayout *TD = TLI.getDataLayout();
6597 SmallVector<ISD::InputArg, 16> Ins;
6598
6599 if (!FuncInfo->CanLowerReturn) {
6600 // Put in an sret pointer parameter before all the other parameters.
6601 SmallVector<EVT, 1> ValueVTs;
6602 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6603
6604 // NOTE: Assuming that a pointer will never break down to more than one VT
6605 // or one register.
6606 ISD::ArgFlagsTy Flags;
6607 Flags.setSRet();
6608 MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6609 ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6610 Ins.push_back(RetArg);
6611 }
6612
6613 // Set up the incoming argument description vector.
6614 unsigned Idx = 1;
6615 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6616 I != E; ++I, ++Idx) {
6617 SmallVector<EVT, 4> ValueVTs;
6618 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6619 bool isArgValueUsed = !I->use_empty();
6620 for (unsigned Value = 0, NumValues = ValueVTs.size();
6621 Value != NumValues; ++Value) {
6622 EVT VT = ValueVTs[Value];
6623 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6624 ISD::ArgFlagsTy Flags;
6625 unsigned OriginalAlignment =
6626 TD->getABITypeAlignment(ArgTy);
6627
6628 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6629 Flags.setZExt();
6630 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6631 Flags.setSExt();
6632 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6633 Flags.setInReg();
6634 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6635 Flags.setSRet();
6636 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6637 Flags.setByVal();
6638 PointerType *Ty = cast<PointerType>(I->getType());
6639 Type *ElementTy = Ty->getElementType();
6640 Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6641 // For ByVal, alignment should be passed from FE. BE will guess if
6642 // this info is not there but there are cases it cannot get right.
6643 unsigned FrameAlign;
6644 if (F.getParamAlignment(Idx))
6645 FrameAlign = F.getParamAlignment(Idx);
6646 else
6647 FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6648 Flags.setByValAlign(FrameAlign);
6649 }
6650 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6651 Flags.setNest();
6652 Flags.setOrigAlign(OriginalAlignment);
6653
6654 MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6655 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6656 for (unsigned i = 0; i != NumRegs; ++i) {
6657 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6658 Idx-1, i*RegisterVT.getStoreSize());
6659 if (NumRegs > 1 && i == 0)
6660 MyFlags.Flags.setSplit();
6661 // if it isn't first piece, alignment must be 1
6662 else if (i > 0)
6663 MyFlags.Flags.setOrigAlign(1);
6664 Ins.push_back(MyFlags);
6665 }
6666 }
6667 }
6668
6669 // Call the target to set up the argument values.
6670 SmallVector<SDValue, 8> InVals;
6671 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6672 F.isVarArg(), Ins,
6673 dl, DAG, InVals);
6674
6675 // Verify that the target's LowerFormalArguments behaved as expected.
6676 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6677 "LowerFormalArguments didn't return a valid chain!");
6678 assert(InVals.size() == Ins.size() &&
6679 "LowerFormalArguments didn't emit the correct number of values!");
6680 DEBUG({
6681 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6682 assert(InVals[i].getNode() &&
6683 "LowerFormalArguments emitted a null value!");
6684 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6685 "LowerFormalArguments emitted a value with the wrong type!");
6686 }
6687 });
6688
6689 // Update the DAG with the new chain value resulting from argument lowering.
6690 DAG.setRoot(NewRoot);
6691
6692 // Set up the argument values.
6693 unsigned i = 0;
6694 Idx = 1;
6695 if (!FuncInfo->CanLowerReturn) {
6696 // Create a virtual register for the sret pointer, and put in a copy
6697 // from the sret argument into it.
6698 SmallVector<EVT, 1> ValueVTs;
6699 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6700 MVT VT = ValueVTs[0].getSimpleVT();
6701 MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6702 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6703 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6704 RegVT, VT, NULL, AssertOp);
6705
6706 MachineFunction& MF = SDB->DAG.getMachineFunction();
6707 MachineRegisterInfo& RegInfo = MF.getRegInfo();
6708 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6709 FuncInfo->DemoteRegister = SRetReg;
6710 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6711 SRetReg, ArgValue);
6712 DAG.setRoot(NewRoot);
6713
6714 // i indexes lowered arguments. Bump it past the hidden sret argument.
6715 // Idx indexes LLVM arguments. Don't touch it.
6716 ++i;
6717 }
6718
6719 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6720 ++I, ++Idx) {
6721 SmallVector<SDValue, 4> ArgValues;
6722 SmallVector<EVT, 4> ValueVTs;
6723 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6724 unsigned NumValues = ValueVTs.size();
6725
6726 // If this argument is unused then remember its value. It is used to generate
6727 // debugging information.
