1 //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the template classes ExplodedNode and ExplodedGraph,
11 // which represent a path-sensitive, intra-procedural "exploded graph."
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16 #include "clang/AST/ParentMap.h"
17 #include "clang/AST/Stmt.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include <vector>
25
26 using namespace clang;
27 using namespace ento;
28
29 //===----------------------------------------------------------------------===//
30 // Node auditing.
31 //===----------------------------------------------------------------------===//
32
33 // An out of line virtual method to provide a home for the class vtable.
~Auditor()34 ExplodedNode::Auditor::~Auditor() {}
35
36 #ifndef NDEBUG
37 static ExplodedNode::Auditor* NodeAuditor = 0;
38 #endif
39
SetAuditor(ExplodedNode::Auditor * A)40 void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
41 #ifndef NDEBUG
42 NodeAuditor = A;
43 #endif
44 }
45
46 //===----------------------------------------------------------------------===//
47 // Cleanup.
48 //===----------------------------------------------------------------------===//
49
ExplodedGraph()50 ExplodedGraph::ExplodedGraph()
51 : NumNodes(0), ReclaimNodeInterval(0) {}
52
~ExplodedGraph()53 ExplodedGraph::~ExplodedGraph() {}
54
55 //===----------------------------------------------------------------------===//
56 // Node reclamation.
57 //===----------------------------------------------------------------------===//
58
isInterestingLValueExpr(const Expr * Ex)59 bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) {
60 if (!Ex->isLValue())
61 return false;
62 return isa<DeclRefExpr>(Ex) ||
63 isa<MemberExpr>(Ex) ||
64 isa<ObjCIvarRefExpr>(Ex);
65 }
66
shouldCollect(const ExplodedNode * node)67 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
68 // First, we only consider nodes for reclamation of the following
69 // conditions apply:
70 //
71 // (1) 1 predecessor (that has one successor)
72 // (2) 1 successor (that has one predecessor)
73 //
74 // If a node has no successor it is on the "frontier", while a node
75 // with no predecessor is a root.
76 //
77 // After these prerequisites, we discard all "filler" nodes that
78 // are used only for intermediate processing, and are not essential
79 // for analyzer history:
80 //
81 // (a) PreStmtPurgeDeadSymbols
82 //
83 // We then discard all other nodes where *all* of the following conditions
84 // apply:
85 //
86 // (3) The ProgramPoint is for a PostStmt, but not a PostStore.
87 // (4) There is no 'tag' for the ProgramPoint.
88 // (5) The 'store' is the same as the predecessor.
89 // (6) The 'GDM' is the same as the predecessor.
90 // (7) The LocationContext is the same as the predecessor.
91 // (8) Expressions that are *not* lvalue expressions.
92 // (9) The PostStmt isn't for a non-consumed Stmt or Expr.
93 // (10) The successor is not a CallExpr StmtPoint (so that we would
94 // be able to find it when retrying a call with no inlining).
95 // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.
96
97 // Conditions 1 and 2.
98 if (node->pred_size() != 1 || node->succ_size() != 1)
99 return false;
100
101 const ExplodedNode *pred = *(node->pred_begin());
102 if (pred->succ_size() != 1)
103 return false;
104
105 const ExplodedNode *succ = *(node->succ_begin());
106 if (succ->pred_size() != 1)
107 return false;
108
109 // Now reclaim any nodes that are (by definition) not essential to
110 // analysis history and are not consulted by any client code.
111 ProgramPoint progPoint = node->getLocation();
112 if (progPoint.getAs<PreStmtPurgeDeadSymbols>())
113 return !progPoint.getTag();
114
115 // Condition 3.
116 if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>())
117 return false;
118
119 // Condition 4.
120 PostStmt ps = progPoint.castAs<PostStmt>();
121 if (ps.getTag())
122 return false;
123
124 // Conditions 5, 6, and 7.
125 ProgramStateRef state = node->getState();
126 ProgramStateRef pred_state = pred->getState();
127 if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
128 progPoint.getLocationContext() != pred->getLocationContext())
129 return false;
130
131 // All further checks require expressions.
132 const Expr *Ex = dyn_cast<Expr>(ps.getStmt());
133 if (!Ex)
134 return false;
135
136 // Condition 8.
137 // Do not collect nodes for "interesting" lvalue expressions since they are
138 // used extensively for generating path diagnostics.
139 if (isInterestingLValueExpr(Ex))
140 return false;
141
142 // Condition 9.
143 // Do not collect nodes for non-consumed Stmt or Expr to ensure precise
144 // diagnostic generation; specifically, so that we could anchor arrows
145 // pointing to the beginning of statements (as written in code).
146 ParentMap &PM = progPoint.getLocationContext()->getParentMap();
147 if (!PM.isConsumedExpr(Ex))
148 return false;
149
150 // Condition 10.
