• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //         sameeragarwal@google.com (Sameer Agarwal)
31 //
32 // Templated functions for manipulating rotations. The templated
33 // functions are useful when implementing functors for automatic
34 // differentiation.
35 //
36 // In the following, the Quaternions are laid out as 4-vectors, thus:
37 //
38 //   q[0]  scalar part.
39 //   q[1]  coefficient of i.
40 //   q[2]  coefficient of j.
41 //   q[3]  coefficient of k.
42 //
43 // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
44 
45 #ifndef CERES_PUBLIC_ROTATION_H_
46 #define CERES_PUBLIC_ROTATION_H_
47 
48 #include <algorithm>
49 #include <cmath>
50 #include "glog/logging.h"
51 
52 namespace ceres {
53 
54 // Convert a value in combined axis-angle representation to a quaternion.
55 // The value angle_axis is a triple whose norm is an angle in radians,
56 // and whose direction is aligned with the axis of rotation,
57 // and quaternion is a 4-tuple that will contain the resulting quaternion.
58 // The implementation may be used with auto-differentiation up to the first
59 // derivative, higher derivatives may have unexpected results near the origin.
60 template<typename T>
61 void AngleAxisToQuaternion(T const* angle_axis, T* quaternion);
62 
63 // Convert a quaternion to the equivalent combined axis-angle representation.
64 // The value quaternion must be a unit quaternion - it is not normalized first,
65 // and angle_axis will be filled with a value whose norm is the angle of
66 // rotation in radians, and whose direction is the axis of rotation.
67 // The implemention may be used with auto-differentiation up to the first
68 // derivative, higher derivatives may have unexpected results near the origin.
69 template<typename T>
70 void QuaternionToAngleAxis(T const* quaternion, T* angle_axis);
71 
72 // Conversions between 3x3 rotation matrix (in column major order) and
73 // axis-angle rotation representations.  Templated for use with
74 // autodifferentiation.
75 template <typename T>
76 void RotationMatrixToAngleAxis(T const * R, T * angle_axis);
77 template <typename T>
78 void AngleAxisToRotationMatrix(T const * angle_axis, T * R);
79 
80 // Conversions between 3x3 rotation matrix (in row major order) and
81 // Euler angle (in degrees) rotation representations.
82 //
83 // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
84 // axes, respectively.  They are applied in that same order, so the
85 // total rotation R is Rz * Ry * Rx.
86 template <typename T>
87 void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
88 
89 // Convert a 4-vector to a 3x3 scaled rotation matrix.
90 //
91 // The choice of rotation is such that the quaternion [1 0 0 0] goes to an
92 // identity matrix and for small a, b, c the quaternion [1 a b c] goes to
93 // the matrix
94 //
95 //         [  0 -c  b ]
96 //   I + 2 [  c  0 -a ] + higher order terms
97 //         [ -b  a  0 ]
98 //
99 // which corresponds to a Rodrigues approximation, the last matrix being
100 // the cross-product matrix of [a b c]. Together with the property that
101 // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
102 //
103 // The rotation matrix is row-major.
104 //
105 // No normalization of the quaternion is performed, i.e.
106 // R = ||q||^2 * Q, where Q is an orthonormal matrix
107 // such that det(Q) = 1 and Q*Q' = I
108 template <typename T> inline
109 void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
110 
111 // Same as above except that the rotation matrix is normalized by the
112 // Frobenius norm, so that R * R' = I (and det(R) = 1).
113 template <typename T> inline
114 void QuaternionToRotation(const T q[4], T R[3 * 3]);
115 
116 // Rotates a point pt by a quaternion q:
117 //
118 //   result = R(q) * pt
119 //
120 // Assumes the quaternion is unit norm. This assumption allows us to
121 // write the transform as (something)*pt + pt, as is clear from the
122 // formula below. If you pass in a quaternion with |q|^2 = 2 then you
123 // WILL NOT get back 2 times the result you get for a unit quaternion.
124 template <typename T> inline
125 void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
126 
127 // With this function you do not need to assume that q has unit norm.
