1 2 /* 3 * Copyright 2006 The Android Open Source Project 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10 #ifndef SkRandom_DEFINED 11 #define SkRandom_DEFINED 12 13 #include "Sk64.h" 14 #include "SkScalar.h" 15 16 /** \class SkRandom 17 18 Utility class that implements pseudo random 32bit numbers using a fast 19 linear equation. Unlike rand(), this class holds its own seed (initially 20 set to 0), so that multiple instances can be used with no side-effects. 21 */ 22 class SkRandom { 23 public: SkRandom()24 SkRandom() : fSeed(0) {} SkRandom(uint32_t seed)25 SkRandom(uint32_t seed) : fSeed(seed) {} 26 27 /** Return the next pseudo random number as an unsigned 32bit value. 28 */ nextU()29 uint32_t nextU() { uint32_t r = fSeed * kMul + kAdd; fSeed = r; return r; } 30 31 /** Return the next pseudo random number as a signed 32bit value. 32 */ nextS()33 int32_t nextS() { return (int32_t)this->nextU(); } 34 35 /** Return the next pseudo random number as an unsigned 16bit value. 36 */ nextU16()37 U16CPU nextU16() { return this->nextU() >> 16; } 38 39 /** Return the next pseudo random number as a signed 16bit value. 40 */ nextS16()41 S16CPU nextS16() { return this->nextS() >> 16; } 42 43 /** 44 * Returns value [0...1) as a float 45 */ nextF()46 float nextF() { 47 // const is 1 / (2^32 - 1) 48 return (float)(this->nextU() * 2.32830644e-10); 49 } 50 51 /** 52 * Returns value [min...max) as a float 53 */ nextRangeF(float min,float max)54 float nextRangeF(float min, float max) { 55 return min + this->nextF() * (max - min); 56 } 57 58 /** Return the next pseudo random number, as an unsigned value of 59 at most bitCount bits. 60 @param bitCount The maximum number of bits to be returned 61 */ nextBits(unsigned bitCount)62 uint32_t nextBits(unsigned bitCount) { 63 SkASSERT(bitCount > 0 && bitCount <= 32); 64 return this->nextU() >> (32 - bitCount); 65 } 66 67 /** Return the next pseudo random unsigned number, mapped to lie within 68 [min, max] inclusive. 69 */ nextRangeU(uint32_t min,uint32_t max)70 uint32_t nextRangeU(uint32_t min, uint32_t max) { 71 SkASSERT(min <= max); 72 uint32_t range = max - min + 1; 73 if (0 == range) { 74 return this->nextU(); 75 } else { 76 return min + this->nextU() % range; 77 } 78 } 79 80 /** Return the next pseudo random unsigned number, mapped to lie within 81 [0, count). 82 */ nextULessThan(uint32_t count)83 uint32_t nextULessThan(uint32_t count) { 84 SkASSERT(count > 0); 85 return this->nextRangeU(0, count - 1); 86 } 87 88 /** Return the next pseudo random number expressed as an unsigned SkFixed 89 in the range [0..SK_Fixed1). 90 */ nextUFixed1()91 SkFixed nextUFixed1() { return this->nextU() >> 16; } 92 93 /** Return the next pseudo random number expressed as a signed SkFixed 94 in the range (-SK_Fixed1..SK_Fixed1). 95 */ nextSFixed1()96 SkFixed nextSFixed1() { return this->nextS() >> 15; } 97 98 /** Return the next pseudo random number expressed as a SkScalar 99 in the range [0..SK_Scalar1). 100 */ nextUScalar1()101 SkScalar nextUScalar1() { return SkFixedToScalar(this->nextUFixed1()); } 102 103 /** Return the next pseudo random number expressed as a SkScalar 104 in the range [min..max). 105 */ nextRangeScalar(SkScalar min,SkScalar max)106 SkScalar nextRangeScalar(SkScalar min, SkScalar max) { 107 return SkScalarMul(this->nextUScalar1(), (max - min)) + min; 108 } 109 110 /** Return the next pseudo random number expressed as a SkScalar 111 in the range (-SK_Scalar1..SK_Scalar1). 