1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a generic engine for intraprocedural, path-sensitive,
11 // dataflow analysis via graph reachability engine.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "CoreEngine"
16
17 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/Casting.h"
25
26 using namespace clang;
27 using namespace ento;
28
29 STATISTIC(NumSteps,
30 "The # of steps executed.");
31 STATISTIC(NumReachedMaxSteps,
32 "The # of times we reached the max number of steps.");
33 STATISTIC(NumPathsExplored,
34 "The # of paths explored by the analyzer.");
35
36 //===----------------------------------------------------------------------===//
37 // Worklist classes for exploration of reachable states.
38 //===----------------------------------------------------------------------===//
39
~Visitor()40 WorkList::Visitor::~Visitor() {}
41
42 namespace {
43 class DFS : public WorkList {
44 SmallVector<WorkListUnit,20> Stack;
45 public:
hasWork() const46 virtual bool hasWork() const {
47 return !Stack.empty();
48 }
49
enqueue(const WorkListUnit & U)50 virtual void enqueue(const WorkListUnit& U) {
51 Stack.push_back(U);
52 }
53
dequeue()54 virtual WorkListUnit dequeue() {
55 assert (!Stack.empty());
56 const WorkListUnit& U = Stack.back();
57 Stack.pop_back(); // This technically "invalidates" U, but we are fine.
58 return U;
59 }
60
visitItemsInWorkList(Visitor & V)61 virtual bool visitItemsInWorkList(Visitor &V) {
62 for (SmallVectorImpl<WorkListUnit>::iterator
63 I = Stack.begin(), E = Stack.end(); I != E; ++I) {
64 if (V.visit(*I))
65 return true;
66 }
67 return false;
68 }
69 };
70
71 class BFS : public WorkList {
72 std::deque<WorkListUnit> Queue;
73 public:
hasWork() const74 virtual bool hasWork() const {
75 return !Queue.empty();
76 }
77
enqueue(const WorkListUnit & U)78 virtual void enqueue(const WorkListUnit& U) {
79 Queue.push_back(U);
80 }
81
dequeue()82 virtual WorkListUnit dequeue() {
83 WorkListUnit U = Queue.front();
84 Queue.pop_front();
85 return U;
86 }
87
visitItemsInWorkList(Visitor & V)88 virtual bool visitItemsInWorkList(Visitor &V) {
89 for (std::deque<WorkListUnit>::iterator
90 I = Queue.begin(), E = Queue.end(); I != E; ++I) {
91 if (V.visit(*I))
92 return true;
93 }
94 return false;
95 }
96 };
97
98 } // end anonymous namespace
99
100 // Place the dstor for WorkList here because it contains virtual member
101 // functions, and we the code for the dstor generated in one compilation unit.
~WorkList()102 WorkList::~WorkList() {}
103
makeDFS()104 WorkList *WorkList::makeDFS() { return new DFS(); }
makeBFS()105 WorkList *WorkList::makeBFS() { return new BFS(); }
106
107 namespace {
108 class BFSBlockDFSContents : public WorkList {
109 std::deque<WorkListUnit> Queue;
110 SmallVector<WorkListUnit,20> Stack;
111 public:
hasWork() const112 virtual bool hasWork() const {
113 return !Queue.empty() || !Stack.empty();
114 }
115
enqueue(const WorkListUnit & U)116 virtual void enqueue(const WorkListUnit& U) {
117 if (U.getNode()->getLocation().getAs<BlockEntrance>())
118 Queue.push_front(U);
119 else
120 Stack.push_back(U);
121 }
122
dequeue()123 virtual WorkListUnit dequeue() {
124 // Process all basic blocks to completion.
125 if (!Stack.empty()) {
126 const WorkListUnit& U = Stack.back();
127 Stack.pop_back(); // This technically "invalidates" U, but we are fine.
128 return U;
129 }
130
131 assert(!Queue.empty());
132 // Don't use const reference. The subsequent pop_back() might make it
133 // unsafe.
134 WorkListUnit U = Queue.front();
135 Queue.pop_front();
136 return U;
137 }
visitItemsInWorkList(Visitor & V)138 virtual bool visitItemsInWorkList(Visitor &V) {
139 for (SmallVectorImpl<WorkListUnit>::iterator
140 I = Stack.begin(), E = Stack.end(); I != E; ++I) {
141 if (V.visit(*I))
142 return true;
143 }
144 for (std::deque<WorkListUnit>::iterator
145 I = Queue.begin(), E = Queue.end(); I != E; ++I) {
146 if (V.visit(*I))
147 return true;
148 }
149 return false;
150 }
151
152 };
153 } // end anonymous namespace
154
makeBFSBlockDFSContents()155 WorkList* WorkList::makeBFSBlockDFSContents() {
156 return new BFSBlockDFSContents();
157 }
158
159 //===----------------------------------------------------------------------===//
160 // Core analysis engine.
