1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 // sameeragarwal@google.com (Sameer Agarwal)
31 //
32 // Templated functions for manipulating rotations. The templated
33 // functions are useful when implementing functors for automatic
34 // differentiation.
35 //
36 // In the following, the Quaternions are laid out as 4-vectors, thus:
37 //
38 // q[0] scalar part.
39 // q[1] coefficient of i.
40 // q[2] coefficient of j.
41 // q[3] coefficient of k.
42 //
43 // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
44
45 #ifndef CERES_PUBLIC_ROTATION_H_
46 #define CERES_PUBLIC_ROTATION_H_
47
48 #include <algorithm>
49 #include <cmath>
50 #include "glog/logging.h"
51
52 namespace ceres {
53
54 // Convert a value in combined axis-angle representation to a quaternion.
55 // The value angle_axis is a triple whose norm is an angle in radians,
56 // and whose direction is aligned with the axis of rotation,
57 // and quaternion is a 4-tuple that will contain the resulting quaternion.
58 // The implementation may be used with auto-differentiation up to the first
59 // derivative, higher derivatives may have unexpected results near the origin.
60 template<typename T>
61 void AngleAxisToQuaternion(T const* angle_axis, T* quaternion);
62
63 // Convert a quaternion to the equivalent combined axis-angle representation.
64 // The value quaternion must be a unit quaternion - it is not normalized first,
65 // and angle_axis will be filled with a value whose norm is the angle of
66 // rotation in radians, and whose direction is the axis of rotation.
67 // The implemention may be used with auto-differentiation up to the first
68 // derivative, higher derivatives may have unexpected results near the origin.
69 template<typename T>
70 void QuaternionToAngleAxis(T const* quaternion, T* angle_axis);
71
72 // Conversions between 3x3 rotation matrix (in column major order) and
73 // axis-angle rotation representations. Templated for use with
74 // autodifferentiation.
75 template <typename T>
76 void RotationMatrixToAngleAxis(T const * R, T * angle_axis);
77 template <typename T>
78 void AngleAxisToRotationMatrix(T const * angle_axis, T * R);
79
80 // Conversions between 3x3 rotation matrix (in row major order) and
81 // Euler angle (in degrees) rotation representations.
82 //
83 // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
84 // axes, respectively. They are applied in that same order, so the
85 // total rotation R is Rz * Ry * Rx.
86 template <typename T>
87 void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
88
89 // Convert a 4-vector to a 3x3 scaled rotation matrix.
90 //
91 // The choice of rotation is such that the quaternion [1 0 0 0] goes to an
92 // identity matrix and for small a, b, c the quaternion [1 a b c] goes to
93 // the matrix
94 //
95 // [ 0 -c b ]
96 // I + 2 [ c 0 -a ] + higher order terms
97 // [ -b a 0 ]
98 //
99 // which corresponds to a Rodrigues approximation, the last matrix being
100 // the cross-product matrix of [a b c]. Together with the property that
101 // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
102 //
103 // The rotation matrix is row-major.
104 //
105 // No normalization of the quaternion is performed, i.e.
106 // R = ||q||^2 * Q, where Q is an orthonormal matrix
107 // such that det(Q) = 1 and Q*Q' = I
108 template <typename T> inline
109 void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
110
111 // Same as above except that the rotation matrix is normalized by the
112 // Frobenius norm, so that R * R' = I (and det(R) = 1).
113 template <typename T> inline
114 void QuaternionToRotation(const T q[4], T R[3 * 3]);
115
116 // Rotates a point pt by a quaternion q:
117 //
118 // result = R(q) * pt
119 //
120 // Assumes the quaternion is unit norm. This assumption allows us to
121 // write the transform as (something)*pt + pt, as is clear from the
122 // formula below. If you pass in a quaternion with |q|^2 = 2 then you
123 // WILL NOT get back 2 times the result you get for a unit quaternion.
124 template <typename T> inline
125 void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
126
127 // With this function you do not need to assume that q has unit norm.
