1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken. If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "globalopt"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CallSite.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/GetElementPtrTypeIterator.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetLibraryInfo.h"
41 #include <algorithm>
42 using namespace llvm;
43
44 STATISTIC(NumMarked , "Number of globals marked constant");
45 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
46 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
47 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
48 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
49 STATISTIC(NumDeleted , "Number of globals deleted");
50 STATISTIC(NumFnDeleted , "Number of functions deleted");
51 STATISTIC(NumGlobUses , "Number of global uses devirtualized");
52 STATISTIC(NumLocalized , "Number of globals localized");
53 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
54 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
55 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
56 STATISTIC(NumNestRemoved , "Number of nest attributes removed");
57 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
58 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
59 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
60
61 namespace {
62 struct GlobalStatus;
63 struct GlobalOpt : public ModulePass {
getAnalysisUsage__anon1261e6b10111::GlobalOpt64 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<TargetLibraryInfo>();
66 }
67 static char ID; // Pass identification, replacement for typeid
GlobalOpt__anon1261e6b10111::GlobalOpt68 GlobalOpt() : ModulePass(ID) {
69 initializeGlobalOptPass(*PassRegistry::getPassRegistry());
70 }
71
72 bool runOnModule(Module &M);
73
74 private:
75 GlobalVariable *FindGlobalCtors(Module &M);
76 bool OptimizeFunctions(Module &M);
77 bool OptimizeGlobalVars(Module &M);
78 bool OptimizeGlobalAliases(Module &M);
79 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
80 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
81 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
82 const SmallPtrSet<const PHINode*, 16> &PHIUsers,
83 const GlobalStatus &GS);
84 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
85
86 DataLayout *TD;
87 TargetLibraryInfo *TLI;
88 };
89 }
90
91 char GlobalOpt::ID = 0;
92 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
93 "Global Variable Optimizer", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)94 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
95 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
96 "Global Variable Optimizer", false, false)
97
98 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
99
100 namespace {
101
102 /// GlobalStatus - As we analyze each global, keep track of some information
103 /// about it. If we find out that the address of the global is taken, none of
104 /// this info will be accurate.
105 struct GlobalStatus {
106 /// isCompared - True if the global's address is used in a comparison.
107 bool isCompared;
108
109 /// isLoaded - True if the global is ever loaded. If the global isn't ever
110 /// loaded it can be deleted.
111 bool isLoaded;
112
113 /// StoredType - Keep track of what stores to the global look like.
114 ///
115 enum StoredType {
116 /// NotStored - There is no store to this global. It can thus be marked
117 /// constant.
118 NotStored,
119
120 /// isInitializerStored - This global is stored to, but the only thing
121 /// stored is the constant it was initialized with. This is only tracked
122 /// for scalar globals.
123 isInitializerStored,
124
125 /// isStoredOnce - This global is stored to, but only its initializer and
126 /// one other value is ever stored to it. If this global isStoredOnce, we
127 /// track the value stored to it in StoredOnceValue below. This is only
128 /// tracked for scalar globals.
129 isStoredOnce,
130
131 /// isStored - This global is stored to by multiple values or something else
132 /// that we cannot track.
133 isStored
134 } StoredType;
135
136 /// StoredOnceValue - If only one value (besides the initializer constant) is
137 /// ever stored to this global, keep track of what value it is.
138 Value *StoredOnceValue;
139
140 /// AccessingFunction/HasMultipleAccessingFunctions - These start out
141 /// null/false. When the first accessing function is noticed, it is recorded.
142 /// When a second different accessing function is noticed,
143 /// HasMultipleAccessingFunctions is set to true.
144 const Function *AccessingFunction;
145 bool HasMultipleAccessingFunctions;
146
147 /// HasNonInstructionUser - Set to true if this global has a user that is not
148 /// an instruction (e.g. a constant expr or GV initializer).
149 bool HasNonInstructionUser;
150
151 /// AtomicOrdering - Set to the strongest atomic ordering requirement.
152 AtomicOrdering Ordering;
153
GlobalStatus__anon1261e6b10211::GlobalStatus154 GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
155 StoredOnceValue(0), AccessingFunction(0),
156 HasMultipleAccessingFunctions(false),
157 HasNonInstructionUser(false), Ordering(NotAtomic) {}
158 };
159
160 }
161
162 /// StrongerOrdering - Return the stronger of the two ordering. If the two
163 /// orderings are acquire and release, then return AcquireRelease.
164 ///
StrongerOrdering(AtomicOrdering X,AtomicOrdering Y)165 static AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) {
166 if (X == Acquire && Y == Release) return AcquireRelease;
167 if (Y == Acquire && X == Release) return AcquireRelease;
168 return (AtomicOrdering)std::max(X, Y);
169 }
170
171 /// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
172 /// by constants itself. Note that constants cannot be cyclic, so this test is
173 /// pretty easy to implement recursively.
174 ///
SafeToDestroyConstant(const Constant * C)175 static bool SafeToDestroyConstant(const Constant *C) {
176 if (isa<GlobalValue>(C)) return false;
177
178 for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
179 ++UI)
180 if (const Constant *CU = dyn_cast<Constant>(*UI)) {
181 if (!SafeToDestroyConstant(CU)) return false;
182 } else
183 return false;
184 return true;
185 }
186
187
188 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
189 /// structure. If the global has its address taken, return true to indicate we
190 /// can't do anything with it.
191 ///
AnalyzeGlobal(const Value * V,GlobalStatus & GS,SmallPtrSet<const PHINode *,16> & PHIUsers)192 static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
193 SmallPtrSet<const PHINode*, 16> &PHIUsers) {
194 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
195 ++UI) {
196 const User *U = *UI;
197 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
198 GS.HasNonInstructionUser = true;
199
200 // If the result of the constantexpr isn't pointer type, then we won't
201 // know to expect it in various places. Just reject early.
202 if (!isa<PointerType>(CE->getType())) return true;
203
204 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
205 } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
206 if (!GS.HasMultipleAccessingFunctions) {
207 const Function *F = I->getParent()->getParent();
208 if (GS.AccessingFunction == 0)
209 GS.AccessingFunction = F;
210 else if (GS.AccessingFunction != F)
211 GS.HasMultipleAccessingFunctions = true;
212 }
213 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
214 GS.isLoaded = true;
215 // Don't hack on volatile loads.
216 if (LI->isVolatile()) return true;
217 GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering());
218 } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
219 // Don't allow a store OF the address, only stores TO the address.
220 if (SI->getOperand(0) == V) return true;
221
222 // Don't hack on volatile stores.
223 if (SI->isVolatile()) return true;
224
225 GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering());
226
227 // If this is a direct store to the global (i.e., the global is a scalar
228 // value, not an aggregate), keep more specific information about
229 // stores.
230 if (GS.StoredType != GlobalStatus::isStored) {
231 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
232 SI->getOperand(1))) {
233 Value *StoredVal = SI->getOperand(0);
234
235 if (Constant *C = dyn_cast<Constant>(StoredVal)) {
236 if (C->isThreadDependent()) {
237 // The stored value changes between threads; don't track it.
238 return true;
239 }
240 }
241
242 if (StoredVal == GV->getInitializer()) {
243 if (GS.StoredType < GlobalStatus::isInitializerStored)
244 GS.StoredType = GlobalStatus::isInitializerStored;
245 } else if (isa<LoadInst>(StoredVal) &&
246 cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
247 if (GS.StoredType < GlobalStatus::isInitializerStored)
248 GS.StoredType = GlobalStatus::isInitializerStored;
249 } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
250 GS.StoredType = GlobalStatus::isStoredOnce;
251 GS.StoredOnceValue = StoredVal;
252 } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
253 GS.StoredOnceValue == StoredVal) {
254 // noop.
255 } else {
256 GS.StoredType = GlobalStatus::isStored;
257 }
258 } else {
259 GS.StoredType = GlobalStatus::isStored;
260 }
261 }
262 } else if (isa<BitCastInst>(I)) {
263 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
264 } else if (isa<GetElementPtrInst>(I)) {
265 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
266 } else if (isa<SelectInst>(I)) {
267 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
268 } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
269 // PHI nodes we can check just like select or GEP instructions, but we
270 // have to be careful about infinite recursion.
271 if (PHIUsers.insert(PN)) // Not already visited.
272 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
273 } else if (isa<CmpInst>(I)) {
274 GS.isCompared = true;
275 } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
276 if (MTI->isVolatile()) return true;
277 if (MTI->getArgOperand(0) == V)
278 GS.StoredType = GlobalStatus::isStored;
279 if (MTI->getArgOperand(1) == V)
280 GS.isLoaded = true;
281 } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
282 assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
283 if (MSI->isVolatile()) return true;
284 GS.StoredType = GlobalStatus::isStored;
285 } else {
286 return true; // Any other non-load instruction might take address!
287 }
288 } else if (const Constant *C = dyn_cast<Constant>(U)) {
289 GS.HasNonInstructionUser = true;
290 // We might have a dead and dangling constant hanging off of here.
291 if (!SafeToDestroyConstant(C))
292 return true;
293 } else {
294 GS.HasNonInstructionUser = true;
295 // Otherwise must be some other user.
296 return true;
297 }
298 }
299
300 return false;
301 }
302
303 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
304 /// as a root? If so, we might not really want to eliminate the stores to it.
isLeakCheckerRoot(GlobalVariable * GV)305 static bool isLeakCheckerRoot(GlobalVariable *GV) {
306 // A global variable is a root if it is a pointer, or could plausibly contain
307 // a pointer. There are two challenges; one is that we could have a struct
308 // the has an inner member which is a pointer. We recurse through the type to
309 // detect these (up to a point). The other is that we may actually be a union
310 // of a pointer and another type, and so our LLVM type is an integer which
311 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
312 // potentially contained here.
313
314 if (GV->hasPrivateLinkage())
315 return false;
316
317 SmallVector<Type *, 4> Types;
318 Types.push_back(cast<PointerType>(GV->getType())->getElementType());
319
320 unsigned Limit = 20;
321 do {
322 Type *Ty = Types.pop_back_val();
323 switch (Ty->getTypeID()) {
324 default: break;
325 case Type::PointerTyID: return true;
326 case Type::ArrayTyID:
327 case Type::VectorTyID: {
328 SequentialType *STy = cast<SequentialType>(Ty);
329 Types.push_back(STy->getElementType());
330 break;
331 }
332 case Type::StructTyID: {
333 StructType *STy = cast<StructType>(Ty);
334 if (STy->isOpaque()) return true;
335 for (StructType::element_iterator I = STy->element_begin(),
336 E = STy->element_end(); I != E; ++I) {
337 Type *InnerTy = *I;
338 if (isa<PointerType>(InnerTy)) return true;
339 if (isa<CompositeType>(InnerTy))
340 Types.push_back(InnerTy);
341 }
342 break;
343 }
344 }
345 if (--Limit == 0) return true;
346 } while (!Types.empty());
347 return false;
348 }
349
350 /// Given a value that is stored to a global but never read, determine whether
351 /// it's safe to remove the store and the chain of computation that feeds the
352 /// store.
IsSafeComputationToRemove(Value * V,const TargetLibraryInfo * TLI)353 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
354 do {
355 if (isa<Constant>(V))
356 return true;
357 if (!V->hasOneUse())
358 return false;
359 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
360 isa<GlobalValue>(V))
361 return false;
362 if (isAllocationFn(V, TLI))
363 return true;
364
365 Instruction *I = cast<Instruction>(V);
366 if (I->mayHaveSideEffects())
367 return false;
368 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
369 if (!GEP->hasAllConstantIndices())
370 return false;
371 } else if (I->getNumOperands() != 1) {
372 return false;
373 }
374
375 V = I->getOperand(0);
376 } while (1);
377 }
378
379 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users
380 /// of the global and clean up any that obviously don't assign the global a
381 /// value that isn't dynamically allocated.
382 ///
CleanupPointerRootUsers(GlobalVariable * GV,const TargetLibraryInfo * TLI)383 static bool CleanupPointerRootUsers(GlobalVariable *GV,
384 const TargetLibraryInfo *TLI) {
385 // A brief explanation of leak checkers. The goal is to find bugs where
386 // pointers are forgotten, causing an accumulating growth in memory
387 // usage over time. The common strategy for leak checkers is to whitelist the
388 // memory pointed to by globals at exit. This is popular because it also
389 // solves another problem where the main thread of a C++ program may shut down
390 // before other threads that are still expecting to use those globals. To
391 // handle that case, we expect the program may create a singleton and never
392 // destroy it.