112 */ nextSScalar1()113 SkScalar nextSScalar1() { return SkFixedToScalar(this->nextSFixed1()); } 114 115 /** Return the next pseudo random number as a bool. 116 */ nextBool()117 bool nextBool() { return this->nextU() >= 0x80000000; } 118 119 /** A biased version of nextBool(). 120 */ nextBiasedBool(SkScalar fractionTrue)121 bool nextBiasedBool(SkScalar fractionTrue) { 122 SkASSERT(fractionTrue >= 0 && fractionTrue <= SK_Scalar1); 123 return this->nextUScalar1() <= fractionTrue; 124 } 125 126 /** Return the next pseudo random number as a signed 64bit value. 127 */ next64(Sk64 * a)128 void next64(Sk64* a) { 129 SkASSERT(a); 130 a->set(this->nextS(), this->nextU()); 131 } 132 133 /** 134 * Return the current seed. This allows the caller to later reset to the 135 * same seed (using setSeed) so it can generate the same sequence. 136 */ getSeed()137 int32_t getSeed() const { return fSeed; } 138 139 /** Set the seed of the random object. The seed is initialized to 0 when the 140 object is first created, and is updated each time the next pseudo random 141 number is requested. 142 */ setSeed(int32_t seed)143 void setSeed(int32_t seed) { fSeed = (uint32_t)seed; } 144 145 private: 146 // See "Numerical Recipes in C", 1992 page 284 for these constants 147 enum { 148 kMul = 1664525, 149 kAdd = 1013904223 150 }; 151 uint32_t fSeed; 152 }; 153 154 /** \class SkMWCRandom 155 156 Utility class that implements pseudo random 32bit numbers using Marsaglia's 157 multiply-with-carry "mother of all" algorithm. Unlike rand(), this class holds 158 its own state, so that multiple instances can be used with no side-effects. 159 160 Has a large period and all bits are well-randomized. 161 */ 162 class SkMWCRandom { 163 public: SkMWCRandom()164 SkMWCRandom() { init(0); } SkMWCRandom(uint32_t seed)165 SkMWCRandom(uint32_t seed) { init(seed); } SkMWCRandom(const SkMWCRandom & rand)166 SkMWCRandom(const SkMWCRandom& rand) : fK(rand.fK), fJ(rand.fJ) {} 167 168 SkMWCRandom& operator=(const SkMWCRandom& rand) { 169 fK = rand.fK; 170 fJ = rand.fJ; 171 172 return *this; 173 } 174 175 /** Return the next pseudo random number as an unsigned 32bit value. 176 */ nextU()177 uint32_t nextU() { 178 fK = kKMul*(fK & 0xffff) + (fK >> 16); 179 fJ = kJMul*(fJ & 0xffff) + (fJ >> 16); 180 return (((fK << 16) | (fK >> 16)) + fJ); 181 } 182 183 /** Return the next pseudo random number as a signed 32bit value. 184 */ nextS()185 int32_t nextS() { return (int32_t)this->nextU(); } 186 187 /** Return the next pseudo random number as an unsigned 16bit value. 188 */ nextU16()189 U16CPU nextU16() { return this->nextU() >> 16; } 190 191 /** Return the next pseudo random number as a signed 16bit value. 192 */ nextS16()193 S16CPU nextS16() { return this->nextS() >> 16; } 194 195 /** 196 * Returns value [0...1) as an IEEE float 197 */ nextF()198 float nextF() { 199 unsigned int floatint = 0x3f800000 | (this->nextU() >> 9); 200 float f = *(float*)(&floatint) - 1.0f; 201 return f; 202 } 203 204 /** 205 * Returns value [min...max) as a float 206 */ nextRangeF(float min,float max)207 float nextRangeF(float min, float max) { 208 return min + this->nextF() * (max - min); 209 } 210 211 /** Return the next pseudo random number, as an unsigned value of 212 at most bitCount bits. 213 @param bitCount The maximum number of bits to be returned 214 */ nextBits(unsigned bitCount)215 uint32_t nextBits(unsigned bitCount) { 216 SkASSERT(bitCount > 0 && bitCount <= 32); 217 return this->nextU() >> (32 - bitCount); 218 } 219 220 /** Return the next pseudo random unsigned number, mapped to lie within 221 [min, max] inclusive. 