128 // It does assume that the norm is non-zero.
129 template <typename T> inline
130 void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
131
132 // zw = z * w, where * is the Quaternion product between 4 vectors.
133 template<typename T> inline
134 void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
135
136 // xy = x cross y;
137 template<typename T> inline
138 void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
139
140 template<typename T> inline
141 T DotProduct(const T x[3], const T y[3]);
142
143 // y = R(angle_axis) * x;
144 template<typename T> inline
145 void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
146
147 // --- IMPLEMENTATION
148
149 template<typename T>
AngleAxisToQuaternion(const T * angle_axis,T * quaternion)150 inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
151 const T& a0 = angle_axis[0];
152 const T& a1 = angle_axis[1];
153 const T& a2 = angle_axis[2];
154 const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
155
156 // For points not at the origin, the full conversion is numerically stable.
157 if (theta_squared > T(0.0)) {
158 const T theta = sqrt(theta_squared);
159 const T half_theta = theta * T(0.5);
160 const T k = sin(half_theta) / theta;
161 quaternion[0] = cos(half_theta);
162 quaternion[1] = a0 * k;
163 quaternion[2] = a1 * k;
164 quaternion[3] = a2 * k;
165 } else {
166 // At the origin, sqrt() will produce NaN in the derivative since
167 // the argument is zero. By approximating with a Taylor series,
168 // and truncating at one term, the value and first derivatives will be
169 // computed correctly when Jets are used.
170 const T k(0.5);
171 quaternion[0] = T(1.0);
172 quaternion[1] = a0 * k;
173 quaternion[2] = a1 * k;
174 quaternion[3] = a2 * k;
175 }
176 }
177
178 template<typename T>
QuaternionToAngleAxis(const T * quaternion,T * angle_axis)179 inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
180 const T& q1 = quaternion[1];
181 const T& q2 = quaternion[2];
182 const T& q3 = quaternion[3];
183 const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
184
185 // For quaternions representing non-zero rotation, the conversion
186 // is numerically stable.
187 if (sin_squared_theta > T(0.0)) {
188 const T sin_theta = sqrt(sin_squared_theta);
189 const T& cos_theta = quaternion[0];
190
191 // If cos_theta is negative, theta is greater than pi/2, which
192 // means that angle for the angle_axis vector which is 2 * theta
193 // would be greater than pi.
194 //
195 // While this will result in the correct rotation, it does not
196 // result in a normalized angle-axis vector.
197 //
198 // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
199 // which is equivalent saying
200 //
201 // theta - pi = atan(sin(theta - pi), cos(theta - pi))
202 // = atan(-sin(theta), -cos(theta))
203 //
204 const T two_theta =
205 T(2.0) * ((cos_theta < 0.0)
206 ? atan2(-sin_theta, -cos_theta)
207 : atan2(sin_theta, cos_theta));
208 const T k = two_theta / sin_theta;
209 angle_axis[0] = q1 * k;
210 angle_axis[1] = q2 * k;
211 angle_axis[2] = q3 * k;
212 } else {
213 // For zero rotation, sqrt() will produce NaN in the derivative since
214 // the argument is zero. By approximating with a Taylor series,
215 // and truncating at one term, the value and first derivatives will be
216 // computed correctly when Jets are used.
217 const T k(2.0);
218 angle_axis[0] = q1 * k;
219 angle_axis[1] = q2 * k;
220 angle_axis[2] = q3 * k;
221 }
222 }
223
224 // The conversion of a rotation matrix to the angle-axis form is
225 // numerically problematic when then rotation angle is close to zero
226 // or to Pi. The following implementation detects when these two cases
227 // occurs and deals with them by taking code paths that are guaranteed
228 // to not perform division by a small number.
229 template <typename T>
RotationMatrixToAngleAxis(const T * R,T * angle_axis)230 inline void RotationMatrixToAngleAxis(const T * R, T * angle_axis) {
231 // x = k * 2 * sin(theta), where k is the axis of rotation.