393
394 bool Changed = false;
395
396 // If Dead[n].first is the only use of a malloc result, we can delete its
397 // chain of computation and the store to the global in Dead[n].second.
398 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
399
400 // Constants can't be pointers to dynamically allocated memory.
401 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
402 UI != E;) {
403 User *U = *UI++;
404 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
405 Value *V = SI->getValueOperand();
406 if (isa<Constant>(V)) {
407 Changed = true;
408 SI->eraseFromParent();
409 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
410 if (I->hasOneUse())
411 Dead.push_back(std::make_pair(I, SI));
412 }
413 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
414 if (isa<Constant>(MSI->getValue())) {
415 Changed = true;
416 MSI->eraseFromParent();
417 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
418 if (I->hasOneUse())
419 Dead.push_back(std::make_pair(I, MSI));
420 }
421 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
422 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
423 if (MemSrc && MemSrc->isConstant()) {
424 Changed = true;
425 MTI->eraseFromParent();
426 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
427 if (I->hasOneUse())
428 Dead.push_back(std::make_pair(I, MTI));
429 }
430 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
431 if (CE->use_empty()) {
432 CE->destroyConstant();
433 Changed = true;
434 }
435 } else if (Constant *C = dyn_cast<Constant>(U)) {
436 if (SafeToDestroyConstant(C)) {
437 C->destroyConstant();
438 // This could have invalidated UI, start over from scratch.
439 Dead.clear();
440 CleanupPointerRootUsers(GV, TLI);
441 return true;
442 }
443 }
444 }
445
446 for (int i = 0, e = Dead.size(); i != e; ++i) {
447 if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
448 Dead[i].second->eraseFromParent();
449 Instruction *I = Dead[i].first;
450 do {
451 if (isAllocationFn(I, TLI))
452 break;
453 Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
454 if (!J)
455 break;
456 I->eraseFromParent();
457 I = J;
458 } while (1);
459 I->eraseFromParent();
460 }
461 }
462
463 return Changed;
464 }
465
466 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
467 /// users of the global, cleaning up the obvious ones. This is largely just a
468 /// quick scan over the use list to clean up the easy and obvious cruft. This
469 /// returns true if it made a change.
CleanupConstantGlobalUsers(Value * V,Constant * Init,DataLayout * TD,TargetLibraryInfo * TLI)470 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
471 DataLayout *TD, TargetLibraryInfo *TLI) {
472 bool Changed = false;
473 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
474 User *U = *UI++;
475
476 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
477 if (Init) {
478 // Replace the load with the initializer.
479 LI->replaceAllUsesWith(Init);
480 LI->eraseFromParent();
481 Changed = true;
482 }
483 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
484 // Store must be unreachable or storing Init into the global.
485 SI->eraseFromParent();
486 Changed = true;
487 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
488 if (CE->getOpcode() == Instruction::GetElementPtr) {
489 Constant *SubInit = 0;
490 if (Init)
491 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
492 Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI);
493 } else if (CE->getOpcode() == Instruction::BitCast &&
494 CE->getType()->isPointerTy()) {
495 // Pointer cast, delete any stores and memsets to the global.
496 Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI);
497 }
498
499 if (CE->use_empty()) {
500 CE->destroyConstant();
501 Changed = true;
502 }
503 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
504 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
505 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
506 // and will invalidate our notion of what Init is.
507 Constant *SubInit = 0;
508 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
509 ConstantExpr *CE =
510 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI));
511 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
512 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
513
514 // If the initializer is an all-null value and we have an inbounds GEP,
515 // we already know what the result of any load from that GEP is.
516 // TODO: Handle splats.
517 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
518 SubInit = Constant::getNullValue(GEP->getType()->getElementType());
519 }
520 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI);
521
522 if (GEP->use_empty()) {
523 GEP->eraseFromParent();
524 Changed = true;
525 }
526 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
527 if (MI->getRawDest() == V) {
528 MI->eraseFromParent();
529 Changed = true;
530 }
531
532 } else if (Constant *C = dyn_cast<Constant>(U)) {
533 // If we have a chain of dead constantexprs or other things dangling from
534 // us, and if they are all dead, nuke them without remorse.
535 if (SafeToDestroyConstant(C)) {
536 C->destroyConstant();
537 // This could have invalidated UI, start over from scratch.
538 CleanupConstantGlobalUsers(V, Init, TD, TLI);
539 return true;
540 }
541 }
542 }
543 return Changed;
544 }
545
546 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
547 /// user of a derived expression from a global that we want to SROA.
isSafeSROAElementUse(Value * V)548 static bool isSafeSROAElementUse(Value *V) {
549 // We might have a dead and dangling constant hanging off of here.
550 if (Constant *C = dyn_cast<Constant>(V))
551 return SafeToDestroyConstant(C);
552
553 Instruction *I = dyn_cast<Instruction>(V);
554 if (!I) return false;
555
556 // Loads are ok.
557 if (isa<LoadInst>(I)) return true;
558
559 // Stores *to* the pointer are ok.
560 if (StoreInst *SI = dyn_cast<StoreInst>(I))
561 return SI->getOperand(0) != V;
562
563 // Otherwise, it must be a GEP.
564 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
565 if (GEPI == 0) return false;
566
567 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
568 !cast<Constant>(GEPI->getOperand(1))->isNullValue())
569 return false;
570
571 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
572 I != E; ++I)
573 if (!isSafeSROAElementUse(*I))
574 return false;
575 return true;
576 }
577
578
579 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
580 /// Look at it and its uses and decide whether it is safe to SROA this global.
581 ///
IsUserOfGlobalSafeForSRA(User * U,GlobalValue * GV)582 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
583 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
584 if (!isa<GetElementPtrInst>(U) &&
585 (!isa<ConstantExpr>(U) ||
586 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
587 return false;
588
589 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
590 // don't like < 3 operand CE's, and we don't like non-constant integer
591 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
592 // value of C.
593 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
594 !cast<Constant>(U->getOperand(1))->isNullValue() ||
595 !isa<ConstantInt>(U->getOperand(2)))
596 return false;
597
598 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
599 ++GEPI; // Skip over the pointer index.
600
601 // If this is a use of an array allocation, do a bit more checking for sanity.
602 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
603 uint64_t NumElements = AT->getNumElements();
604 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
605
606 // Check to make sure that index falls within the array. If not,
607 // something funny is going on, so we won't do the optimization.
608 //
609 if (Idx->getZExtValue() >= NumElements)
610 return false;
611
612 // We cannot scalar repl this level of the array unless any array
613 // sub-indices are in-range constants. In particular, consider:
614 // A[0][i]. We cannot know that the user isn't doing invalid things like
615 // allowing i to index an out-of-range subscript that accesses A[1].
616 //
617 // Scalar replacing *just* the outer index of the array is probably not
618 // going to be a win anyway, so just give up.
619 for (++GEPI; // Skip array index.
620 GEPI != E;
621 ++GEPI) {
622 uint64_t NumElements;
623 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
624 NumElements = SubArrayTy->getNumElements();
625 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
626 NumElements = SubVectorTy->getNumElements();
627 else {
628 assert((*GEPI)->isStructTy() &&
629 "Indexed GEP type is not array, vector, or struct!");
630 continue;
631 }
632
633 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
634 if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
635 return false;
636 }
637 }
638
639 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
640 if (!isSafeSROAElementUse(*I))
641 return false;
642 return true;
643 }
644
645 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
646 /// is safe for us to perform this transformation.
647 ///
GlobalUsersSafeToSRA(GlobalValue * GV)648 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
649 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
650 UI != E; ++UI) {
651 if (!IsUserOfGlobalSafeForSRA(*UI, GV))
652 return false;
653 }
654 return true;
655 }
656
657
658 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
659 /// variable. This opens the door for other optimizations by exposing the
660 /// behavior of the program in a more fine-grained way. We have determined that
661 /// this transformation is safe already. We return the first global variable we
662 /// insert so that the caller can reprocess it.
SRAGlobal(GlobalVariable * GV,const DataLayout & TD)663 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &TD) {
664 // Make sure this global only has simple uses that we can SRA.
665 if (!GlobalUsersSafeToSRA(GV))
666 return 0;
667
668 assert(GV->hasLocalLinkage() && !GV->isConstant());
669 Constant *Init = GV->getInitializer();
670 Type *Ty = Init->getType();
671
672 std::vector<GlobalVariable*> NewGlobals;
673 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
674
675 // Get the alignment of the global, either explicit or target-specific.
676 unsigned StartAlignment = GV->getAlignment();
677 if (StartAlignment == 0)
678 StartAlignment = TD.getABITypeAlignment(GV->getType());
679
680 if (StructType *STy = dyn_cast<StructType>(Ty)) {
681 NewGlobals.reserve(STy->getNumElements());
682 const StructLayout &Layout = *TD.getStructLayout(STy);
683 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
684 Constant *In = Init->getAggregateElement(i);
685 assert(In && "Couldn't get element of initializer?");
686 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
687 GlobalVariable::InternalLinkage,
688 In, GV->getName()+"."+Twine(i),
689 GV->getThreadLocalMode(),
690 GV->getType()->getAddressSpace());
691 Globals.insert(GV, NGV);
692 NewGlobals.push_back(NGV);
693
694 // Calculate the known alignment of the field. If the original aggregate
695 // had 256 byte alignment for example, something might depend on that:
696 // propagate info to each field.
697 uint64_t FieldOffset = Layout.getElementOffset(i);
698 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
699 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
700 NGV->setAlignment(NewAlign);
701 }
702 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
703 unsigned NumElements = 0;
704 if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
705 NumElements = ATy->getNumElements();
706 else
707 NumElements = cast<VectorType>(STy)->getNumElements();
708
709 if (NumElements > 16 && GV->hasNUsesOrMore(16))
710 return 0; // It's not worth it.
711 NewGlobals.reserve(NumElements);
712
713 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
714 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
715 for (unsigned i = 0, e = NumElements; i != e; ++i) {
716 Constant *In = Init->getAggregateElement(i);
717 assert(In && "Couldn't get element of initializer?");
718
719 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
720 GlobalVariable::InternalLinkage,
721 In, GV->getName()+"."+Twine(i),
722 GV->getThreadLocalMode(),
723 GV->getType()->getAddressSpace());
724 Globals.insert(GV, NGV);
725 NewGlobals.push_back(NGV);
726
727 // Calculate the known alignment of the field. If the original aggregate
728 // had 256 byte alignment for example, something might depend on that:
729 // propagate info to each field.
730 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
731 if (NewAlign > EltAlign)
732 NGV->setAlignment(NewAlign);
733 }
734 }
735
736 if (NewGlobals.empty())
737 return 0;
738
739 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
740
741 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
742
743 // Loop over all of the uses of the global, replacing the constantexpr geps,
744 // with smaller constantexpr geps or direct references.
745 while (!GV->use_empty()) {
746 User *GEP = GV->use_back();
747 assert(((isa<ConstantExpr>(GEP) &&
748 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
749 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
750
751 // Ignore the 1th operand, which has to be zero or else the program is quite
752 // broken (undefined). Get the 2nd operand, which is the structure or array
753 // index.
754 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
755 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
756
757 Value *NewPtr = NewGlobals[Val];
758
759 // Form a shorter GEP if needed.
760 if (GEP->getNumOperands() > 3) {
761 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
762 SmallVector<Constant*, 8> Idxs;
763 Idxs.push_back(NullInt);
764 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
765 Idxs.push_back(CE->getOperand(i));
766 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
767 } else {
768 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
769 SmallVector<Value*, 8> Idxs;
770 Idxs.push_back(NullInt);
771 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
772 Idxs.push_back(GEPI->getOperand(i));
773 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
774 GEPI->getName()+"."+Twine(Val),GEPI);
775 }
776 }
777 GEP->replaceAllUsesWith(NewPtr);
778
779 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
780 GEPI->eraseFromParent();
781 else
782 cast<ConstantExpr>(GEP)->destroyConstant();
783 }
784
785 // Delete the old global, now that it is dead.
786 Globals.erase(GV);
787 ++NumSRA;
788
789 // Loop over the new globals array deleting any globals that are obviously
790 // dead. This can arise due to scalarization of a structure or an array that
791 // has elements that are dead.
792 unsigned FirstGlobal = 0;
793 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
794 if (NewGlobals[i]->use_empty()) {
795 Globals.erase(NewGlobals[i]);
796 if (FirstGlobal == i) ++FirstGlobal;
797 }
798
799 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
800 }
801
802 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
803 /// value will trap if the value is dynamically null. PHIs keeps track of any
804 /// phi nodes we've seen to avoid reprocessing them.