128 // It does assume that the norm is non-zero.
129 template <typename T> inline
130 void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
131 
132 // zw = z * w, where * is the Quaternion product between 4 vectors.
133 template<typename T> inline
134 void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
135 
136 // xy = x cross y;
137 template<typename T> inline
138 void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
139 
140 template<typename T> inline
141 T DotProduct(const T x[3], const T y[3]);
142 
143 // y = R(angle_axis) * x;
144 template<typename T> inline
145 void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
146 
147 // --- IMPLEMENTATION
148 
149 template<typename T>
AngleAxisToQuaternion(const T * angle_axis,T * quaternion)150 inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
151   const T& a0 = angle_axis[0];
152   const T& a1 = angle_axis[1];
153   const T& a2 = angle_axis[2];
154   const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
155 
156   // For points not at the origin, the full conversion is numerically stable.
157   if (theta_squared > T(0.0)) {
158     const T theta = sqrt(theta_squared);
159     const T half_theta = theta * T(0.5);
160     const T k = sin(half_theta) / theta;
161     quaternion[0] = cos(half_theta);
162     quaternion[1] = a0 * k;
163     quaternion[2] = a1 * k;
164     quaternion[3] = a2 * k;
165   } else {
166     // At the origin, sqrt() will produce NaN in the derivative since
167     // the argument is zero.  By approximating with a Taylor series,
168     // and truncating at one term, the value and first derivatives will be
169     // computed correctly when Jets are used.
170     const T k(0.5);
171     quaternion[0] = T(1.0);
172     quaternion[1] = a0 * k;
173     quaternion[2] = a1 * k;
174     quaternion[3] = a2 * k;
175   }
176 }
177 
178 template<typename T>
QuaternionToAngleAxis(const T * quaternion,T * angle_axis)179 inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
180   const T& q1 = quaternion[1];
181   const T& q2 = quaternion[2];
182   const T& q3 = quaternion[3];
183   const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
184 
185   // For quaternions representing non-zero rotation, the conversion
186   // is numerically stable.
187   if (sin_squared_theta > T(0.0)) {
188     const T sin_theta = sqrt(sin_squared_theta);
189     const T& cos_theta = quaternion[0];
190 
191     // If cos_theta is negative, theta is greater than pi/2, which
192     // means that angle for the angle_axis vector which is 2 * theta
193     // would be greater than pi.
194     //
195     // While this will result in the correct rotation, it does not
196     // result in a normalized angle-axis vector.
197     //
198     // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
199     // which is equivalent saying
200     //
201     //   theta - pi = atan(sin(theta - pi), cos(theta - pi))
202     //              = atan(-sin(theta), -cos(theta))
203     //
204     const T two_theta =
205         T(2.0) * ((cos_theta < 0.0)
206                   ? atan2(-sin_theta, -cos_theta)
207                   : atan2(sin_theta, cos_theta));
208     const T k = two_theta / sin_theta;
209     angle_axis[0] = q1 * k;
210     angle_axis[1] = q2 * k;
211     angle_axis[2] = q3 * k;
212   } else {
213     // For zero rotation, sqrt() will produce NaN in the derivative since
214     // the argument is zero.  By approximating with a Taylor series,
215     // and truncating at one term, the value and first derivatives will be
216     // computed correctly when Jets are used.
217     const T k(2.0);
218     angle_axis[0] = q1 * k;
219     angle_axis[1] = q2 * k;
220     angle_axis[2] = q3 * k;
221   }
222 }
223 
224 // The conversion of a rotation matrix to the angle-axis form is
225 // numerically problematic when then rotation angle is close to zero
226 // or to Pi. The following implementation detects when these two cases
227 // occurs and deals with them by taking code paths that are guaranteed
228 // to not perform division by a small number.
229 template <typename T>
RotationMatrixToAngleAxis(const T * R,T * angle_axis)230 inline void RotationMatrixToAngleAxis(const T * R, T * angle_axis) {
231   // x = k * 2 * sin(theta), where k is the axis of rotation.