222 */ nextRangeU(uint32_t min,uint32_t max)223 uint32_t nextRangeU(uint32_t min, uint32_t max) { 224 SkASSERT(min <= max); 225 uint32_t range = max - min + 1; 226 if (0 == range) { 227 return this->nextU(); 228 } else { 229 return min + this->nextU() % range; 230 } 231 } 232 233 /** Return the next pseudo random unsigned number, mapped to lie within 234 [0, count). 235 */ nextULessThan(uint32_t count)236 uint32_t nextULessThan(uint32_t count) { 237 SkASSERT(count > 0); 238 return this->nextRangeU(0, count - 1); 239 } 240 241 /** Return the next pseudo random number expressed as an unsigned SkFixed 242 in the range [0..SK_Fixed1). 243 */ nextUFixed1()244 SkFixed nextUFixed1() { return this->nextU() >> 16; } 245 246 /** Return the next pseudo random number expressed as a signed SkFixed 247 in the range (-SK_Fixed1..SK_Fixed1). 248 */ nextSFixed1()249 SkFixed nextSFixed1() { return this->nextS() >> 15; } 250 251 /** Return the next pseudo random number expressed as a SkScalar 252 in the range [0..SK_Scalar1). 253 */ nextUScalar1()254 SkScalar nextUScalar1() { return SkFixedToScalar(this->nextUFixed1()); } 255 256 /** Return the next pseudo random number expressed as a SkScalar 257 in the range [min..max). 258 */ nextRangeScalar(SkScalar min,SkScalar max)259 SkScalar nextRangeScalar(SkScalar min, SkScalar max) { 260 return SkScalarMul(this->nextUScalar1(), (max - min)) + min; 261 } 262 263 /** Return the next pseudo random number expressed as a SkScalar 264 in the range (-SK_Scalar1..SK_Scalar1). 265 */ nextSScalar1()266 SkScalar nextSScalar1() { return SkFixedToScalar(this->nextSFixed1()); } 267 268 /** Return the next pseudo random number as a bool. 269 */ nextBool()270 bool nextBool() { return this->nextU() >= 0x80000000; } 271 272 /** A biased version of nextBool(). 273 */ nextBiasedBool(SkScalar fractionTrue)274 bool nextBiasedBool(SkScalar fractionTrue) { 275 SkASSERT(fractionTrue >= 0 && fractionTrue <= SK_Scalar1); 276 return this->nextUScalar1() <= fractionTrue; 277 } 278 279 /** Return the next pseudo random number as a signed 64bit value. 280 */ next64(Sk64 * a)281 void next64(Sk64* a) { 282 SkASSERT(a); 283 a->set(this->nextS(), this->nextU()); 284 } 285 286 /** Reset the random object. 287 */ setSeed(uint32_t seed)288 void setSeed(uint32_t seed) { init(seed); } 289 290 private: 291 // Initialize state variables with LCG. 292 // We must ensure that both J and K are non-zero, otherwise the 293 // multiply-with-carry step will forevermore return zero. init(uint32_t seed)294 void init(uint32_t seed) { 295 fK = NextLCG(seed); 296 if (0 == fK) { 297 fK = NextLCG(fK); 298 } 299 fJ = NextLCG(fK); 300 if (0 == fJ) { 301 fJ = NextLCG(fJ); 302 } 303 SkASSERT(0 != fK && 0 != fJ); 304 } NextLCG(uint32_t seed)305 static uint32_t NextLCG(uint32_t seed) { return kMul*seed + kAdd; } 306 307 // See "Numerical Recipes in C", 1992 page 284 for these constants 308 // For the LCG that sets the initial state from a seed 309 enum { 310 kMul = 1664525, 311 kAdd = 1013904223 312 }; 313 // Constants for the multiply-with-carry steps 314 enum { 315 kKMul = 30345, 316 kJMul = 18000, 317 }; 318 319 uint32_t fK; 320 uint32_t fJ; 321 }; 322 323 #endif 324