AllUsesOfValueWillTrapIfNull(const Value * V,SmallPtrSet<const PHINode *,8> & PHIs)805 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
806 SmallPtrSet<const PHINode*, 8> &PHIs) {
807 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
808 ++UI) {
809 const User *U = *UI;
810
811 if (isa<LoadInst>(U)) {
812 // Will trap.
813 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
814 if (SI->getOperand(0) == V) {
815 //cerr << "NONTRAPPING USE: " << *U;
816 return false; // Storing the value.
817 }
818 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
819 if (CI->getCalledValue() != V) {
820 //cerr << "NONTRAPPING USE: " << *U;
821 return false; // Not calling the ptr
822 }
823 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
824 if (II->getCalledValue() != V) {
825 //cerr << "NONTRAPPING USE: " << *U;
826 return false; // Not calling the ptr
827 }
828 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
829 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
830 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
831 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
832 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
833 // If we've already seen this phi node, ignore it, it has already been
834 // checked.
835 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
836 return false;
837 } else if (isa<ICmpInst>(U) &&
838 isa<ConstantPointerNull>(UI->getOperand(1))) {
839 // Ignore icmp X, null
840 } else {
841 //cerr << "NONTRAPPING USE: " << *U;
842 return false;
843 }
844 }
845 return true;
846 }
847
848 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
849 /// from GV will trap if the loaded value is null. Note that this also permits
850 /// comparisons of the loaded value against null, as a special case.
AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable * GV)851 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
852 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
853 UI != E; ++UI) {
854 const User *U = *UI;
855
856 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
857 SmallPtrSet<const PHINode*, 8> PHIs;
858 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
859 return false;
860 } else if (isa<StoreInst>(U)) {
861 // Ignore stores to the global.
862 } else {
863 // We don't know or understand this user, bail out.
864 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
865 return false;
866 }
867 }
868 return true;
869 }
870
OptimizeAwayTrappingUsesOfValue(Value * V,Constant * NewV)871 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
872 bool Changed = false;
873 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
874 Instruction *I = cast<Instruction>(*UI++);
875 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
876 LI->setOperand(0, NewV);
877 Changed = true;
878 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
879 if (SI->getOperand(1) == V) {
880 SI->setOperand(1, NewV);
881 Changed = true;
882 }
883 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
884 CallSite CS(I);
885 if (CS.getCalledValue() == V) {
886 // Calling through the pointer! Turn into a direct call, but be careful
887 // that the pointer is not also being passed as an argument.
888 CS.setCalledFunction(NewV);
889 Changed = true;
890 bool PassedAsArg = false;
891 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
892 if (CS.getArgument(i) == V) {
893 PassedAsArg = true;
894 CS.setArgument(i, NewV);
895 }
896
897 if (PassedAsArg) {
898 // Being passed as an argument also. Be careful to not invalidate UI!
899 UI = V->use_begin();
900 }
901 }
902 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
903 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
904 ConstantExpr::getCast(CI->getOpcode(),
905 NewV, CI->getType()));
906 if (CI->use_empty()) {
907 Changed = true;
908 CI->eraseFromParent();
909 }
910 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
911 // Should handle GEP here.
912 SmallVector<Constant*, 8> Idxs;
913 Idxs.reserve(GEPI->getNumOperands()-1);
914 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
915 i != e; ++i)
916 if (Constant *C = dyn_cast<Constant>(*i))
917 Idxs.push_back(C);
918 else
919 break;
920 if (Idxs.size() == GEPI->getNumOperands()-1)
921 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
922 ConstantExpr::getGetElementPtr(NewV, Idxs));
923 if (GEPI->use_empty()) {
924 Changed = true;
925 GEPI->eraseFromParent();
926 }
927 }
928 }
929
930 return Changed;
931 }
932
933
934 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
935 /// value stored into it. If there are uses of the loaded value that would trap
936 /// if the loaded value is dynamically null, then we know that they cannot be
937 /// reachable with a null optimize away the load.
OptimizeAwayTrappingUsesOfLoads(GlobalVariable * GV,Constant * LV,DataLayout * TD,TargetLibraryInfo * TLI)938 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
939 DataLayout *TD,
940 TargetLibraryInfo *TLI) {
941 bool Changed = false;
942
943 // Keep track of whether we are able to remove all the uses of the global
944 // other than the store that defines it.
945 bool AllNonStoreUsesGone = true;
946
947 // Replace all uses of loads with uses of uses of the stored value.
948 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
949 User *GlobalUser = *GUI++;
950 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
951 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
952 // If we were able to delete all uses of the loads
953 if (LI->use_empty()) {
954 LI->eraseFromParent();
955 Changed = true;
956 } else {
957 AllNonStoreUsesGone = false;
958 }
959 } else if (isa<StoreInst>(GlobalUser)) {
960 // Ignore the store that stores "LV" to the global.
961 assert(GlobalUser->getOperand(1) == GV &&
962 "Must be storing *to* the global");
963 } else {
964 AllNonStoreUsesGone = false;
965
966 // If we get here we could have other crazy uses that are transitively
967 // loaded.
968 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
969 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
970 isa<BitCastInst>(GlobalUser) ||
971 isa<GetElementPtrInst>(GlobalUser)) &&
972 "Only expect load and stores!");
973 }
974 }
975
976 if (Changed) {
977 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
978 ++NumGlobUses;
979 }
980
981 // If we nuked all of the loads, then none of the stores are needed either,
982 // nor is the global.
983 if (AllNonStoreUsesGone) {
984 if (isLeakCheckerRoot(GV)) {
985 Changed |= CleanupPointerRootUsers(GV, TLI);
986 } else {
987 Changed = true;
988 CleanupConstantGlobalUsers(GV, 0, TD, TLI);
989 }
990 if (GV->use_empty()) {
991 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
992 Changed = true;
993 GV->eraseFromParent();
994 ++NumDeleted;
995 }
996 }
997 return Changed;
998 }
999
1000 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
1001 /// instructions that are foldable.
ConstantPropUsersOf(Value * V,DataLayout * TD,TargetLibraryInfo * TLI)1002 static void ConstantPropUsersOf(Value *V,
1003 DataLayout *TD, TargetLibraryInfo *TLI) {
1004 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
1005 if (Instruction *I = dyn_cast<Instruction>(*UI++))
1006 if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) {
1007 I->replaceAllUsesWith(NewC);
1008
1009 // Advance UI to the next non-I use to avoid invalidating it!
1010 // Instructions could multiply use V.
1011 while (UI != E && *UI == I)
1012 ++UI;
1013 I->eraseFromParent();
1014 }
1015 }
1016
1017 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
1018 /// variable, and transforms the program as if it always contained the result of
1019 /// the specified malloc. Because it is always the result of the specified
1020 /// malloc, there is no reason to actually DO the malloc. Instead, turn the
1021 /// malloc into a global, and any loads of GV as uses of the new global.
OptimizeGlobalAddressOfMalloc(GlobalVariable * GV,CallInst * CI,Type * AllocTy,ConstantInt * NElements,DataLayout * TD,TargetLibraryInfo * TLI)1022 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
1023 CallInst *CI,
1024 Type *AllocTy,
1025 ConstantInt *NElements,
1026 DataLayout *TD,
1027 TargetLibraryInfo *TLI) {
1028 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
1029
1030 Type *GlobalType;
1031 if (NElements->getZExtValue() == 1)
1032 GlobalType = AllocTy;
1033 else
1034 // If we have an array allocation, the global variable is of an array.
1035 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
1036
1037 // Create the new global variable. The contents of the malloc'd memory is
1038 // undefined, so initialize with an undef value.
1039 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
1040 GlobalType, false,
1041 GlobalValue::InternalLinkage,
1042 UndefValue::get(GlobalType),
1043 GV->getName()+".body",
1044 GV,
1045 GV->getThreadLocalMode());
1046
1047 // If there are bitcast users of the malloc (which is typical, usually we have
1048 // a malloc + bitcast) then replace them with uses of the new global. Update
1049 // other users to use the global as well.
1050 BitCastInst *TheBC = 0;
1051 while (!CI->use_empty()) {
1052 Instruction *User = cast<Instruction>(CI->use_back());
1053 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1054 if (BCI->getType() == NewGV->getType()) {
1055 BCI->replaceAllUsesWith(NewGV);
1056 BCI->eraseFromParent();
1057 } else {
1058 BCI->setOperand(0, NewGV);
1059 }
1060 } else {
1061 if (TheBC == 0)
1062 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
1063 User->replaceUsesOfWith(CI, TheBC);
1064 }
1065 }
1066
1067 Constant *RepValue = NewGV;
1068 if (NewGV->getType() != GV->getType()->getElementType())
1069 RepValue = ConstantExpr::getBitCast(RepValue,
1070 GV->getType()->getElementType());
1071
1072 // If there is a comparison against null, we will insert a global bool to
1073 // keep track of whether the global was initialized yet or not.
1074 GlobalVariable *InitBool =
1075 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
1076 GlobalValue::InternalLinkage,
1077 ConstantInt::getFalse(GV->getContext()),
1078 GV->getName()+".init", GV->getThreadLocalMode());
1079 bool InitBoolUsed = false;
1080
1081 // Loop over all uses of GV, processing them in turn.
1082 while (!GV->use_empty()) {
1083 if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
1084 // The global is initialized when the store to it occurs.
1085 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
1086 SI->getOrdering(), SI->getSynchScope(), SI);
1087 SI->eraseFromParent();
1088 continue;
1089 }
1090
1091 LoadInst *LI = cast<LoadInst>(GV->use_back());
1092 while (!LI->use_empty()) {
1093 Use &LoadUse = LI->use_begin().getUse();
1094 if (!isa<ICmpInst>(LoadUse.getUser())) {
1095 LoadUse = RepValue;
1096 continue;
1097 }
1098
1099 ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
1100 // Replace the cmp X, 0 with a use of the bool value.
1101 // Sink the load to where the compare was, if atomic rules allow us to.
1102 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
1103 LI->getOrdering(), LI->getSynchScope(),
1104 LI->isUnordered() ? (Instruction*)ICI : LI);
1105 InitBoolUsed = true;
1106 switch (ICI->getPredicate()) {
1107 default: llvm_unreachable("Unknown ICmp Predicate!");
1108 case ICmpInst::ICMP_ULT:
1109 case ICmpInst::ICMP_SLT: // X < null -> always false
1110 LV = ConstantInt::getFalse(GV->getContext());
1111 break;
1112 case ICmpInst::ICMP_ULE:
1113 case ICmpInst::ICMP_SLE:
1114 case ICmpInst::ICMP_EQ:
1115 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
1116 break;
1117 case ICmpInst::ICMP_NE:
1118 case ICmpInst::ICMP_UGE:
1119 case ICmpInst::ICMP_SGE:
1120 case ICmpInst::ICMP_UGT:
1121 case ICmpInst::ICMP_SGT:
1122 break; // no change.
1123 }
1124 ICI->replaceAllUsesWith(LV);
1125 ICI->eraseFromParent();
1126 }
1127 LI->eraseFromParent();
1128 }
1129
1130 // If the initialization boolean was used, insert it, otherwise delete it.
1131 if (!InitBoolUsed) {
1132 while (!InitBool->use_empty()) // Delete initializations
1133 cast<StoreInst>(InitBool->use_back())->eraseFromParent();
1134 delete InitBool;
1135 } else
1136 GV->getParent()->getGlobalList().insert(GV, InitBool);
1137
1138 // Now the GV is dead, nuke it and the malloc..
1139 GV->eraseFromParent();
1140 CI->eraseFromParent();
1141
1142 // To further other optimizations, loop over all users of NewGV and try to
1143 // constant prop them. This will promote GEP instructions with constant
1144 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1145 ConstantPropUsersOf(NewGV, TD, TLI);
1146 if (RepValue != NewGV)
1147 ConstantPropUsersOf(RepValue, TD, TLI);
1148
1149 return NewGV;
1150 }
1151
1152 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
1153 /// to make sure that there are no complex uses of V. We permit simple things
1154 /// like dereferencing the pointer, but not storing through the address, unless
1155 /// it is to the specified global.
ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction * V,const GlobalVariable * GV,SmallPtrSet<const PHINode *,8> & PHIs)1156 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
1157 const GlobalVariable *GV,
1158 SmallPtrSet<const PHINode*, 8> &PHIs) {
1159 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
1160 UI != E; ++UI) {
1161 const Instruction *Inst = cast<Instruction>(*UI);
1162
1163 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1164 continue; // Fine, ignore.
1165 }
1166
1167 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1168 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1169 return false; // Storing the pointer itself... bad.