161 //===----------------------------------------------------------------------===//
162
163 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
ExecuteWorkList(const LocationContext * L,unsigned Steps,ProgramStateRef InitState)164 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
165 ProgramStateRef InitState) {
166
167 if (G->num_roots() == 0) { // Initialize the analysis by constructing
168 // the root if none exists.
169
170 const CFGBlock *Entry = &(L->getCFG()->getEntry());
171
172 assert (Entry->empty() &&
173 "Entry block must be empty.");
174
175 assert (Entry->succ_size() == 1 &&
176 "Entry block must have 1 successor.");
177
178 // Mark the entry block as visited.
179 FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
180 L->getDecl(),
181 L->getCFG()->getNumBlockIDs());
182
183 // Get the solitary successor.
184 const CFGBlock *Succ = *(Entry->succ_begin());
185
186 // Construct an edge representing the
187 // starting location in the function.
188 BlockEdge StartLoc(Entry, Succ, L);
189
190 // Set the current block counter to being empty.
191 WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
192
193 if (!InitState)
194 // Generate the root.
195 generateNode(StartLoc, SubEng.getInitialState(L), 0);
196 else
197 generateNode(StartLoc, InitState, 0);
198 }
199
200 // Check if we have a steps limit
201 bool UnlimitedSteps = Steps == 0;
202
203 while (WList->hasWork()) {
204 if (!UnlimitedSteps) {
205 if (Steps == 0) {
206 NumReachedMaxSteps++;
207 break;
208 }
209 --Steps;
210 }
211
212 NumSteps++;
213
214 const WorkListUnit& WU = WList->dequeue();
215
216 // Set the current block counter.
217 WList->setBlockCounter(WU.getBlockCounter());
218
219 // Retrieve the node.
220 ExplodedNode *Node = WU.getNode();
221
222 dispatchWorkItem(Node, Node->getLocation(), WU);
223 }
224 SubEng.processEndWorklist(hasWorkRemaining());
225 return WList->hasWork();
226 }
227
dispatchWorkItem(ExplodedNode * Pred,ProgramPoint Loc,const WorkListUnit & WU)228 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
229 const WorkListUnit& WU) {
230 // Dispatch on the location type.
231 switch (Loc.getKind()) {
232 case ProgramPoint::BlockEdgeKind:
233 HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred);
234 break;
235
236 case ProgramPoint::BlockEntranceKind:
237 HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred);
238 break;
239
240 case ProgramPoint::BlockExitKind:
241 assert (false && "BlockExit location never occur in forward analysis.");
242 break;
243
244 case ProgramPoint::CallEnterKind: {
245 CallEnter CEnter = Loc.castAs<CallEnter>();
246 SubEng.processCallEnter(CEnter, Pred);
247 break;
248 }
249
250 case ProgramPoint::CallExitBeginKind:
251 SubEng.processCallExit(Pred);
252 break;
253
254 case ProgramPoint::EpsilonKind: {
255 assert(Pred->hasSinglePred() &&
256 "Assume epsilon has exactly one predecessor by construction");
257 ExplodedNode *PNode = Pred->getFirstPred();
258 dispatchWorkItem(Pred, PNode->getLocation(), WU);
259 break;
260 }
261 default:
262 assert(Loc.getAs<PostStmt>() ||
263 Loc.getAs<PostInitializer>() ||
264 Loc.getAs<PostImplicitCall>() ||
265 Loc.getAs<CallExitEnd>());
266 HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
267 break;
268 }
269 }
270
ExecuteWorkListWithInitialState(const LocationContext * L,unsigned Steps,ProgramStateRef InitState,ExplodedNodeSet & Dst)271 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
272 unsigned Steps,
273 ProgramStateRef InitState,
274 ExplodedNodeSet &Dst) {
275 bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
276 for (ExplodedGraph::eop_iterator I = G->eop_begin(),
277 E = G->eop_end(); I != E; ++I) {
278 Dst.Add(*I);
279 }
280 return DidNotFinish;
281 }
282
HandleBlockEdge(const BlockEdge & L,ExplodedNode * Pred)283 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
284
285 const CFGBlock *Blk = L.getDst();
286 NodeBuilderContext BuilderCtx(*this, Blk, Pred);
287
288 // Mark this block as visited.