232   angle_axis[0] = R[5] - R[7];
233   angle_axis[1] = R[6] - R[2];
234   angle_axis[2] = R[1] - R[3];
235 
236   static const T kOne = T(1.0);
237   static const T kTwo = T(2.0);
238 
239   // Since the right hand side may give numbers just above 1.0 or
240   // below -1.0 leading to atan misbehaving, we threshold.
241   T costheta = std::min(std::max((R[0] + R[4] + R[8] - kOne) / kTwo,
242                                  T(-1.0)),
243                         kOne);
244 
245   // sqrt is guaranteed to give non-negative results, so we only
246   // threshold above.
247   T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
248                              angle_axis[1] * angle_axis[1] +
249                              angle_axis[2] * angle_axis[2]) / kTwo,
250                         kOne);
251 
252   // Use the arctan2 to get the right sign on theta
253   const T theta = atan2(sintheta, costheta);
254 
255   // Case 1: sin(theta) is large enough, so dividing by it is not a
256   // problem. We do not use abs here, because while jets.h imports
257   // std::abs into the namespace, here in this file, abs resolves to
258   // the int version of the function, which returns zero always.
259   //
260   // We use a threshold much larger then the machine epsilon, because
261   // if sin(theta) is small, not only do we risk overflow but even if
262   // that does not occur, just dividing by a small number will result
263   // in numerical garbage. So we play it safe.
264   static const double kThreshold = 1e-12;
265   if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
266     const T r = theta / (kTwo * sintheta);
267     for (int i = 0; i < 3; ++i) {
268       angle_axis[i] *= r;
269     }
270     return;
271   }
272 
273   // Case 2: theta ~ 0, means sin(theta) ~ theta to a good
274   // approximation.
275   if (costheta > 0.0) {
276     const T kHalf = T(0.5);
277     for (int i = 0; i < 3; ++i) {
278       angle_axis[i] *= kHalf;
279     }
280     return;
281   }
282 
283   // Case 3: theta ~ pi, this is the hard case. Since theta is large,
284   // and sin(theta) is small. Dividing by theta by sin(theta) will
285   // either give an overflow or worse still numerically meaningless
286   // results. Thus we use an alternate more complicated formula
287   // here.
288 
289   // Since cos(theta) is negative, division by (1-cos(theta)) cannot
290   // overflow.
291   const T inv_one_minus_costheta = kOne / (kOne - costheta);
292 
293   // We now compute the absolute value of coordinates of the axis
294   // vector using the diagonal entries of R. To resolve the sign of
295   // these entries, we compare the sign of angle_axis[i]*sin(theta)
296   // with the sign of sin(theta). If they are the same, then
297   // angle_axis[i] should be positive, otherwise negative.
298   for (int i = 0; i < 3; ++i) {
299     angle_axis[i] = theta * sqrt((R[i*4] - costheta) * inv_one_minus_costheta);
300     if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
301         ((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
302       angle_axis[i] = -angle_axis[i];
303     }
304   }
305 }
306 
307 template <typename T>
AngleAxisToRotationMatrix(const T * angle_axis,T * R)308 inline void AngleAxisToRotationMatrix(const T * angle_axis, T * R) {
309   static const T kOne = T(1.0);
310   const T theta2 = DotProduct(angle_axis, angle_axis);
311   if (theta2 > 0.0) {
312     // We want to be careful to only evaluate the square root if the
313     // norm of the angle_axis vector is greater than zero. Otherwise
314     // we get a division by zero.