1170 continue; // Otherwise, storing through it, or storing into GV... fine.
1171 }
1172
1173 // Must index into the array and into the struct.
1174 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1175 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1176 return false;
1177 continue;
1178 }
1179
1180 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1181 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
1182 // cycles.
1183 if (PHIs.insert(PN))
1184 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1185 return false;
1186 continue;
1187 }
1188
1189 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1190 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1191 return false;
1192 continue;
1193 }
1194
1195 return false;
1196 }
1197 return true;
1198 }
1199
1200 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1201 /// somewhere. Transform all uses of the allocation into loads from the
1202 /// global and uses of the resultant pointer. Further, delete the store into
1203 /// GV. This assumes that these value pass the
1204 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
ReplaceUsesOfMallocWithGlobal(Instruction * Alloc,GlobalVariable * GV)1205 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1206 GlobalVariable *GV) {
1207 while (!Alloc->use_empty()) {
1208 Instruction *U = cast<Instruction>(*Alloc->use_begin());
1209 Instruction *InsertPt = U;
1210 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1211 // If this is the store of the allocation into the global, remove it.
1212 if (SI->getOperand(1) == GV) {
1213 SI->eraseFromParent();
1214 continue;
1215 }
1216 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1217 // Insert the load in the corresponding predecessor, not right before the
1218 // PHI.
1219 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1220 } else if (isa<BitCastInst>(U)) {
1221 // Must be bitcast between the malloc and store to initialize the global.
1222 ReplaceUsesOfMallocWithGlobal(U, GV);
1223 U->eraseFromParent();
1224 continue;
1225 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1226 // If this is a "GEP bitcast" and the user is a store to the global, then
1227 // just process it as a bitcast.
1228 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1229 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1230 if (SI->getOperand(1) == GV) {
1231 // Must be bitcast GEP between the malloc and store to initialize
1232 // the global.
1233 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1234 GEPI->eraseFromParent();
1235 continue;
1236 }
1237 }
1238
1239 // Insert a load from the global, and use it instead of the malloc.
1240 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1241 U->replaceUsesOfWith(Alloc, NL);
1242 }
1243 }
1244
1245 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1246 /// of a load) are simple enough to perform heap SRA on. This permits GEP's
1247 /// that index through the array and struct field, icmps of null, and PHIs.
LoadUsesSimpleEnoughForHeapSRA(const Value * V,SmallPtrSet<const PHINode *,32> & LoadUsingPHIs,SmallPtrSet<const PHINode *,32> & LoadUsingPHIsPerLoad)1248 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1249 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1250 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1251 // We permit two users of the load: setcc comparing against the null
1252 // pointer, and a getelementptr of a specific form.
1253 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1254 ++UI) {
1255 const Instruction *User = cast<Instruction>(*UI);
1256
1257 // Comparison against null is ok.
1258 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1259 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1260 return false;
1261 continue;
1262 }
1263
1264 // getelementptr is also ok, but only a simple form.
1265 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1266 // Must index into the array and into the struct.
1267 if (GEPI->getNumOperands() < 3)
1268 return false;
1269
1270 // Otherwise the GEP is ok.
1271 continue;
1272 }
1273
1274 if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1275 if (!LoadUsingPHIsPerLoad.insert(PN))
1276 // This means some phi nodes are dependent on each other.
1277 // Avoid infinite looping!
1278 return false;
1279 if (!LoadUsingPHIs.insert(PN))
1280 // If we have already analyzed this PHI, then it is safe.
1281 continue;
1282
1283 // Make sure all uses of the PHI are simple enough to transform.
1284 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1285 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1286 return false;
1287
1288 continue;
1289 }
1290
1291 // Otherwise we don't know what this is, not ok.
1292 return false;
1293 }
1294
1295 return true;
1296 }
1297
1298
1299 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1300 /// GV are simple enough to perform HeapSRA, return true.
AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable * GV,Instruction * StoredVal)1301 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1302 Instruction *StoredVal) {
1303 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1304 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1305 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1306 UI != E; ++UI)
1307 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1308 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1309 LoadUsingPHIsPerLoad))
1310 return false;
1311 LoadUsingPHIsPerLoad.clear();
1312 }
1313
1314 // If we reach here, we know that all uses of the loads and transitive uses
1315 // (through PHI nodes) are simple enough to transform. However, we don't know
1316 // that all inputs the to the PHI nodes are in the same equivalence sets.
1317 // Check to verify that all operands of the PHIs are either PHIS that can be
1318 // transformed, loads from GV, or MI itself.
1319 for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1320 , E = LoadUsingPHIs.end(); I != E; ++I) {
1321 const PHINode *PN = *I;
1322 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1323 Value *InVal = PN->getIncomingValue(op);
1324
1325 // PHI of the stored value itself is ok.
1326 if (InVal == StoredVal) continue;
1327
1328 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1329 // One of the PHIs in our set is (optimistically) ok.
1330 if (LoadUsingPHIs.count(InPN))
1331 continue;
1332 return false;
1333 }
1334
1335 // Load from GV is ok.
1336 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1337 if (LI->getOperand(0) == GV)
1338 continue;
1339
1340 // UNDEF? NULL?
1341
1342 // Anything else is rejected.
1343 return false;
1344 }
1345 }
1346
1347 return true;
1348 }
1349
GetHeapSROAValue(Value * V,unsigned FieldNo,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1350 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1351 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1352 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1353 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1354
1355 if (FieldNo >= FieldVals.size())
1356 FieldVals.resize(FieldNo+1);
1357
1358 // If we already have this value, just reuse the previously scalarized
1359 // version.
1360 if (Value *FieldVal = FieldVals[FieldNo])
1361 return FieldVal;
1362
1363 // Depending on what instruction this is, we have several cases.
1364 Value *Result;
1365 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1366 // This is a scalarized version of the load from the global. Just create
1367 // a new Load of the scalarized global.
1368 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1369 InsertedScalarizedValues,
1370 PHIsToRewrite),
1371 LI->getName()+".f"+Twine(FieldNo), LI);
1372 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1373 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1374 // field.
1375 StructType *ST =
1376 cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1377
1378 PHINode *NewPN =
1379 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1380 PN->getNumIncomingValues(),
1381 PN->getName()+".f"+Twine(FieldNo), PN);
1382 Result = NewPN;
1383 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1384 } else {
1385 llvm_unreachable("Unknown usable value");
1386 }
1387
1388 return FieldVals[FieldNo] = Result;
1389 }
1390
1391 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1392 /// the load, rewrite the derived value to use the HeapSRoA'd load.
RewriteHeapSROALoadUser(Instruction * LoadUser,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1393 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1394 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1395 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1396 // If this is a comparison against null, handle it.
1397 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1398 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1399 // If we have a setcc of the loaded pointer, we can use a setcc of any
1400 // field.
1401 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1402 InsertedScalarizedValues, PHIsToRewrite);
1403
1404 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1405 Constant::getNullValue(NPtr->getType()),
1406 SCI->getName());
1407 SCI->replaceAllUsesWith(New);
1408 SCI->eraseFromParent();
1409 return;
1410 }
1411
1412 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1413 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1414 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1415 && "Unexpected GEPI!");
1416
1417 // Load the pointer for this field.
1418 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1419 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1420 InsertedScalarizedValues, PHIsToRewrite);
1421
1422 // Create the new GEP idx vector.
1423 SmallVector<Value*, 8> GEPIdx;
1424 GEPIdx.push_back(GEPI->getOperand(1));
1425 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1426
1427 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1428 GEPI->getName(), GEPI);
1429 GEPI->replaceAllUsesWith(NGEPI);
1430 GEPI->eraseFromParent();
1431 return;
1432 }
1433
1434 // Recursively transform the users of PHI nodes. This will lazily create the
1435 // PHIs that are needed for individual elements. Keep track of what PHIs we
1436 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1437 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1438 // already been seen first by another load, so its uses have already been
1439 // processed.
1440 PHINode *PN = cast<PHINode>(LoadUser);
1441 if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1442 std::vector<Value*>())).second)
1443 return;
1444
1445 // If this is the first time we've seen this PHI, recursively process all
1446 // users.
1447 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1448 Instruction *User = cast<Instruction>(*UI++);
1449 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1450 }
1451 }
1452
1453 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1454 /// is a value loaded from the global. Eliminate all uses of Ptr, making them
1455 /// use FieldGlobals instead. All uses of loaded values satisfy
1456 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
RewriteUsesOfLoadForHeapSRoA(LoadInst * Load,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1457 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1458 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1459 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1460 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1461 UI != E; ) {
1462 Instruction *User = cast<Instruction>(*UI++);
1463 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1464 }
1465
1466 if (Load->use_empty()) {
1467 Load->eraseFromParent();
1468 InsertedScalarizedValues.erase(Load);
1469 }
1470 }
1471
1472 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
1473 /// it up into multiple allocations of arrays of the fields.
PerformHeapAllocSRoA(GlobalVariable * GV,CallInst * CI,Value * NElems,DataLayout * TD,const TargetLibraryInfo * TLI)1474 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1475 Value *NElems, DataLayout *TD,
1476 const TargetLibraryInfo *TLI) {
1477 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
1478 Type *MAT = getMallocAllocatedType(CI, TLI);
1479 StructType *STy = cast<StructType>(MAT);
1480
1481 // There is guaranteed to be at least one use of the malloc (storing
1482 // it into GV). If there are other uses, change them to be uses of
1483 // the global to simplify later code. This also deletes the store
1484 // into GV.
1485 ReplaceUsesOfMallocWithGlobal(CI, GV);
1486
1487 // Okay, at this point, there are no users of the malloc. Insert N
1488 // new mallocs at the same place as CI, and N globals.
1489 std::vector<Value*> FieldGlobals;
1490 std::vector<Value*> FieldMallocs;
1491
1492 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1493 Type *FieldTy = STy->getElementType(FieldNo);
1494 PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1495
1496 GlobalVariable *NGV =
1497 new GlobalVariable(*GV->getParent(),
1498 PFieldTy, false, GlobalValue::InternalLinkage,
1499 Constant::getNullValue(PFieldTy),
1500 GV->getName() + ".f" + Twine(FieldNo), GV,
1501 GV->getThreadLocalMode());
1502 FieldGlobals.push_back(NGV);
1503
1504 unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1505 if (StructType *ST = dyn_cast<StructType>(FieldTy))
1506 TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1507 Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1508 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1509 ConstantInt::get(IntPtrTy, TypeSize),
1510 NElems, 0,
1511 CI->getName() + ".f" + Twine(FieldNo));
1512 FieldMallocs.push_back(NMI);
1513 new StoreInst(NMI, NGV, CI);
1514 }
1515
1516 // The tricky aspect of this transformation is handling the case when malloc
1517 // fails. In the original code, malloc failing would set the result pointer
1518 // of malloc to null. In this case, some mallocs could succeed and others
1519 // could fail. As such, we emit code that looks like this:
1520 // F0 = malloc(field0)
1521 // F1 = malloc(field1)
1522 // F2 = malloc(field2)
1523 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1524 // if (F0) { free(F0); F0 = 0; }
1525 // if (F1) { free(F1); F1 = 0; }
1526 // if (F2) { free(F2); F2 = 0; }
1527 // }
1528 // The malloc can also fail if its argument is too large.
1529 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1530 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1531 ConstantZero, "isneg");
1532 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1533 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1534 Constant::getNullValue(FieldMallocs[i]->getType()),
1535 "isnull");
1536 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1537 }
1538
1539 // Split the basic block at the old malloc.
1540 BasicBlock *OrigBB = CI->getParent();
1541 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1542
1543 // Create the block to check the first condition. Put all these blocks at the
1544 // end of the function as they are unlikely to be executed.
1545 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1546 "malloc_ret_null",
1547 OrigBB->getParent());
1548
1549 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1550 // branch on RunningOr.
1551 OrigBB->getTerminator()->eraseFromParent();
1552 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1553
1554 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1555 // pointer, because some may be null while others are not.
1556 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1557 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1558 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1559 Constant::getNullValue(GVVal->getType()));
1560 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1561 OrigBB->getParent());
1562 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1563 OrigBB->getParent());
1564 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1565 Cmp, NullPtrBlock);
1566
1567 // Fill in FreeBlock.
1568 CallInst::CreateFree(GVVal, BI);
1569 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1570 FreeBlock);
1571 BranchInst::Create(NextBlock, FreeBlock);
1572
1573 NullPtrBlock = NextBlock;
1574 }
1575
1576 BranchInst::Create(ContBB, NullPtrBlock);
1577
1578 // CI is no longer needed, remove it.