289 const LocationContext *LC = Pred->getLocationContext();
290 FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
291 LC->getDecl(),
292 LC->getCFG()->getNumBlockIDs());
293
294 // Check if we are entering the EXIT block.
295 if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
296
297 assert (L.getLocationContext()->getCFG()->getExit().size() == 0
298 && "EXIT block cannot contain Stmts.");
299
300 // Process the final state transition.
301 SubEng.processEndOfFunction(BuilderCtx, Pred);
302
303 // This path is done. Don't enqueue any more nodes.
304 return;
305 }
306
307 // Call into the SubEngine to process entering the CFGBlock.
308 ExplodedNodeSet dstNodes;
309 BlockEntrance BE(Blk, Pred->getLocationContext());
310 NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
311 SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred);
312
313 // Auto-generate a node.
314 if (!nodeBuilder.hasGeneratedNodes()) {
315 nodeBuilder.generateNode(Pred->State, Pred);
316 }
317
318 // Enqueue nodes onto the worklist.
319 enqueue(dstNodes);
320 }
321
HandleBlockEntrance(const BlockEntrance & L,ExplodedNode * Pred)322 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
323 ExplodedNode *Pred) {
324
325 // Increment the block counter.
326 const LocationContext *LC = Pred->getLocationContext();
327 unsigned BlockId = L.getBlock()->getBlockID();
328 BlockCounter Counter = WList->getBlockCounter();
329 Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
330 BlockId);
331 WList->setBlockCounter(Counter);
332
333 // Process the entrance of the block.
334 if (Optional<CFGElement> E = L.getFirstElement()) {
335 NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
336 SubEng.processCFGElement(*E, Pred, 0, &Ctx);
337 }
338 else
339 HandleBlockExit(L.getBlock(), Pred);
340 }
341
HandleBlockExit(const CFGBlock * B,ExplodedNode * Pred)342 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
343
344 if (const Stmt *Term = B->getTerminator()) {
345 switch (Term->getStmtClass()) {
346 default:
347 llvm_unreachable("Analysis for this terminator not implemented.");
348
349 case Stmt::BinaryOperatorClass: // '&&' and '||'
350 HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
351 return;
352
353 case Stmt::BinaryConditionalOperatorClass:
354 case Stmt::ConditionalOperatorClass:
355 HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
356 Term, B, Pred);
357 return;
358
359 // FIXME: Use constant-folding in CFG construction to simplify this
360 // case.
361
362 case Stmt::ChooseExprClass:
363 HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
364 return;
365
366 case Stmt::CXXTryStmtClass: {
367 // Generate a node for each of the successors.
368 // Our logic for EH analysis can certainly be improved.
369 for (CFGBlock::const_succ_iterator it = B->succ_begin(),
370 et = B->succ_end(); it != et; ++it) {
371 if (const CFGBlock *succ = *it) {
372 generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
373 Pred->State, Pred);
374 }
375 }
376 return;
377 }
378
379 case Stmt::DoStmtClass:
380 HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
381 return;
382
383 case Stmt::CXXForRangeStmtClass:
384 HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
385 return;
386
387 case Stmt::ForStmtClass:
388 HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
389 return;
390
391 case Stmt::ContinueStmtClass:
392 case Stmt::BreakStmtClass:
393 case Stmt::GotoStmtClass:
394 break;
395
396 case Stmt::IfStmtClass:
397 HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
398 return;
399
400 case Stmt::IndirectGotoStmtClass: {
401 // Only 1 successor: the indirect goto dispatch block.
402 assert (B->succ_size() == 1);
403
404 IndirectGotoNodeBuilder
405 builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
406 *(B->succ_begin()), this);
407
408 SubEng.processIndirectGoto(builder);
409 return;
410 }
411
412 case Stmt::ObjCForCollectionStmtClass: {
413 // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
414 //
415 // (1) inside a basic block, which represents the binding of the
416 // 'element' variable to a value.
417 // (2) in a terminator, which represents the branch.
418 //
419 // For (1), subengines will bind a value (i.e., 0 or 1) indicating
420 // whether or not collection contains any more elements. We cannot
421 // just test to see if the element is nil because a container can
422 // contain nil elements.