151 const ProgramPoint SuccLoc = succ->getLocation();
152 if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>())
153 if (CallEvent::isCallStmt(SP->getStmt()))
154 return false;
155
156 return true;
157 }
158
collectNode(ExplodedNode * node)159 void ExplodedGraph::collectNode(ExplodedNode *node) {
160 // Removing a node means:
161 // (a) changing the predecessors successor to the successor of this node
162 // (b) changing the successors predecessor to the predecessor of this node
163 // (c) Putting 'node' onto freeNodes.
164 assert(node->pred_size() == 1 || node->succ_size() == 1);
165 ExplodedNode *pred = *(node->pred_begin());
166 ExplodedNode *succ = *(node->succ_begin());
167 pred->replaceSuccessor(succ);
168 succ->replacePredecessor(pred);
169 FreeNodes.push_back(node);
170 Nodes.RemoveNode(node);
171 --NumNodes;
172 node->~ExplodedNode();
173 }
174
reclaimRecentlyAllocatedNodes()175 void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
176 if (ChangedNodes.empty())
177 return;
178
179 // Only periodically reclaim nodes so that we can build up a set of
180 // nodes that meet the reclamation criteria. Freshly created nodes
181 // by definition have no successor, and thus cannot be reclaimed (see below).
182 assert(ReclaimCounter > 0);
183 if (--ReclaimCounter != 0)
184 return;
185 ReclaimCounter = ReclaimNodeInterval;
186
187 for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
188 it != et; ++it) {
189 ExplodedNode *node = *it;
190 if (shouldCollect(node))
191 collectNode(node);
192 }
193 ChangedNodes.clear();
194 }
195
196 //===----------------------------------------------------------------------===//
197 // ExplodedNode.
198 //===----------------------------------------------------------------------===//
199
200 // An NodeGroup's storage type is actually very much like a TinyPtrVector:
201 // it can be either a pointer to a single ExplodedNode, or a pointer to a
202 // BumpVector allocated with the ExplodedGraph's allocator. This allows the
203 // common case of single-node NodeGroups to be implemented with no extra memory.
204 //
205 // Consequently, each of the NodeGroup methods have up to four cases to handle:
206 // 1. The flag is set and this group does not actually contain any nodes.
207 // 2. The group is empty, in which case the storage value is null.
208 // 3. The group contains a single node.
209 // 4. The group contains more than one node.
210 typedef BumpVector<ExplodedNode *> ExplodedNodeVector;
211 typedef llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *> GroupStorage;
212
addPredecessor(ExplodedNode * V,ExplodedGraph & G)213 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
214 assert (!V->isSink());
215 Preds.addNode(V, G);
216 V->Succs.addNode(this, G);
217 #ifndef NDEBUG
218 if (NodeAuditor) NodeAuditor->AddEdge(V, this);
219 #endif
220 }
221
replaceNode(ExplodedNode * node)222 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
223 assert(!getFlag());
224
225 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
226 assert(Storage.is<ExplodedNode *>());
227 Storage = node;
228 assert(Storage.is<ExplodedNode *>());
229 }
230
addNode(ExplodedNode * N,ExplodedGraph & G)231 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
232 assert(!getFlag());
233
234 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
235 if (Storage.isNull()) {
236 Storage = N;
237 assert(Storage.is<ExplodedNode *>());
238 return;
239 }
240
241 ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>();
242
243 if (!V) {
244 // Switch from single-node to multi-node representation.
245 ExplodedNode *Old = Storage.get<ExplodedNode *>();
246
247 BumpVectorContext &Ctx = G.getNodeAllocator();
248 V = G.getAllocator().Allocate<ExplodedNodeVector>();
249 new (V) ExplodedNodeVector(Ctx, 4);
250 V->push_back(Old, Ctx);
251
252 Storage = V;
253 assert(!getFlag());
254 assert(Storage.is<ExplodedNodeVector *>());
255 }
256
257 V->push_back(N, G.getNodeAllocator());
258 }
259
size() const260 unsigned ExplodedNode::NodeGroup::size() const {
261 if (getFlag())
262 return 0;
263
264 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
265 if (Storage.isNull())
266 return 0;
267 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
268 return V->size();
269 return 1;
270 }
271
begin() const272 ExplodedNode * const *ExplodedNode::NodeGroup::begin() const {
273 if (getFlag())
274 return 0;
275
276 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
277 if (Storage.isNull())
278 return 0;
279 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
280 return V->begin();
281 return Storage.getAddrOfPtr1();
282 }
283
end() const284 ExplodedNode * const *ExplodedNode::NodeGroup::end() const {
285 if (getFlag())
286 return 0;
287
288 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
289 if (Storage.isNull())
290 return 0;
291 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
292 return V->end();
293 return Storage.getAddrOfPtr1() + 1;
294 }
295
getNode(const ProgramPoint & L,ProgramStateRef State,bool IsSink,bool * IsNew)296 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
297 ProgramStateRef State,
298 bool IsSink,
299 bool* IsNew) {
300 // Profile 'State' to determine if we already have an existing node.