1579 CI->eraseFromParent();
1580
1581 /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1582 /// update all uses of the load, keep track of what scalarized loads are
1583 /// inserted for a given load.
1584 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1585 InsertedScalarizedValues[GV] = FieldGlobals;
1586
1587 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1588
1589 // Okay, the malloc site is completely handled. All of the uses of GV are now
1590 // loads, and all uses of those loads are simple. Rewrite them to use loads
1591 // of the per-field globals instead.
1592 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1593 Instruction *User = cast<Instruction>(*UI++);
1594
1595 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1596 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1597 continue;
1598 }
1599
1600 // Must be a store of null.
1601 StoreInst *SI = cast<StoreInst>(User);
1602 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1603 "Unexpected heap-sra user!");
1604
1605 // Insert a store of null into each global.
1606 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1607 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1608 Constant *Null = Constant::getNullValue(PT->getElementType());
1609 new StoreInst(Null, FieldGlobals[i], SI);
1610 }
1611 // Erase the original store.
1612 SI->eraseFromParent();
1613 }
1614
1615 // While we have PHIs that are interesting to rewrite, do it.
1616 while (!PHIsToRewrite.empty()) {
1617 PHINode *PN = PHIsToRewrite.back().first;
1618 unsigned FieldNo = PHIsToRewrite.back().second;
1619 PHIsToRewrite.pop_back();
1620 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1621 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1622
1623 // Add all the incoming values. This can materialize more phis.
1624 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1625 Value *InVal = PN->getIncomingValue(i);
1626 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1627 PHIsToRewrite);
1628 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1629 }
1630 }
1631
1632 // Drop all inter-phi links and any loads that made it this far.
1633 for (DenseMap<Value*, std::vector<Value*> >::iterator
1634 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1635 I != E; ++I) {
1636 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1637 PN->dropAllReferences();
1638 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1639 LI->dropAllReferences();
1640 }
1641
1642 // Delete all the phis and loads now that inter-references are dead.
1643 for (DenseMap<Value*, std::vector<Value*> >::iterator
1644 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1645 I != E; ++I) {
1646 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1647 PN->eraseFromParent();
1648 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1649 LI->eraseFromParent();
1650 }
1651
1652 // The old global is now dead, remove it.
1653 GV->eraseFromParent();
1654
1655 ++NumHeapSRA;
1656 return cast<GlobalVariable>(FieldGlobals[0]);
1657 }
1658
1659 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1660 /// pointer global variable with a single value stored it that is a malloc or
1661 /// cast of malloc.
TryToOptimizeStoreOfMallocToGlobal(GlobalVariable * GV,CallInst * CI,Type * AllocTy,AtomicOrdering Ordering,Module::global_iterator & GVI,DataLayout * TD,TargetLibraryInfo * TLI)1662 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1663 CallInst *CI,
1664 Type *AllocTy,
1665 AtomicOrdering Ordering,
1666 Module::global_iterator &GVI,
1667 DataLayout *TD,
1668 TargetLibraryInfo *TLI) {
1669 if (!TD)
1670 return false;
1671
1672 // If this is a malloc of an abstract type, don't touch it.
1673 if (!AllocTy->isSized())
1674 return false;
1675
1676 // We can't optimize this global unless all uses of it are *known* to be
1677 // of the malloc value, not of the null initializer value (consider a use
1678 // that compares the global's value against zero to see if the malloc has
1679 // been reached). To do this, we check to see if all uses of the global
1680 // would trap if the global were null: this proves that they must all
1681 // happen after the malloc.
1682 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1683 return false;
1684
1685 // We can't optimize this if the malloc itself is used in a complex way,
1686 // for example, being stored into multiple globals. This allows the
1687 // malloc to be stored into the specified global, loaded icmp'd, and
1688 // GEP'd. These are all things we could transform to using the global
1689 // for.
1690 SmallPtrSet<const PHINode*, 8> PHIs;
1691 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1692 return false;
1693
1694 // If we have a global that is only initialized with a fixed size malloc,
1695 // transform the program to use global memory instead of malloc'd memory.
1696 // This eliminates dynamic allocation, avoids an indirection accessing the
1697 // data, and exposes the resultant global to further GlobalOpt.
1698 // We cannot optimize the malloc if we cannot determine malloc array size.
1699 Value *NElems = getMallocArraySize(CI, TD, TLI, true);
1700 if (!NElems)
1701 return false;
1702
1703 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1704 // Restrict this transformation to only working on small allocations
1705 // (2048 bytes currently), as we don't want to introduce a 16M global or
1706 // something.
1707 if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1708 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI);
1709 return true;
1710 }
1711
1712 // If the allocation is an array of structures, consider transforming this
1713 // into multiple malloc'd arrays, one for each field. This is basically
1714 // SRoA for malloc'd memory.
1715
1716 if (Ordering != NotAtomic)
1717 return false;
1718
1719 // If this is an allocation of a fixed size array of structs, analyze as a
1720 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1721 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1722 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1723 AllocTy = AT->getElementType();
1724
1725 StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1726 if (!AllocSTy)
1727 return false;
1728
1729 // This the structure has an unreasonable number of fields, leave it
1730 // alone.
1731 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1732 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1733
1734 // If this is a fixed size array, transform the Malloc to be an alloc of
1735 // structs. malloc [100 x struct],1 -> malloc struct, 100
1736 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1737 Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1738 unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1739 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1740 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1741 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1742 AllocSize, NumElements,
1743 0, CI->getName());
1744 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1745 CI->replaceAllUsesWith(Cast);
1746 CI->eraseFromParent();
1747 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1748 CI = cast<CallInst>(BCI->getOperand(0));
1749 else
1750 CI = cast<CallInst>(Malloc);
1751 }
1752
1753 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, TLI, true),
1754 TD, TLI);
1755 return true;
1756 }
1757
1758 return false;
1759 }
1760
1761 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1762 // that only one value (besides its initializer) is ever stored to the global.
OptimizeOnceStoredGlobal(GlobalVariable * GV,Value * StoredOnceVal,AtomicOrdering Ordering,Module::global_iterator & GVI,DataLayout * TD,TargetLibraryInfo * TLI)1763 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1764 AtomicOrdering Ordering,
1765 Module::global_iterator &GVI,
1766 DataLayout *TD, TargetLibraryInfo *TLI) {
1767 // Ignore no-op GEPs and bitcasts.
1768 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1769
1770 // If we are dealing with a pointer global that is initialized to null and
1771 // only has one (non-null) value stored into it, then we can optimize any
1772 // users of the loaded value (often calls and loads) that would trap if the
1773 // value was null.
1774 if (GV->getInitializer()->getType()->isPointerTy() &&
1775 GV->getInitializer()->isNullValue()) {
1776 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1777 if (GV->getInitializer()->getType() != SOVC->getType())
1778 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1779
1780 // Optimize away any trapping uses of the loaded value.
1781 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI))
1782 return true;
1783 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1784 Type *MallocType = getMallocAllocatedType(CI, TLI);
1785 if (MallocType &&
1786 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1787 TD, TLI))
1788 return true;
1789 }
1790 }
1791
1792 return false;
1793 }
1794
1795 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1796 /// two values ever stored into GV are its initializer and OtherVal. See if we
1797 /// can shrink the global into a boolean and select between the two values
1798 /// whenever it is used. This exposes the values to other scalar optimizations.
TryToShrinkGlobalToBoolean(GlobalVariable * GV,Constant * OtherVal)1799 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1800 Type *GVElType = GV->getType()->getElementType();
1801
1802 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1803 // an FP value, pointer or vector, don't do this optimization because a select
1804 // between them is very expensive and unlikely to lead to later
1805 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1806 // where v1 and v2 both require constant pool loads, a big loss.
1807 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1808 GVElType->isFloatingPointTy() ||
1809 GVElType->isPointerTy() || GVElType->isVectorTy())
1810 return false;
1811
1812 // Walk the use list of the global seeing if all the uses are load or store.
1813 // If there is anything else, bail out.
1814 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1815 User *U = *I;
1816 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1817 return false;
1818 }
1819
1820 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV);
1821
1822 // Create the new global, initializing it to false.
1823 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1824 false,
1825 GlobalValue::InternalLinkage,
1826 ConstantInt::getFalse(GV->getContext()),
1827 GV->getName()+".b",
1828 GV->getThreadLocalMode(),
1829 GV->getType()->getAddressSpace());
1830 GV->getParent()->getGlobalList().insert(GV, NewGV);
1831
1832 Constant *InitVal = GV->getInitializer();
1833 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1834 "No reason to shrink to bool!");
1835
1836 // If initialized to zero and storing one into the global, we can use a cast
1837 // instead of a select to synthesize the desired value.
1838 bool IsOneZero = false;
1839 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1840 IsOneZero = InitVal->isNullValue() && CI->isOne();
1841
1842 while (!GV->use_empty()) {
1843 Instruction *UI = cast<Instruction>(GV->use_back());
1844 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1845 // Change the store into a boolean store.
1846 bool StoringOther = SI->getOperand(0) == OtherVal;
1847 // Only do this if we weren't storing a loaded value.
1848 Value *StoreVal;
1849 if (StoringOther || SI->getOperand(0) == InitVal) {
1850 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1851 StoringOther);
1852 } else {
1853 // Otherwise, we are storing a previously loaded copy. To do this,
1854 // change the copy from copying the original value to just copying the
1855 // bool.
1856 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1857
1858 // If we've already replaced the input, StoredVal will be a cast or
1859 // select instruction. If not, it will be a load of the original
1860 // global.
1861 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1862 assert(LI->getOperand(0) == GV && "Not a copy!");
1863 // Insert a new load, to preserve the saved value.
1864 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1865 LI->getOrdering(), LI->getSynchScope(), LI);
1866 } else {
1867 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1868 "This is not a form that we understand!");
1869 StoreVal = StoredVal->getOperand(0);
1870 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1871 }
1872 }
1873 new StoreInst(StoreVal, NewGV, false, 0,
1874 SI->getOrdering(), SI->getSynchScope(), SI);
1875 } else {
1876 // Change the load into a load of bool then a select.
1877 LoadInst *LI = cast<LoadInst>(UI);
1878 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1879 LI->getOrdering(), LI->getSynchScope(), LI);
1880 Value *NSI;
1881 if (IsOneZero)
1882 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1883 else
1884 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1885 NSI->takeName(LI);
1886 LI->replaceAllUsesWith(NSI);
1887 }
1888 UI->eraseFromParent();
1889 }
1890
1891 // Retain the name of the old global variable. People who are debugging their
1892 // programs may expect these variables to be named the same.
1893 NewGV->takeName(GV);
1894 GV->eraseFromParent();
1895 return true;
1896 }
1897
1898
1899 /// ProcessGlobal - Analyze the specified global variable and optimize it if
1900 /// possible. If we make a change, return true.
ProcessGlobal(GlobalVariable * GV,Module::global_iterator & GVI)1901 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1902 Module::global_iterator &GVI) {
1903 if (!GV->isDiscardableIfUnused())
1904 return false;
1905
1906 // Do more involved optimizations if the global is internal.
1907 GV->removeDeadConstantUsers();
1908
1909 if (GV->use_empty()) {
1910 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1911 GV->eraseFromParent();
1912 ++NumDeleted;
1913 return true;
1914 }
1915
1916 if (!GV->hasLocalLinkage())
1917 return false;
1918
1919 SmallPtrSet<const PHINode*, 16> PHIUsers;
1920 GlobalStatus GS;
1921
1922 if (AnalyzeGlobal(GV, GS, PHIUsers))
1923 return false;
1924
1925 if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1926 GV->setUnnamedAddr(true);
1927 NumUnnamed++;
1928 }
1929
1930 if (GV->isConstant() || !GV->hasInitializer())
1931 return false;
1932
1933 return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
1934 }
1935
1936 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
1937 /// it if possible. If we make a change, return true.
ProcessInternalGlobal(GlobalVariable * GV,Module::global_iterator & GVI,const SmallPtrSet<const PHINode *,16> & PHIUsers,const GlobalStatus & GS)1938 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1939 Module::global_iterator &GVI,
1940 const SmallPtrSet<const PHINode*, 16> &PHIUsers,
1941 const GlobalStatus &GS) {
1942 // If this is a first class global and has only one accessing function
1943 // and this function is main (which we know is not recursive we can make
1944 // this global a local variable) we replace the global with a local alloca
1945 // in this function.
1946 //
1947 // NOTE: It doesn't make sense to promote non single-value types since we
1948 // are just replacing static memory to stack memory.