315     const T theta = sqrt(theta2);
316     const T wx = angle_axis[0] / theta;
317     const T wy = angle_axis[1] / theta;
318     const T wz = angle_axis[2] / theta;
319 
320     const T costheta = cos(theta);
321     const T sintheta = sin(theta);
322 
323     R[0] =     costheta   + wx*wx*(kOne -    costheta);
324     R[1] =  wz*sintheta   + wx*wy*(kOne -    costheta);
325     R[2] = -wy*sintheta   + wx*wz*(kOne -    costheta);
326     R[3] =  wx*wy*(kOne - costheta)     - wz*sintheta;
327     R[4] =     costheta   + wy*wy*(kOne -    costheta);
328     R[5] =  wx*sintheta   + wy*wz*(kOne -    costheta);
329     R[6] =  wy*sintheta   + wx*wz*(kOne -    costheta);
330     R[7] = -wx*sintheta   + wy*wz*(kOne -    costheta);
331     R[8] =     costheta   + wz*wz*(kOne -    costheta);
332   } else {
333     // At zero, we switch to using the first order Taylor expansion.
334     R[0] =  kOne;
335     R[1] = -angle_axis[2];
336     R[2] =  angle_axis[1];
337     R[3] =  angle_axis[2];
338     R[4] =  kOne;
339     R[5] = -angle_axis[0];
340     R[6] = -angle_axis[1];
341     R[7] =  angle_axis[0];
342     R[8] = kOne;
343   }
344 }
345 
346 template <typename T>
EulerAnglesToRotationMatrix(const T * euler,const int row_stride,T * R)347 inline void EulerAnglesToRotationMatrix(const T* euler,
348                                         const int row_stride,
349                                         T* R) {
350   const double kPi = 3.14159265358979323846;
351   const T degrees_to_radians(kPi / 180.0);
352 
353   const T pitch(euler[0] * degrees_to_radians);
354   const T roll(euler[1] * degrees_to_radians);
355   const T yaw(euler[2] * degrees_to_radians);
356 
357   const T c1 = cos(yaw);
358   const T s1 = sin(yaw);
359   const T c2 = cos(roll);
360   const T s2 = sin(roll);
361   const T c3 = cos(pitch);
362   const T s3 = sin(pitch);
363 
364   // Rows of the rotation matrix.
365   T* R1 = R;
366   T* R2 = R1 + row_stride;
367   T* R3 = R2 + row_stride;
368 
369   R1[0] = c1*c2;
370   R1[1] = -s1*c3 + c1*s2*s3;
371   R1[2] = s1*s3 + c1*s2*c3;
372 
373   R2[0] = s1*c2;
374   R2[1] = c1*c3 + s1*s2*s3;
375   R2[2] = -c1*s3 + s1*s2*c3;
376 
377   R3[0] = -s2;
378   R3[1] = c2*s3;
379   R3[2] = c2*c3;
380 }
381 
382 template <typename T> inline
QuaternionToScaledRotation(const T q[4],T R[3* 3])383 void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
384   // Make convenient names for elements of q.
385   T a = q[0];
386   T b = q[1];
387   T c = q[2];
388   T d = q[3];
389   // This is not to eliminate common sub-expression, but to
390   // make the lines shorter so that they fit in 80 columns!
391   T aa = a * a;
392   T ab = a * b;
393   T ac = a * c;
394   T ad = a * d;
395   T bb = b * b;
396   T bc = b * c;
397   T bd = b * d;
398   T cc = c * c;
399   T cd = c * d;
400   T dd = d * d;
401 
402   R[0] =  aa + bb - cc - dd; R[1] = T(2) * (bc - ad); R[2] = T(2) * (ac + bd);  // NOLINT
403   R[3] = T(2) * (ad + bc); R[4] =  aa - bb + cc - dd; R[5] = T(2) * (cd - ab);  // NOLINT
404   R[6] = T(2) * (bd - ac); R[7] = T(2) * (ab + cd); R[8] =  aa - bb - cc + dd;  // NOLINT
405 }
406 
407 template <typename T> inline
QuaternionToRotation(const T q[4],T R[3* 3])408 void QuaternionToRotation(const T q[4], T R[3 * 3]) {
409   QuaternionToScaledRotation(q, R);
410 
411   T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
412   CHECK_NE(normalizer, T(0));
413   normalizer = T(1) / normalizer;
414 
415   for (int i = 0; i < 9; ++i) {
416     R[i] *= normalizer;
417   }
418 }
419 
420 template <typename T> inline
UnitQuaternionRotatePoint(const T q[4],const T pt[3],T result[3])421 void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
422   const T t2 =  q[0] * q[1];
423   const T t3 =  q[0] * q[2];
424   const T t4 =  q[0] * q[3];
425   const T t5 = -q[1] * q[1];
426   const T t6 =  q[1] * q[2];
427   const T t7 =  q[1] * q[3];
428   const T t8 = -q[2] * q[2];
429   const T t9 =  q[2] * q[3];
430   const T t1 = -q[3] * q[3];
431   result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0];  // NOLINT
432   result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1];  // NOLINT
433   result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2];  // NOLINT
434 }
435 
436 
437 template <typename T> inline
QuaternionRotatePoint(const T q[4],const T pt[3],T result[3])438 void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
439   // 'scale' is 1 / norm(q).