423 HandleBranch(Term, Term, B, Pred);
424 return;
425 }
426
427 case Stmt::SwitchStmtClass: {
428 SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
429 this);
430
431 SubEng.processSwitch(builder);
432 return;
433 }
434
435 case Stmt::WhileStmtClass:
436 HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
437 return;
438 }
439 }
440
441 assert (B->succ_size() == 1 &&
442 "Blocks with no terminator should have at most 1 successor.");
443
444 generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
445 Pred->State, Pred);
446 }
447
HandleBranch(const Stmt * Cond,const Stmt * Term,const CFGBlock * B,ExplodedNode * Pred)448 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
449 const CFGBlock * B, ExplodedNode *Pred) {
450 assert(B->succ_size() == 2);
451 NodeBuilderContext Ctx(*this, B, Pred);
452 ExplodedNodeSet Dst;
453 SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
454 *(B->succ_begin()), *(B->succ_begin()+1));
455 // Enqueue the new frontier onto the worklist.
456 enqueue(Dst);
457 }
458
HandlePostStmt(const CFGBlock * B,unsigned StmtIdx,ExplodedNode * Pred)459 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
460 ExplodedNode *Pred) {
461 assert(B);
462 assert(!B->empty());
463
464 if (StmtIdx == B->size())
465 HandleBlockExit(B, Pred);
466 else {
467 NodeBuilderContext Ctx(*this, B, Pred);
468 SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
469 }
470 }
471
472 /// generateNode - Utility method to generate nodes, hook up successors,
473 /// and add nodes to the worklist.
generateNode(const ProgramPoint & Loc,ProgramStateRef State,ExplodedNode * Pred)474 void CoreEngine::generateNode(const ProgramPoint &Loc,
475 ProgramStateRef State,
476 ExplodedNode *Pred) {
477
478 bool IsNew;
479 ExplodedNode *Node = G->getNode(Loc, State, false, &IsNew);
480
481 if (Pred)
482 Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor.
483 else {
484 assert (IsNew);
485 G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
486 }
487
488 // Only add 'Node' to the worklist if it was freshly generated.
489 if (IsNew) WList->enqueue(Node);
490 }
491
enqueueStmtNode(ExplodedNode * N,const CFGBlock * Block,unsigned Idx)492 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
493 const CFGBlock *Block, unsigned Idx) {
494 assert(Block);
495 assert (!N->isSink());
496
497 // Check if this node entered a callee.
498 if (N->getLocation().getAs<CallEnter>()) {
499 // Still use the index of the CallExpr. It's needed to create the callee
500 // StackFrameContext.
501 WList->enqueue(N, Block, Idx);
502 return;
503 }
504
505 // Do not create extra nodes. Move to the next CFG element.
506 if (N->getLocation().getAs<PostInitializer>() ||
507 N->getLocation().getAs<PostImplicitCall>()) {
508 WList->enqueue(N, Block, Idx+1);
509 return;
510 }
511
512 if (N->getLocation().getAs<EpsilonPoint>()) {
513 WList->enqueue(N, Block, Idx);
514 return;
515 }
516
517 // At this point, we know we're processing a normal statement.
518 CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>();
519 PostStmt Loc(CS.getStmt(), N->getLocationContext());
520
521 if (Loc == N->getLocation()) {
522 // Note: 'N' should be a fresh node because otherwise it shouldn't be
523 // a member of Deferred.
524 WList->enqueue(N, Block, Idx+1);
525 return;
526 }
527
528 bool IsNew;
529 ExplodedNode *Succ = G->getNode(Loc, N->getState(), false, &IsNew);
530 Succ->addPredecessor(N, *G);
531
532 if (IsNew)
533 WList->enqueue(Succ, Block, Idx+1);
534 }
535
generateCallExitBeginNode(ExplodedNode * N)536 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) {
537 // Create a CallExitBegin node and enqueue it.
538 const StackFrameContext *LocCtx
539 = cast<StackFrameContext>(N->getLocationContext());
540
541 // Use the callee location context.