1949 //
1950 // If the global is in different address space, don't bring it to stack.
1951 if (!GS.HasMultipleAccessingFunctions &&
1952 GS.AccessingFunction && !GS.HasNonInstructionUser &&
1953 GV->getType()->getElementType()->isSingleValueType() &&
1954 GS.AccessingFunction->getName() == "main" &&
1955 GS.AccessingFunction->hasExternalLinkage() &&
1956 GV->getType()->getAddressSpace() == 0) {
1957 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1958 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1959 ->getEntryBlock().begin());
1960 Type *ElemTy = GV->getType()->getElementType();
1961 // FIXME: Pass Global's alignment when globals have alignment
1962 AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1963 if (!isa<UndefValue>(GV->getInitializer()))
1964 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1965
1966 GV->replaceAllUsesWith(Alloca);
1967 GV->eraseFromParent();
1968 ++NumLocalized;
1969 return true;
1970 }
1971
1972 // If the global is never loaded (but may be stored to), it is dead.
1973 // Delete it now.
1974 if (!GS.isLoaded) {
1975 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1976
1977 bool Changed;
1978 if (isLeakCheckerRoot(GV)) {
1979 // Delete any constant stores to the global.
1980 Changed = CleanupPointerRootUsers(GV, TLI);
1981 } else {
1982 // Delete any stores we can find to the global. We may not be able to
1983 // make it completely dead though.
1984 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
1985 }
1986
1987 // If the global is dead now, delete it.
1988 if (GV->use_empty()) {
1989 GV->eraseFromParent();
1990 ++NumDeleted;
1991 Changed = true;
1992 }
1993 return Changed;
1994
1995 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1996 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1997 GV->setConstant(true);
1998
1999 // Clean up any obviously simplifiable users now.
2000 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
2001
2002 // If the global is dead now, just nuke it.
2003 if (GV->use_empty()) {
2004 DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
2005 << "all users and delete global!\n");
2006 GV->eraseFromParent();
2007 ++NumDeleted;
2008 }
2009
2010 ++NumMarked;
2011 return true;
2012 } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
2013 if (DataLayout *TD = getAnalysisIfAvailable<DataLayout>())
2014 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
2015 GVI = FirstNewGV; // Don't skip the newly produced globals!
2016 return true;
2017 }
2018 } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
2019 // If the initial value for the global was an undef value, and if only
2020 // one other value was stored into it, we can just change the
2021 // initializer to be the stored value, then delete all stores to the
2022 // global. This allows us to mark it constant.
2023 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2024 if (isa<UndefValue>(GV->getInitializer())) {
2025 // Change the initial value here.
2026 GV->setInitializer(SOVConstant);
2027
2028 // Clean up any obviously simplifiable users now.
2029 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
2030
2031 if (GV->use_empty()) {
2032 DEBUG(dbgs() << " *** Substituting initializer allowed us to "
2033 << "simplify all users and delete global!\n");
2034 GV->eraseFromParent();
2035 ++NumDeleted;
2036 } else {
2037 GVI = GV;
2038 }
2039 ++NumSubstitute;
2040 return true;
2041 }
2042
2043 // Try to optimize globals based on the knowledge that only one value
2044 // (besides its initializer) is ever stored to the global.
2045 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
2046 TD, TLI))
2047 return true;
2048
2049 // Otherwise, if the global was not a boolean, we can shrink it to be a
2050 // boolean.
2051 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2052 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2053 ++NumShrunkToBool;
2054 return true;
2055 }
2056 }
2057
2058 return false;
2059 }
2060
2061 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
2062 /// function, changing them to FastCC.
ChangeCalleesToFastCall(Function * F)2063 static void ChangeCalleesToFastCall(Function *F) {
2064 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2065 if (isa<BlockAddress>(*UI))
2066 continue;
2067 CallSite User(cast<Instruction>(*UI));
2068 User.setCallingConv(CallingConv::Fast);
2069 }
2070 }
2071
StripNest(LLVMContext & C,const AttributeSet & Attrs)2072 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
2073 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
2074 unsigned Index = Attrs.getSlotIndex(i);
2075 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
2076 continue;
2077
2078 // There can be only one.
2079 return Attrs.removeAttribute(C, Index, Attribute::Nest);
2080 }
2081
2082 return Attrs;
2083 }
2084
RemoveNestAttribute(Function * F)2085 static void RemoveNestAttribute(Function *F) {
2086 F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2087 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2088 if (isa<BlockAddress>(*UI))
2089 continue;
2090 CallSite User(cast<Instruction>(*UI));
2091 User.setAttributes(StripNest(F->getContext(), User.getAttributes()));
2092 }
2093 }
2094
OptimizeFunctions(Module & M)2095 bool GlobalOpt::OptimizeFunctions(Module &M) {
2096 bool Changed = false;
2097 // Optimize functions.
2098 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2099 Function *F = FI++;
2100 // Functions without names cannot be referenced outside this module.
2101 if (!F->hasName() && !F->isDeclaration())
2102 F->setLinkage(GlobalValue::InternalLinkage);
2103 F->removeDeadConstantUsers();
2104 if (F->isDefTriviallyDead()) {
2105 F->eraseFromParent();
2106 Changed = true;
2107 ++NumFnDeleted;
2108 } else if (F->hasLocalLinkage()) {
2109 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
2110 !F->hasAddressTaken()) {
2111 // If this function has C calling conventions, is not a varargs
2112 // function, and is only called directly, promote it to use the Fast
2113 // calling convention.
2114 F->setCallingConv(CallingConv::Fast);
2115 ChangeCalleesToFastCall(F);
2116 ++NumFastCallFns;
2117 Changed = true;
2118 }
2119
2120 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2121 !F->hasAddressTaken()) {
2122 // The function is not used by a trampoline intrinsic, so it is safe
2123 // to remove the 'nest' attribute.
2124 RemoveNestAttribute(F);
2125 ++NumNestRemoved;
2126 Changed = true;
2127 }
2128 }
2129 }
2130 return Changed;
2131 }
2132
OptimizeGlobalVars(Module & M)2133 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
2134 bool Changed = false;
2135 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2136 GVI != E; ) {
2137 GlobalVariable *GV = GVI++;
2138 // Global variables without names cannot be referenced outside this module.
2139 if (!GV->hasName() && !GV->isDeclaration())
2140 GV->setLinkage(GlobalValue::InternalLinkage);
2141 // Simplify the initializer.
2142 if (GV->hasInitializer())
2143 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
2144 Constant *New = ConstantFoldConstantExpression(CE, TD, TLI);
2145 if (New && New != CE)
2146 GV->setInitializer(New);
2147 }
2148
2149 Changed |= ProcessGlobal(GV, GVI);
2150 }
2151 return Changed;
2152 }
2153
2154 /// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
2155 /// initializers have an init priority of 65535.
FindGlobalCtors(Module & M)2156 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
2157 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
2158 if (GV == 0) return 0;
2159
2160 // Verify that the initializer is simple enough for us to handle. We are
2161 // only allowed to optimize the initializer if it is unique.
2162 if (!GV->hasUniqueInitializer()) return 0;
2163
2164 if (isa<ConstantAggregateZero>(GV->getInitializer()))
2165 return GV;
2166 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2167
2168 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2169 if (isa<ConstantAggregateZero>(*i))
2170 continue;
2171 ConstantStruct *CS = cast<ConstantStruct>(*i);
2172 if (isa<ConstantPointerNull>(CS->getOperand(1)))
2173 continue;
2174
2175 // Must have a function or null ptr.
2176 if (!isa<Function>(CS->getOperand(1)))
2177 return 0;
2178
2179 // Init priority must be standard.
2180 ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
2181 if (CI->getZExtValue() != 65535)
2182 return 0;
2183 }
2184
2185 return GV;
2186 }
2187
2188 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
2189 /// return a list of the functions and null terminator as a vector.
ParseGlobalCtors(GlobalVariable * GV)2190 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
2191 if (GV->getInitializer()->isNullValue())
2192 return std::vector<Function*>();
2193 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2194 std::vector<Function*> Result;
2195 Result.reserve(CA->getNumOperands());
2196 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2197 ConstantStruct *CS = cast<ConstantStruct>(*i);
2198 Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
2199 }
2200 return Result;
2201 }
2202
2203 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
2204 /// specified array, returning the new global to use.
InstallGlobalCtors(GlobalVariable * GCL,const std::vector<Function * > & Ctors)2205 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
2206 const std::vector<Function*> &Ctors) {
2207 // If we made a change, reassemble the initializer list.
2208 Constant *CSVals[2];
2209 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2210 CSVals[1] = 0;
2211
2212 StructType *StructTy =
2213 cast <StructType>(
2214 cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
2215
2216 // Create the new init list.
2217 std::vector<Constant*> CAList;
2218 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2219 if (Ctors[i]) {
2220 CSVals[1] = Ctors[i];
2221 } else {
2222 Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2223 false);
2224 PointerType *PFTy = PointerType::getUnqual(FTy);
2225 CSVals[1] = Constant::getNullValue(PFTy);
2226 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2227 0x7fffffff);
2228 }
2229 CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2230 }
2231
2232 // Create the array initializer.
2233 Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2234 CAList.size()), CAList);
2235
2236 // If we didn't change the number of elements, don't create a new GV.
2237 if (CA->getType() == GCL->getInitializer()->getType()) {
2238 GCL->setInitializer(CA);
2239 return GCL;
2240 }
2241
2242 // Create the new global and insert it next to the existing list.
2243 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2244 GCL->getLinkage(), CA, "",
2245 GCL->getThreadLocalMode());
2246 GCL->getParent()->getGlobalList().insert(GCL, NGV);
2247 NGV->takeName(GCL);
2248
2249 // Nuke the old list, replacing any uses with the new one.
2250 if (!GCL->use_empty()) {
2251 Constant *V = NGV;
2252 if (V->getType() != GCL->getType())
2253 V = ConstantExpr::getBitCast(V, GCL->getType());
2254 GCL->replaceAllUsesWith(V);
2255 }
2256 GCL->eraseFromParent();
2257
2258 if (Ctors.size())
2259 return NGV;
2260 else
2261 return 0;
2262 }
2263
2264
2265 static inline bool
2266 isSimpleEnoughValueToCommit(Constant *C,
2267 SmallPtrSet<Constant*, 8> &SimpleConstants,
2268 const DataLayout *TD);
2269
2270
2271 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2272 /// handled by the code generator. We don't want to generate something like:
2273 /// void *X = &X/42;
2274 /// because the code generator doesn't have a relocation that can handle that.
2275 ///
2276 /// This function should be called if C was not found (but just got inserted)
2277 /// in SimpleConstants to avoid having to rescan the same constants all the
2278 /// time.
isSimpleEnoughValueToCommitHelper(Constant * C,SmallPtrSet<Constant *,8> & SimpleConstants,const DataLayout * TD)2279 static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2280 SmallPtrSet<Constant*, 8> &SimpleConstants,
2281 const DataLayout *TD) {
2282 // Simple integer, undef, constant aggregate zero, global addresses, etc are
2283 // all supported.
2284 if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2285 isa<GlobalValue>(C))
2286 return true;
2287
2288 // Aggregate values are safe if all their elements are.
2289 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2290 isa<ConstantVector>(C)) {
2291 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2292 Constant *Op = cast<Constant>(C->getOperand(i));
2293 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD))
2294 return false;
2295 }
2296 return true;
2297 }
2298
2299 // We don't know exactly what relocations are allowed in constant expressions,
2300 // so we allow &global+constantoffset, which is safe and uniformly supported
2301 // across targets.
2302 ConstantExpr *CE = cast<ConstantExpr>(C);
2303 switch (CE->getOpcode()) {
2304 case Instruction::BitCast:
2305 // Bitcast is fine if the casted value is fine.
2306 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2307
2308 case Instruction::IntToPtr:
2309 case Instruction::PtrToInt:
2310 // int <=> ptr is fine if the int type is the same size as the
2311 // pointer type.
2312 if (!TD || TD->getTypeSizeInBits(CE->getType()) !=
2313 TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
2314 return false;
2315 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2316
2317 // GEP is fine if it is simple + constant offset.
2318 case Instruction::GetElementPtr:
2319 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2320 if (!isa<ConstantInt>(CE->getOperand(i)))
2321 return false;
2322 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2323
2324 case Instruction::Add:
2325 // We allow simple+cst.