232 angle_axis[0] = R[5] - R[7];
233 angle_axis[1] = R[6] - R[2];
234 angle_axis[2] = R[1] - R[3];
235
236 static const T kOne = T(1.0);
237 static const T kTwo = T(2.0);
238
239 // Since the right hand side may give numbers just above 1.0 or
240 // below -1.0 leading to atan misbehaving, we threshold.
241 T costheta = std::min(std::max((R[0] + R[4] + R[8] - kOne) / kTwo,
242 T(-1.0)),
243 kOne);
244
245 // sqrt is guaranteed to give non-negative results, so we only
246 // threshold above.
247 T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
248 angle_axis[1] * angle_axis[1] +
249 angle_axis[2] * angle_axis[2]) / kTwo,
250 kOne);
251
252 // Use the arctan2 to get the right sign on theta
253 const T theta = atan2(sintheta, costheta);
254
255 // Case 1: sin(theta) is large enough, so dividing by it is not a
256 // problem. We do not use abs here, because while jets.h imports
257 // std::abs into the namespace, here in this file, abs resolves to
258 // the int version of the function, which returns zero always.
259 //
260 // We use a threshold much larger then the machine epsilon, because
261 // if sin(theta) is small, not only do we risk overflow but even if
262 // that does not occur, just dividing by a small number will result
263 // in numerical garbage. So we play it safe.
264 static const double kThreshold = 1e-12;
265 if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
266 const T r = theta / (kTwo * sintheta);
267 for (int i = 0; i < 3; ++i) {
268 angle_axis[i] *= r;
269 }
270 return;
271 }
272
273 // Case 2: theta ~ 0, means sin(theta) ~ theta to a good
274 // approximation.
275 if (costheta > 0.0) {
276 const T kHalf = T(0.5);
277 for (int i = 0; i < 3; ++i) {
278 angle_axis[i] *= kHalf;
279 }
280 return;
281 }
282
283 // Case 3: theta ~ pi, this is the hard case. Since theta is large,
284 // and sin(theta) is small. Dividing by theta by sin(theta) will
285 // either give an overflow or worse still numerically meaningless
286 // results. Thus we use an alternate more complicated formula
287 // here.
288
289 // Since cos(theta) is negative, division by (1-cos(theta)) cannot
290 // overflow.
291 const T inv_one_minus_costheta = kOne / (kOne - costheta);
292
293 // We now compute the absolute value of coordinates of the axis
294 // vector using the diagonal entries of R. To resolve the sign of
295 // these entries, we compare the sign of angle_axis[i]*sin(theta)
296 // with the sign of sin(theta). If they are the same, then
297 // angle_axis[i] should be positive, otherwise negative.
298 for (int i = 0; i < 3; ++i) {
299 angle_axis[i] = theta * sqrt((R[i*4] - costheta) * inv_one_minus_costheta);
300 if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
301 ((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
302 angle_axis[i] = -angle_axis[i];
303 }
304 }
305 }
306
307 template <typename T>
AngleAxisToRotationMatrix(const T * angle_axis,T * R)308 inline void AngleAxisToRotationMatrix(const T * angle_axis, T * R) {
309 static const T kOne = T(1.0);
310 const T theta2 = DotProduct(angle_axis, angle_axis);
311 if (theta2 > 0.0) {
312 // We want to be careful to only evaluate the square root if the
313 // norm of the angle_axis vector is greater than zero. Otherwise
314 // we get a division by zero.