440   const T scale = T(1) / sqrt(q[0] * q[0] +
441                               q[1] * q[1] +
442                               q[2] * q[2] +
443                               q[3] * q[3]);
444 
445   // Make unit-norm version of q.
446   const T unit[4] = {
447     scale * q[0],
448     scale * q[1],
449     scale * q[2],
450     scale * q[3],
451   };
452 
453   UnitQuaternionRotatePoint(unit, pt, result);
454 }
455 
456 template<typename T> inline
QuaternionProduct(const T z[4],const T w[4],T zw[4])457 void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
458   zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
459   zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
460   zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
461   zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
462 }
463 
464 // xy = x cross y;
465 template<typename T> inline
CrossProduct(const T x[3],const T y[3],T x_cross_y[3])466 void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
467   x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
468   x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
469   x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
470 }
471 
472 template<typename T> inline
DotProduct(const T x[3],const T y[3])473 T DotProduct(const T x[3], const T y[3]) {
474   return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
475 }
476 
477 template<typename T> inline
AngleAxisRotatePoint(const T angle_axis[3],const T pt[3],T result[3])478 void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
479   T w[3];
480   T sintheta;
481   T costheta;
482 
483   const T theta2 = DotProduct(angle_axis, angle_axis);
484   if (theta2 > 0.0) {
485     // Away from zero, use the rodriguez formula
486     //
487     //   result = pt costheta +
488     //            (w x pt) * sintheta +
489     //            w (w . pt) (1 - costheta)
490     //
491     // We want to be careful to only evaluate the square root if the
492     // norm of the angle_axis vector is greater than zero. Otherwise
493     // we get a division by zero.
494     //
495     const T theta = sqrt(theta2);
496     w[0] = angle_axis[0] / theta;
497     w[1] = angle_axis[1] / theta;
498     w[2] = angle_axis[2] / theta;
499     costheta = cos(theta);
500     sintheta = sin(theta);
501     T w_cross_pt[3];
502     CrossProduct(w, pt, w_cross_pt);
503     T w_dot_pt = DotProduct(w, pt);
504     for (int i = 0; i < 3; ++i) {
505       result[i] = pt[i] * costheta +
506           w_cross_pt[i] * sintheta +
507           w[i] * (T(1.0) - costheta) * w_dot_pt;
508     }
509   } else {
510     // Near zero, the first order Taylor approximation of the rotation
511     // matrix R corresponding to a vector w and angle w is
512     //
513     //   R = I + hat(w) * sin(theta)
514     //
515     // But sintheta ~ theta and theta * w = angle_axis, which gives us
516     //
517     //  R = I + hat(w)
518     //
519     // and actually performing multiplication with the point pt, gives us
520     // R * pt = pt + w x pt.
521     //
522     // Switching to the Taylor expansion at zero helps avoid all sorts
523     // of numerical nastiness.
524     T w_cross_pt[3];
525     CrossProduct(angle_axis, pt, w_cross_pt);
526     for (int i = 0; i < 3; ++i) {
527       result[i] = pt[i] + w_cross_pt[i];
528     }
529   }
530 }
531 
532 }  // namespace ceres
533 
534 #endif  // CERES_PUBLIC_ROTATION_H_
535