542 CallExitBegin Loc(LocCtx);
543
544 bool isNew;
545 ExplodedNode *Node = G->getNode(Loc, N->getState(), false, &isNew);
546 Node->addPredecessor(N, *G);
547 return isNew ? Node : 0;
548 }
549
550
enqueue(ExplodedNodeSet & Set)551 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
552 for (ExplodedNodeSet::iterator I = Set.begin(),
553 E = Set.end(); I != E; ++I) {
554 WList->enqueue(*I);
555 }
556 }
557
enqueue(ExplodedNodeSet & Set,const CFGBlock * Block,unsigned Idx)558 void CoreEngine::enqueue(ExplodedNodeSet &Set,
559 const CFGBlock *Block, unsigned Idx) {
560 for (ExplodedNodeSet::iterator I = Set.begin(),
561 E = Set.end(); I != E; ++I) {
562 enqueueStmtNode(*I, Block, Idx);
563 }
564 }
565
enqueueEndOfFunction(ExplodedNodeSet & Set)566 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
567 for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
568 ExplodedNode *N = *I;
569 // If we are in an inlined call, generate CallExitBegin node.
570 if (N->getLocationContext()->getParent()) {
571 N = generateCallExitBeginNode(N);
572 if (N)
573 WList->enqueue(N);
574 } else {
575 // TODO: We should run remove dead bindings here.
576 G->addEndOfPath(N);
577 NumPathsExplored++;
578 }
579 }
580 }
581
582
anchor()583 void NodeBuilder::anchor() { }
584
generateNodeImpl(const ProgramPoint & Loc,ProgramStateRef State,ExplodedNode * FromN,bool MarkAsSink)585 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
586 ProgramStateRef State,
587 ExplodedNode *FromN,
588 bool MarkAsSink) {
589 HasGeneratedNodes = true;
590 bool IsNew;
591 ExplodedNode *N = C.Eng.G->getNode(Loc, State, MarkAsSink, &IsNew);
592 N->addPredecessor(FromN, *C.Eng.G);
593 Frontier.erase(FromN);
594
595 if (!IsNew)
596 return 0;
597
598 if (!MarkAsSink)
599 Frontier.Add(N);
600
601 return N;
602 }
603
anchor()604 void NodeBuilderWithSinks::anchor() { }
605
~StmtNodeBuilder()606 StmtNodeBuilder::~StmtNodeBuilder() {
607 if (EnclosingBldr)
608 for (ExplodedNodeSet::iterator I = Frontier.begin(),
609 E = Frontier.end(); I != E; ++I )
610 EnclosingBldr->addNodes(*I);
611 }
612
anchor()613 void BranchNodeBuilder::anchor() { }
614
generateNode(ProgramStateRef State,bool branch,ExplodedNode * NodePred)615 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
616 bool branch,
617 ExplodedNode *NodePred) {
618 // If the branch has been marked infeasible we should not generate a node.
619 if (!isFeasible(branch))
620 return NULL;
621
622 ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
623 NodePred->getLocationContext());
624 ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
625 return Succ;
626 }
627
628 ExplodedNode*
generateNode(const iterator & I,ProgramStateRef St,bool IsSink)629 IndirectGotoNodeBuilder::generateNode(const iterator &I,
630 ProgramStateRef St,
631 bool IsSink) {
632 bool IsNew;
633 ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
634 Pred->getLocationContext()), St,
635 IsSink, &IsNew);
636 Succ->addPredecessor(Pred, *Eng.G);
637
638 if (!IsNew)
639 return 0;
640
641 if (!IsSink)
642 Eng.WList->enqueue(Succ);
643
644 return Succ;
645 }
646
647
648 ExplodedNode*
generateCaseStmtNode(const iterator & I,ProgramStateRef St)649 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
650 ProgramStateRef St) {
651
652 bool IsNew;
653 ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
654 Pred->getLocationContext()), St,
655 false, &IsNew);
656 Succ->addPredecessor(Pred, *Eng.G);
657 if (!IsNew)
658 return 0;
659
660 Eng.WList->enqueue(Succ);
661 return Succ;
662 }
663
664
665 ExplodedNode*
generateDefaultCaseNode(ProgramStateRef St,bool IsSink)666 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
667 bool IsSink) {
668 // Get the block for the default case.
669 assert(Src->succ_rbegin() != Src->succ_rend());
670 CFGBlock *DefaultBlock = *Src->succ_rbegin();
671
672 // Sanity check for default blocks that are unreachable and not caught
673 // by earlier stages.
674 if (!DefaultBlock)
675 return NULL;
676
677 bool IsNew;
678 ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
679 Pred->getLocationContext()), St,
680 IsSink, &IsNew);
681 Succ->addPredecessor(Pred, *Eng.G);
682
683 if (!IsNew)
684 return 0;
685
686 if (!IsSink)
687 Eng.WList->enqueue(Succ);
688
689 return Succ;
690 }
691