315 const T theta = sqrt(theta2);
316 const T wx = angle_axis[0] / theta;
317 const T wy = angle_axis[1] / theta;
318 const T wz = angle_axis[2] / theta;
319
320 const T costheta = cos(theta);
321 const T sintheta = sin(theta);
322
323 R[0] = costheta + wx*wx*(kOne - costheta);
324 R[1] = wz*sintheta + wx*wy*(kOne - costheta);
325 R[2] = -wy*sintheta + wx*wz*(kOne - costheta);
326 R[3] = wx*wy*(kOne - costheta) - wz*sintheta;
327 R[4] = costheta + wy*wy*(kOne - costheta);
328 R[5] = wx*sintheta + wy*wz*(kOne - costheta);
329 R[6] = wy*sintheta + wx*wz*(kOne - costheta);
330 R[7] = -wx*sintheta + wy*wz*(kOne - costheta);
331 R[8] = costheta + wz*wz*(kOne - costheta);
332 } else {
333 // At zero, we switch to using the first order Taylor expansion.
334 R[0] = kOne;
335 R[1] = -angle_axis[2];
336 R[2] = angle_axis[1];
337 R[3] = angle_axis[2];
338 R[4] = kOne;
339 R[5] = -angle_axis[0];
340 R[6] = -angle_axis[1];
341 R[7] = angle_axis[0];
342 R[8] = kOne;
343 }
344 }
345
346 template <typename T>
EulerAnglesToRotationMatrix(const T * euler,const int row_stride,T * R)347 inline void EulerAnglesToRotationMatrix(const T* euler,
348 const int row_stride,
349 T* R) {
350 const double kPi = 3.14159265358979323846;
351 const T degrees_to_radians(kPi / 180.0);
352
353 const T pitch(euler[0] * degrees_to_radians);
354 const T roll(euler[1] * degrees_to_radians);
355 const T yaw(euler[2] * degrees_to_radians);
356
357 const T c1 = cos(yaw);
358 const T s1 = sin(yaw);
359 const T c2 = cos(roll);
360 const T s2 = sin(roll);
361 const T c3 = cos(pitch);
362 const T s3 = sin(pitch);
363
364 // Rows of the rotation matrix.
365 T* R1 = R;
366 T* R2 = R1 + row_stride;
367 T* R3 = R2 + row_stride;
368
369 R1[0] = c1*c2;
370 R1[1] = -s1*c3 + c1*s2*s3;
371 R1[2] = s1*s3 + c1*s2*c3;
372
373 R2[0] = s1*c2;
374 R2[1] = c1*c3 + s1*s2*s3;
375 R2[2] = -c1*s3 + s1*s2*c3;
376
377 R3[0] = -s2;
378 R3[1] = c2*s3;
379 R3[2] = c2*c3;
380 }
381
382 template <typename T> inline
QuaternionToScaledRotation(const T q[4],T R[3* 3])383 void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
384 // Make convenient names for elements of q.
385 T a = q[0];
386 T b = q[1];
387 T c = q[2];
388 T d = q[3];
389 // This is not to eliminate common sub-expression, but to
390 // make the lines shorter so that they fit in 80 columns!
391 T aa = a * a;
392 T ab = a * b;
393 T ac = a * c;
394 T ad = a * d;
395 T bb = b * b;
396 T bc = b * c;
397 T bd = b * d;
398 T cc = c * c;
399 T cd = c * d;
400 T dd = d * d;
401
402 R[0] = aa + bb - cc - dd; R[1] = T(2) * (bc - ad); R[2] = T(2) * (ac + bd); // NOLINT
403 R[3] = T(2) * (ad + bc); R[4] = aa - bb + cc - dd; R[5] = T(2) * (cd - ab); // NOLINT
404 R[6] = T(2) * (bd - ac); R[7] = T(2) * (ab + cd); R[8] = aa - bb - cc + dd; // NOLINT
405 }
406
407 template <typename T> inline
QuaternionToRotation(const T q[4],T R[3* 3])408 void QuaternionToRotation(const T q[4], T R[3 * 3]) {
409 QuaternionToScaledRotation(q, R);
410
411 T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
412 CHECK_NE(normalizer, T(0));
413 normalizer = T(1) / normalizer;
414
415 for (int i = 0; i < 9; ++i) {
416 R[i] *= normalizer;
417 }
418 }
419
420 template <typename T> inline
UnitQuaternionRotatePoint(const T q[4],const T pt[3],T result[3])421 void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
422 const T t2 = q[0] * q[1];
423 const T t3 = q[0] * q[2];
424 const T t4 = q[0] * q[3];
425 const T t5 = -q[1] * q[1];
426 const T t6 = q[1] * q[2];
427 const T t7 = q[1] * q[3];
428 const T t8 = -q[2] * q[2];
429 const T t9 = q[2] * q[3];
430 const T t1 = -q[3] * q[3];
431 result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0]; // NOLINT
432 result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1]; // NOLINT
433 result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2]; // NOLINT
434 }
435
436
437 template <typename T> inline
QuaternionRotatePoint(const T q[4],const T pt[3],T result[3])438 void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
439 // 'scale' is 1 / norm(q).