6728 if (I->use_empty() && NumValues)
6729 SDB->setUnusedArgValue(I, InVals[i]);
6730
6731 for (unsigned Val = 0; Val != NumValues; ++Val) {
6732 EVT VT = ValueVTs[Val];
6733 MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6734 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6735
6736 if (!I->use_empty()) {
6737 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6738 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6739 AssertOp = ISD::AssertSext;
6740 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6741 AssertOp = ISD::AssertZext;
6742
6743 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6744 NumParts, PartVT, VT,
6745 NULL, AssertOp));
6746 }
6747
6748 i += NumParts;
6749 }
6750
6751 // We don't need to do anything else for unused arguments.
6752 if (ArgValues.empty())
6753 continue;
6754
6755 // Note down frame index.
6756 if (FrameIndexSDNode *FI =
6757 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6758 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6759
6760 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6761 SDB->getCurDebugLoc());
6762
6763 SDB->setValue(I, Res);
6764 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6765 if (LoadSDNode *LNode =
6766 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6767 if (FrameIndexSDNode *FI =
6768 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6769 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6770 }
6771
6772 // If this argument is live outside of the entry block, insert a copy from
6773 // wherever we got it to the vreg that other BB's will reference it as.
6774 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6775 // If we can, though, try to skip creating an unnecessary vreg.
6776 // FIXME: This isn't very clean... it would be nice to make this more
6777 // general. It's also subtly incompatible with the hacks FastISel
6778 // uses with vregs.
6779 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6780 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6781 FuncInfo->ValueMap[I] = Reg;
6782 continue;
6783 }
6784 }
6785 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6786 FuncInfo->InitializeRegForValue(I);
6787 SDB->CopyToExportRegsIfNeeded(I);
6788 }
6789 }
6790
6791 assert(i == InVals.size() && "Argument register count mismatch!");
6792
6793 // Finally, if the target has anything special to do, allow it to do so.
6794 // FIXME: this should insert code into the DAG!
6795 EmitFunctionEntryCode();
6796 }
6797
6798 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
6799 /// ensure constants are generated when needed. Remember the virtual registers
6800 /// that need to be added to the Machine PHI nodes as input. We cannot just
6801 /// directly add them, because expansion might result in multiple MBB's for one
6802 /// BB. As such, the start of the BB might correspond to a different MBB than
6803 /// the end.
6804 ///
6805 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)6806 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6807 const TerminatorInst *TI = LLVMBB->getTerminator();
6808
6809 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6810
6811 // Check successor nodes' PHI nodes that expect a constant to be available
6812 // from this block.
6813 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6814 const BasicBlock *SuccBB = TI->getSuccessor(succ);
6815 if (!isa<PHINode>(SuccBB->begin())) continue;
6816 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6817
6818 // If this terminator has multiple identical successors (common for
6819 // switches), only handle each succ once.
6820 if (!SuccsHandled.insert(SuccMBB)) continue;
6821
6822 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6823
6824 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6825 // nodes and Machine PHI nodes, but the incoming operands have not been
6826 // emitted yet.
6827 for (BasicBlock::const_iterator I = SuccBB->begin();
6828 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6829 // Ignore dead phi's.
6830 if (PN->use_empty()) continue;
6831
6832 // Skip empty types
6833 if (PN->getType()->isEmptyTy())
6834 continue;
6835
6836 unsigned Reg;
6837 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6838
6839 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6840 unsigned &RegOut = ConstantsOut[C];
6841 if (RegOut == 0) {
6842 RegOut = FuncInfo.CreateRegs(C->getType());
6843 CopyValueToVirtualRegister(C, RegOut);
6844 }
6845 Reg = RegOut;
6846 } else {
6847 DenseMap<const Value *, unsigned>::iterator I =
6848 FuncInfo.ValueMap.find(PHIOp);
6849 if (I != FuncInfo.ValueMap.end())
6850 Reg = I->second;
6851 else {
6852 assert(isa<AllocaInst>(PHIOp) &&
6853 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6854 "Didn't codegen value into a register!??");
6855 Reg = FuncInfo.CreateRegs(PHIOp->getType());
6856 CopyValueToVirtualRegister(PHIOp, Reg);
6857 }
6858 }
6859
6860 // Remember that this register needs to added to the machine PHI node as
6861 // the input for this MBB.
6862 SmallVector<EVT, 4> ValueVTs;
6863 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6864 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6865 EVT VT = ValueVTs[vti];
6866 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6867 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6868 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6869 Reg += NumRegisters;
6870 }
6871 }
6872 }
6873 ConstantsOut.clear();
6874 }
6875