2326 if (!isa<ConstantInt>(CE->getOperand(1)))
2327 return false;
2328 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2329 }
2330 return false;
2331 }
2332
2333 static inline bool
isSimpleEnoughValueToCommit(Constant * C,SmallPtrSet<Constant *,8> & SimpleConstants,const DataLayout * TD)2334 isSimpleEnoughValueToCommit(Constant *C,
2335 SmallPtrSet<Constant*, 8> &SimpleConstants,
2336 const DataLayout *TD) {
2337 // If we already checked this constant, we win.
2338 if (!SimpleConstants.insert(C)) return true;
2339 // Check the constant.
2340 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD);
2341 }
2342
2343
2344 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2345 /// enough for us to understand. In particular, if it is a cast to anything
2346 /// other than from one pointer type to another pointer type, we punt.
2347 /// We basically just support direct accesses to globals and GEP's of
2348 /// globals. This should be kept up to date with CommitValueTo.
isSimpleEnoughPointerToCommit(Constant * C)2349 static bool isSimpleEnoughPointerToCommit(Constant *C) {
2350 // Conservatively, avoid aggregate types. This is because we don't
2351 // want to worry about them partially overlapping other stores.
2352 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2353 return false;
2354
2355 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2356 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2357 // external globals.
2358 return GV->hasUniqueInitializer();
2359
2360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2361 // Handle a constantexpr gep.
2362 if (CE->getOpcode() == Instruction::GetElementPtr &&
2363 isa<GlobalVariable>(CE->getOperand(0)) &&
2364 cast<GEPOperator>(CE)->isInBounds()) {
2365 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2366 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2367 // external globals.
2368 if (!GV->hasUniqueInitializer())
2369 return false;
2370
2371 // The first index must be zero.
2372 ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2373 if (!CI || !CI->isZero()) return false;
2374
2375 // The remaining indices must be compile-time known integers within the
2376 // notional bounds of the corresponding static array types.
2377 if (!CE->isGEPWithNoNotionalOverIndexing())
2378 return false;
2379
2380 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2381
2382 // A constantexpr bitcast from a pointer to another pointer is a no-op,
2383 // and we know how to evaluate it by moving the bitcast from the pointer
2384 // operand to the value operand.
2385 } else if (CE->getOpcode() == Instruction::BitCast &&
2386 isa<GlobalVariable>(CE->getOperand(0))) {
2387 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2388 // external globals.
2389 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2390 }
2391 }
2392
2393 return false;
2394 }
2395
2396 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2397 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
2398 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
EvaluateStoreInto(Constant * Init,Constant * Val,ConstantExpr * Addr,unsigned OpNo)2399 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2400 ConstantExpr *Addr, unsigned OpNo) {
2401 // Base case of the recursion.
2402 if (OpNo == Addr->getNumOperands()) {
2403 assert(Val->getType() == Init->getType() && "Type mismatch!");
2404 return Val;
2405 }
2406
2407 SmallVector<Constant*, 32> Elts;
2408 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2409 // Break up the constant into its elements.
2410 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2411 Elts.push_back(Init->getAggregateElement(i));
2412
2413 // Replace the element that we are supposed to.
2414 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2415 unsigned Idx = CU->getZExtValue();
2416 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2417 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2418
2419 // Return the modified struct.
2420 return ConstantStruct::get(STy, Elts);
2421 }
2422
2423 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2424 SequentialType *InitTy = cast<SequentialType>(Init->getType());
2425
2426 uint64_t NumElts;
2427 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2428 NumElts = ATy->getNumElements();
2429 else
2430 NumElts = InitTy->getVectorNumElements();
2431
2432 // Break up the array into elements.
2433 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2434 Elts.push_back(Init->getAggregateElement(i));
2435
2436 assert(CI->getZExtValue() < NumElts);
2437 Elts[CI->getZExtValue()] =
2438 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2439
2440 if (Init->getType()->isArrayTy())
2441 return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2442 return ConstantVector::get(Elts);
2443 }
2444
2445 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
2446 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
CommitValueTo(Constant * Val,Constant * Addr)2447 static void CommitValueTo(Constant *Val, Constant *Addr) {
2448 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2449 assert(GV->hasInitializer());
2450 GV->setInitializer(Val);
2451 return;
2452 }
2453
2454 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2455 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2456 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2457 }
2458
2459 namespace {
2460
2461 /// Evaluator - This class evaluates LLVM IR, producing the Constant
2462 /// representing each SSA instruction. Changes to global variables are stored
2463 /// in a mapping that can be iterated over after the evaluation is complete.
2464 /// Once an evaluation call fails, the evaluation object should not be reused.
2465 class Evaluator {
2466 public:
Evaluator(const DataLayout * TD,const TargetLibraryInfo * TLI)2467 Evaluator(const DataLayout *TD, const TargetLibraryInfo *TLI)
2468 : TD(TD), TLI(TLI) {
2469 ValueStack.push_back(new DenseMap<Value*, Constant*>);
2470 }
2471
~Evaluator()2472 ~Evaluator() {
2473 DeleteContainerPointers(ValueStack);
2474 while (!AllocaTmps.empty()) {
2475 GlobalVariable *Tmp = AllocaTmps.back();
2476 AllocaTmps.pop_back();
2477
2478 // If there are still users of the alloca, the program is doing something
2479 // silly, e.g. storing the address of the alloca somewhere and using it
2480 // later. Since this is undefined, we'll just make it be null.
2481 if (!Tmp->use_empty())
2482 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2483 delete Tmp;
2484 }
2485 }
2486
2487 /// EvaluateFunction - Evaluate a call to function F, returning true if
2488 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2489 /// arguments for the function.
2490 bool EvaluateFunction(Function *F, Constant *&RetVal,
2491 const SmallVectorImpl<Constant*> &ActualArgs);
2492
2493 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2494 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2495 /// control flows into, or null upon return.
2496 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2497
getVal(Value * V)2498 Constant *getVal(Value *V) {
2499 if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2500 Constant *R = ValueStack.back()->lookup(V);
2501 assert(R && "Reference to an uncomputed value!");
2502 return R;
2503 }
2504
setVal(Value * V,Constant * C)2505 void setVal(Value *V, Constant *C) {
2506 ValueStack.back()->operator[](V) = C;
2507 }
2508
getMutatedMemory() const2509 const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2510 return MutatedMemory;
2511 }
2512
getInvariants() const2513 const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
2514 return Invariants;
2515 }
2516
2517 private:
2518 Constant *ComputeLoadResult(Constant *P);
2519
2520 /// ValueStack - As we compute SSA register values, we store their contents
2521 /// here. The back of the vector contains the current function and the stack
2522 /// contains the values in the calling frames.
2523 SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack;
2524
2525 /// CallStack - This is used to detect recursion. In pathological situations
2526 /// we could hit exponential behavior, but at least there is nothing
2527 /// unbounded.
2528 SmallVector<Function*, 4> CallStack;
2529
2530 /// MutatedMemory - For each store we execute, we update this map. Loads
2531 /// check this to get the most up-to-date value. If evaluation is successful,
2532 /// this state is committed to the process.
2533 DenseMap<Constant*, Constant*> MutatedMemory;
2534
2535 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2536 /// to represent its body. This vector is needed so we can delete the
2537 /// temporary globals when we are done.
2538 SmallVector<GlobalVariable*, 32> AllocaTmps;
2539
2540 /// Invariants - These global variables have been marked invariant by the
2541 /// static constructor.
2542 SmallPtrSet<GlobalVariable*, 8> Invariants;
2543
2544 /// SimpleConstants - These are constants we have checked and know to be
2545 /// simple enough to live in a static initializer of a global.
2546 SmallPtrSet<Constant*, 8> SimpleConstants;
2547
2548 const DataLayout *TD;
2549 const TargetLibraryInfo *TLI;
2550 };
2551
2552 } // anonymous namespace
2553
2554 /// ComputeLoadResult - Return the value that would be computed by a load from
2555 /// P after the stores reflected by 'memory' have been performed. If we can't
2556 /// decide, return null.
ComputeLoadResult(Constant * P)2557 Constant *Evaluator::ComputeLoadResult(Constant *P) {
2558 // If this memory location has been recently stored, use the stored value: it
2559 // is the most up-to-date.
2560 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2561 if (I != MutatedMemory.end()) return I->second;
2562
2563 // Access it.
2564 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2565 if (GV->hasDefinitiveInitializer())
2566 return GV->getInitializer();
2567 return 0;
2568 }
2569
2570 // Handle a constantexpr getelementptr.
2571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2572 if (CE->getOpcode() == Instruction::GetElementPtr &&
2573 isa<GlobalVariable>(CE->getOperand(0))) {
2574 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2575 if (GV->hasDefinitiveInitializer())
2576 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2577 }
2578
2579 return 0; // don't know how to evaluate.
2580 }
2581
2582 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2583 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2584 /// control flows into, or null upon return.
EvaluateBlock(BasicBlock::iterator CurInst,BasicBlock * & NextBB)2585 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2586 BasicBlock *&NextBB) {
2587 // This is the main evaluation loop.
2588 while (1) {
2589 Constant *InstResult = 0;
2590
2591 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
2592
2593 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2594 if (!SI->isSimple()) {
2595 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2596 return false; // no volatile/atomic accesses.
2597 }
2598 Constant *Ptr = getVal(SI->getOperand(1));
2599 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2600 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
2601 Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2602 DEBUG(dbgs() << "; To: " << *Ptr << "\n");
2603 }
2604 if (!isSimpleEnoughPointerToCommit(Ptr)) {
2605 // If this is too complex for us to commit, reject it.
2606 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
2607 return false;
2608 }
2609
2610 Constant *Val = getVal(SI->getOperand(0));
2611
2612 // If this might be too difficult for the backend to handle (e.g. the addr
2613 // of one global variable divided by another) then we can't commit it.
2614 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) {
2615 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2616 << "\n");
2617 return false;
2618 }
2619
2620 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2621 if (CE->getOpcode() == Instruction::BitCast) {
2622 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
2623 // If we're evaluating a store through a bitcast, then we need
2624 // to pull the bitcast off the pointer type and push it onto the
2625 // stored value.
2626 Ptr = CE->getOperand(0);
2627
2628 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2629
2630 // In order to push the bitcast onto the stored value, a bitcast
2631 // from NewTy to Val's type must be legal. If it's not, we can try
2632 // introspecting NewTy to find a legal conversion.
2633 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2634 // If NewTy is a struct, we can convert the pointer to the struct
2635 // into a pointer to its first member.
2636 // FIXME: This could be extended to support arrays as well.
2637 if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2638 NewTy = STy->getTypeAtIndex(0U);
2639
2640 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2641 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2642 Constant * const IdxList[] = {IdxZero, IdxZero};
2643
2644 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2645 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2646 Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2647
2648 // If we can't improve the situation by introspecting NewTy,
2649 // we have to give up.
2650 } else {
2651 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2652 "evaluate.\n");
2653 return false;
2654 }
2655 }
2656
2657 // If we found compatible types, go ahead and push the bitcast
2658 // onto the stored value.
2659 Val = ConstantExpr::getBitCast(Val, NewTy);
2660
2661 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
2662 }
2663 }
2664
2665 MutatedMemory[Ptr] = Val;
2666 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2667 InstResult = ConstantExpr::get(BO->getOpcode(),
2668 getVal(BO->getOperand(0)),
2669 getVal(BO->getOperand(1)));
2670 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2671 << "\n");
2672 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2673 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2674 getVal(CI->getOperand(0)),
2675 getVal(CI->getOperand(1)));
2676 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2677 << "\n");
2678 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2679 InstResult = ConstantExpr::getCast(CI->getOpcode(),
2680 getVal(CI->getOperand(0)),
2681 CI->getType());
2682 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2683 << "\n");
2684 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2685 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2686 getVal(SI->getOperand(1)),
2687 getVal(SI->getOperand(2)));
2688 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2689 << "\n");
2690 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2691 Constant *P = getVal(GEP->getOperand(0));
2692 SmallVector<Constant*, 8> GEPOps;
2693 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2694 i != e; ++i)
2695 GEPOps.push_back(getVal(*i));
2696 InstResult =
2697 ConstantExpr::getGetElementPtr(P, GEPOps,
2698 cast<GEPOperator>(GEP)->isInBounds());
2699 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2700 << "\n");
2701 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2702
2703 if (!LI->isSimple()) {
2704 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2705 return false; // no volatile/atomic accesses.
2706 }
2707
2708 Constant *Ptr = getVal(LI->getOperand(0));
2709 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2710 Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2711 DEBUG(dbgs() << "Found a constant pointer expression, constant "
2712 "folding: " << *Ptr << "\n");
2713 }
2714 InstResult = ComputeLoadResult(Ptr);
2715 if (InstResult == 0) {
2716 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2717 "\n");
2718 return false; // Could not evaluate load.