440 const T scale = T(1) / sqrt(q[0] * q[0] +
441 q[1] * q[1] +
442 q[2] * q[2] +
443 q[3] * q[3]);
444
445 // Make unit-norm version of q.
446 const T unit[4] = {
447 scale * q[0],
448 scale * q[1],
449 scale * q[2],
450 scale * q[3],
451 };
452
453 UnitQuaternionRotatePoint(unit, pt, result);
454 }
455
456 template<typename T> inline
QuaternionProduct(const T z[4],const T w[4],T zw[4])457 void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
458 zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
459 zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
460 zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
461 zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
462 }
463
464 // xy = x cross y;
465 template<typename T> inline
CrossProduct(const T x[3],const T y[3],T x_cross_y[3])466 void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
467 x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
468 x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
469 x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
470 }
471
472 template<typename T> inline
DotProduct(const T x[3],const T y[3])473 T DotProduct(const T x[3], const T y[3]) {
474 return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
475 }
476
477 template<typename T> inline
AngleAxisRotatePoint(const T angle_axis[3],const T pt[3],T result[3])478 void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
479 T w[3];
480 T sintheta;
481 T costheta;
482
483 const T theta2 = DotProduct(angle_axis, angle_axis);
484 if (theta2 > 0.0) {
485 // Away from zero, use the rodriguez formula
486 //
487 // result = pt costheta +
488 // (w x pt) * sintheta +
489 // w (w . pt) (1 - costheta)
490 //
491 // We want to be careful to only evaluate the square root if the
492 // norm of the angle_axis vector is greater than zero. Otherwise
493 // we get a division by zero.
494 //
495 const T theta = sqrt(theta2);
496 w[0] = angle_axis[0] / theta;
497 w[1] = angle_axis[1] / theta;
498 w[2] = angle_axis[2] / theta;
499 costheta = cos(theta);
500 sintheta = sin(theta);
501 T w_cross_pt[3];
502 CrossProduct(w, pt, w_cross_pt);
503 T w_dot_pt = DotProduct(w, pt);
504 for (int i = 0; i < 3; ++i) {
505 result[i] = pt[i] * costheta +
506 w_cross_pt[i] * sintheta +
507 w[i] * (T(1.0) - costheta) * w_dot_pt;
508 }
509 } else {
510 // Near zero, the first order Taylor approximation of the rotation
511 // matrix R corresponding to a vector w and angle w is
512 //
513 // R = I + hat(w) * sin(theta)
514 //
515 // But sintheta ~ theta and theta * w = angle_axis, which gives us
516 //
517 // R = I + hat(w)
518 //
519 // and actually performing multiplication with the point pt, gives us
520 // R * pt = pt + w x pt.
521 //
522 // Switching to the Taylor expansion at zero helps avoid all sorts
523 // of numerical nastiness.
524 T w_cross_pt[3];
525 CrossProduct(angle_axis, pt, w_cross_pt);
526 for (int i = 0; i < 3; ++i) {
527 result[i] = pt[i] + w_cross_pt[i];
528 }
529 }
530 }
531
532 } // namespace ceres
533
534 #endif // CERES_PUBLIC_ROTATION_H_
535