301 llvm::FoldingSetNodeID profile;
302 void *InsertPos = 0;
303
304 NodeTy::Profile(profile, L, State, IsSink);
305 NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
306
307 if (!V) {
308 if (!FreeNodes.empty()) {
309 V = FreeNodes.back();
310 FreeNodes.pop_back();
311 }
312 else {
313 // Allocate a new node.
314 V = (NodeTy*) getAllocator().Allocate<NodeTy>();
315 }
316
317 new (V) NodeTy(L, State, IsSink);
318
319 if (ReclaimNodeInterval)
320 ChangedNodes.push_back(V);
321
322 // Insert the node into the node set and return it.
323 Nodes.InsertNode(V, InsertPos);
324 ++NumNodes;
325
326 if (IsNew) *IsNew = true;
327 }
328 else
329 if (IsNew) *IsNew = false;
330
331 return V;
332 }
333
334 ExplodedGraph *
trim(ArrayRef<const NodeTy * > Sinks,InterExplodedGraphMap * ForwardMap,InterExplodedGraphMap * InverseMap) const335 ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks,
336 InterExplodedGraphMap *ForwardMap,
337 InterExplodedGraphMap *InverseMap) const{
338
339 if (Nodes.empty())
340 return 0;
341
342 typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
343 Pass1Ty Pass1;
344
345 typedef InterExplodedGraphMap Pass2Ty;
346 InterExplodedGraphMap Pass2Scratch;
347 Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch;
348
349 SmallVector<const ExplodedNode*, 10> WL1, WL2;
350
351 // ===- Pass 1 (reverse DFS) -===
352 for (ArrayRef<const NodeTy *>::iterator I = Sinks.begin(), E = Sinks.end();
353 I != E; ++I) {
354 if (*I)
355 WL1.push_back(*I);
356 }
357
358 // Process the first worklist until it is empty.
359 while (!WL1.empty()) {
360 const ExplodedNode *N = WL1.back();
361 WL1.pop_back();
362
363 // Have we already visited this node? If so, continue to the next one.
364 if (Pass1.count(N))
365 continue;
366
367 // Otherwise, mark this node as visited.
368 Pass1.insert(N);
369
370 // If this is a root enqueue it to the second worklist.
371 if (N->Preds.empty()) {
372 WL2.push_back(N);
373 continue;
374 }
375
376 // Visit our predecessors and enqueue them.
377 for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
378 I != E; ++I)
379 WL1.push_back(*I);
380 }
381
382 // We didn't hit a root? Return with a null pointer for the new graph.
383 if (WL2.empty())
384 return 0;
385
386 // Create an empty graph.
387 ExplodedGraph* G = MakeEmptyGraph();
388
389 // ===- Pass 2 (forward DFS to construct the new graph) -===
390 while (!WL2.empty()) {
391 const ExplodedNode *N = WL2.back();
392 WL2.pop_back();
393
394 // Skip this node if we have already processed it.
395 if (Pass2.find(N) != Pass2.end())
396 continue;
397
398 // Create the corresponding node in the new graph and record the mapping
399 // from the old node to the new node.
400 ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
401 Pass2[N] = NewN;
402
403 // Also record the reverse mapping from the new node to the old node.
404 if (InverseMap) (*InverseMap)[NewN] = N;
405
406 // If this node is a root, designate it as such in the graph.
407 if (N->Preds.empty())
408 G->addRoot(NewN);
409
410 // In the case that some of the intended predecessors of NewN have already
411 // been created, we should hook them up as predecessors.
412
413 // Walk through the predecessors of 'N' and hook up their corresponding
414 // nodes in the new graph (if any) to the freshly created node.
415 for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
416 I != E; ++I) {
417 Pass2Ty::iterator PI = Pass2.find(*I);
418 if (PI == Pass2.end())
419 continue;
420
421 NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G);
422 }
423
424 // In the case that some of the intended successors of NewN have already
425 // been created, we should hook them up as successors. Otherwise, enqueue
426 // the new nodes from the original graph that should have nodes created
427 // in the new graph.
428 for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end();
429 I != E; ++I) {
430 Pass2Ty::iterator PI = Pass2.find(*I);
431 if (PI != Pass2.end()) {
432 const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G);
433 continue;
434 }
435
436 // Enqueue nodes to the worklist that were marked during pass 1.
437 if (Pass1.count(*I))
438 WL2.push_back(*I);
439 }
440 }
441
442 return G;
443 }
444
445