2719 }
2720
2721 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
2722 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2723 if (AI->isArrayAllocation()) {
2724 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2725 return false; // Cannot handle array allocs.
2726 }
2727 Type *Ty = AI->getType()->getElementType();
2728 AllocaTmps.push_back(new GlobalVariable(Ty, false,
2729 GlobalValue::InternalLinkage,
2730 UndefValue::get(Ty),
2731 AI->getName()));
2732 InstResult = AllocaTmps.back();
2733 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
2734 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2735 CallSite CS(CurInst);
2736
2737 // Debug info can safely be ignored here.
2738 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2739 DEBUG(dbgs() << "Ignoring debug info.\n");
2740 ++CurInst;
2741 continue;
2742 }
2743
2744 // Cannot handle inline asm.
2745 if (isa<InlineAsm>(CS.getCalledValue())) {
2746 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2747 return false;
2748 }
2749
2750 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2751 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2752 if (MSI->isVolatile()) {
2753 DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2754 "intrinsic.\n");
2755 return false;
2756 }
2757 Constant *Ptr = getVal(MSI->getDest());
2758 Constant *Val = getVal(MSI->getValue());
2759 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2760 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2761 // This memset is a no-op.
2762 DEBUG(dbgs() << "Ignoring no-op memset.\n");
2763 ++CurInst;
2764 continue;
2765 }
2766 }
2767
2768 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2769 II->getIntrinsicID() == Intrinsic::lifetime_end) {
2770 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
2771 ++CurInst;
2772 continue;
2773 }
2774
2775 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2776 // We don't insert an entry into Values, as it doesn't have a
2777 // meaningful return value.
2778 if (!II->use_empty()) {
2779 DEBUG(dbgs() << "Found unused invariant_start. Cant evaluate.\n");
2780 return false;
2781 }
2782 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2783 Value *PtrArg = getVal(II->getArgOperand(1));
2784 Value *Ptr = PtrArg->stripPointerCasts();
2785 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2786 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2787 if (!Size->isAllOnesValue() &&
2788 Size->getValue().getLimitedValue() >=
2789 TD->getTypeStoreSize(ElemTy)) {
2790 Invariants.insert(GV);
2791 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2792 << "\n");
2793 } else {
2794 DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2795 "invariant.\n");
2796 }
2797 }
2798 // Continue even if we do nothing.
2799 ++CurInst;
2800 continue;
2801 }
2802
2803 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
2804 return false;
2805 }
2806
2807 // Resolve function pointers.
2808 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2809 if (!Callee || Callee->mayBeOverridden()) {
2810 DEBUG(dbgs() << "Can not resolve function pointer.\n");
2811 return false; // Cannot resolve.
2812 }
2813
2814 SmallVector<Constant*, 8> Formals;
2815 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2816 Formals.push_back(getVal(*i));
2817
2818 if (Callee->isDeclaration()) {
2819 // If this is a function we can constant fold, do it.
2820 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2821 InstResult = C;
2822 DEBUG(dbgs() << "Constant folded function call. Result: " <<
2823 *InstResult << "\n");
2824 } else {
2825 DEBUG(dbgs() << "Can not constant fold function call.\n");
2826 return false;
2827 }
2828 } else {
2829 if (Callee->getFunctionType()->isVarArg()) {
2830 DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
2831 return false;
2832 }
2833
2834 Constant *RetVal = 0;
2835 // Execute the call, if successful, use the return value.
2836 ValueStack.push_back(new DenseMap<Value*, Constant*>);
2837 if (!EvaluateFunction(Callee, RetVal, Formals)) {
2838 DEBUG(dbgs() << "Failed to evaluate function.\n");
2839 return false;
2840 }
2841 delete ValueStack.pop_back_val();
2842 InstResult = RetVal;
2843
2844 if (InstResult != NULL) {
2845 DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2846 InstResult << "\n\n");
2847 } else {
2848 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2849 }
2850 }
2851 } else if (isa<TerminatorInst>(CurInst)) {
2852 DEBUG(dbgs() << "Found a terminator instruction.\n");
2853
2854 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2855 if (BI->isUnconditional()) {
2856 NextBB = BI->getSuccessor(0);
2857 } else {
2858 ConstantInt *Cond =
2859 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2860 if (!Cond) return false; // Cannot determine.
2861
2862 NextBB = BI->getSuccessor(!Cond->getZExtValue());
2863 }
2864 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2865 ConstantInt *Val =
2866 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2867 if (!Val) return false; // Cannot determine.
2868 NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2869 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2870 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2871 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2872 NextBB = BA->getBasicBlock();
2873 else
2874 return false; // Cannot determine.
2875 } else if (isa<ReturnInst>(CurInst)) {
2876 NextBB = 0;
2877 } else {
2878 // invoke, unwind, resume, unreachable.
2879 DEBUG(dbgs() << "Can not handle terminator.");
2880 return false; // Cannot handle this terminator.
2881 }
2882
2883 // We succeeded at evaluating this block!
2884 DEBUG(dbgs() << "Successfully evaluated block.\n");
2885 return true;
2886 } else {
2887 // Did not know how to evaluate this!
2888 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2889 "\n");
2890 return false;
2891 }
2892
2893 if (!CurInst->use_empty()) {
2894 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2895 InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
2896
2897 setVal(CurInst, InstResult);
2898 }
2899
2900 // If we just processed an invoke, we finished evaluating the block.
2901 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2902 NextBB = II->getNormalDest();
2903 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
2904 return true;
2905 }
2906
2907 // Advance program counter.
2908 ++CurInst;
2909 }
2910 }
2911
2912 /// EvaluateFunction - Evaluate a call to function F, returning true if
2913 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2914 /// arguments for the function.
EvaluateFunction(Function * F,Constant * & RetVal,const SmallVectorImpl<Constant * > & ActualArgs)2915 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2916 const SmallVectorImpl<Constant*> &ActualArgs) {
2917 // Check to see if this function is already executing (recursion). If so,
2918 // bail out. TODO: we might want to accept limited recursion.
2919 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2920 return false;
2921
2922 CallStack.push_back(F);
2923
2924 // Initialize arguments to the incoming values specified.
2925 unsigned ArgNo = 0;
2926 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2927 ++AI, ++ArgNo)
2928 setVal(AI, ActualArgs[ArgNo]);
2929
2930 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
2931 // we can only evaluate any one basic block at most once. This set keeps
2932 // track of what we have executed so we can detect recursive cases etc.
2933 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2934
2935 // CurBB - The current basic block we're evaluating.
2936 BasicBlock *CurBB = F->begin();
2937
2938 BasicBlock::iterator CurInst = CurBB->begin();
2939
2940 while (1) {
2941 BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
2942 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
2943
2944 if (!EvaluateBlock(CurInst, NextBB))
2945 return false;
2946
2947 if (NextBB == 0) {
2948 // Successfully running until there's no next block means that we found
2949 // the return. Fill it the return value and pop the call stack.
2950 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2951 if (RI->getNumOperands())
2952 RetVal = getVal(RI->getOperand(0));
2953 CallStack.pop_back();
2954 return true;
2955 }
2956
2957 // Okay, we succeeded in evaluating this control flow. See if we have
2958 // executed the new block before. If so, we have a looping function,
2959 // which we cannot evaluate in reasonable time.
2960 if (!ExecutedBlocks.insert(NextBB))
2961 return false; // looped!
2962
2963 // Okay, we have never been in this block before. Check to see if there
2964 // are any PHI nodes. If so, evaluate them with information about where
2965 // we came from.
2966 PHINode *PN = 0;
2967 for (CurInst = NextBB->begin();
2968 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2969 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2970
2971 // Advance to the next block.
2972 CurBB = NextBB;
2973 }
2974 }
2975
2976 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2977 /// we can. Return true if we can, false otherwise.
EvaluateStaticConstructor(Function * F,const DataLayout * TD,const TargetLibraryInfo * TLI)2978 static bool EvaluateStaticConstructor(Function *F, const DataLayout *TD,
2979 const TargetLibraryInfo *TLI) {
2980 // Call the function.
2981 Evaluator Eval(TD, TLI);
2982 Constant *RetValDummy;
2983 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2984 SmallVector<Constant*, 0>());
2985
2986 if (EvalSuccess) {
2987 // We succeeded at evaluation: commit the result.
2988 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2989 << F->getName() << "' to " << Eval.getMutatedMemory().size()
2990 << " stores.\n");
2991 for (DenseMap<Constant*, Constant*>::const_iterator I =
2992 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2993 I != E; ++I)
2994 CommitValueTo(I->second, I->first);
2995 for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
2996 Eval.getInvariants().begin(), E = Eval.getInvariants().end();
2997 I != E; ++I)
2998 (*I)->setConstant(true);
2999 }
3000
3001 return EvalSuccess;
3002 }
3003
3004 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
3005 /// Return true if anything changed.
OptimizeGlobalCtorsList(GlobalVariable * & GCL)3006 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
3007 std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
3008 bool MadeChange = false;
3009 if (Ctors.empty()) return false;
3010
3011 // Loop over global ctors, optimizing them when we can.
3012 for (unsigned i = 0; i != Ctors.size(); ++i) {
3013 Function *F = Ctors[i];
3014 // Found a null terminator in the middle of the list, prune off the rest of
3015 // the list.
3016 if (F == 0) {
3017 if (i != Ctors.size()-1) {
3018 Ctors.resize(i+1);
3019 MadeChange = true;
3020 }
3021 break;
3022 }
3023 DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n");
3024
3025 // We cannot simplify external ctor functions.
3026 if (F->empty()) continue;
3027
3028 // If we can evaluate the ctor at compile time, do.
3029 if (EvaluateStaticConstructor(F, TD, TLI)) {
3030 Ctors.erase(Ctors.begin()+i);
3031 MadeChange = true;
3032 --i;
3033 ++NumCtorsEvaluated;
3034 continue;
3035 }
3036 }
3037
3038 if (!MadeChange) return false;
3039
3040 GCL = InstallGlobalCtors(GCL, Ctors);
3041 return true;
3042 }
3043
OptimizeGlobalAliases(Module & M)3044 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
3045 bool Changed = false;
3046
3047 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
3048 I != E;) {
3049 Module::alias_iterator J = I++;
3050 // Aliases without names cannot be referenced outside this module.
3051 if (!J->hasName() && !J->isDeclaration())
3052 J->setLinkage(GlobalValue::InternalLinkage);
3053 // If the aliasee may change at link time, nothing can be done - bail out.
3054 if (J->mayBeOverridden())
3055 continue;
3056
3057 Constant *Aliasee = J->getAliasee();
3058 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
3059 Target->removeDeadConstantUsers();
3060 bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
3061
3062 // Make all users of the alias use the aliasee instead.
3063 if (!J->use_empty()) {
3064 J->replaceAllUsesWith(Aliasee);
3065 ++NumAliasesResolved;
3066 Changed = true;
3067 }
3068
3069 // If the alias is externally visible, we may still be able to simplify it.
3070 if (!J->hasLocalLinkage()) {
3071 // If the aliasee has internal linkage, give it the name and linkage
3072 // of the alias, and delete the alias. This turns:
3073 // define internal ... @f(...)
3074 // @a = alias ... @f
3075 // into:
3076 // define ... @a(...)
3077 if (!Target->hasLocalLinkage())
3078 continue;
3079
3080 // Do not perform the transform if multiple aliases potentially target the
3081 // aliasee. This check also ensures that it is safe to replace the section
3082 // and other attributes of the aliasee with those of the alias.
3083 if (!hasOneUse)
3084 continue;
3085
3086 // Give the aliasee the name, linkage and other attributes of the alias.
3087 Target->takeName(J);
3088 Target->setLinkage(J->getLinkage());
3089 Target->GlobalValue::copyAttributesFrom(J);
3090 }
3091
3092 // Delete the alias.
3093 M.getAliasList().erase(J);
3094 ++NumAliasesRemoved;
3095 Changed = true;
3096 }
3097
3098 return Changed;
3099 }
3100
FindCXAAtExit(Module & M,TargetLibraryInfo * TLI)3101 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
3102 if (!TLI->has(LibFunc::cxa_atexit))
3103 return 0;
3104
3105 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
3106
3107 if (!Fn)
3108 return 0;
3109
3110 FunctionType *FTy = Fn->getFunctionType();
3111
3112 // Checking that the function has the right return type, the right number of
3113 // parameters and that they all have pointer types should be enough.
3114 if (!FTy->getReturnType()->isIntegerTy() ||
3115 FTy->getNumParams() != 3 ||
3116 !FTy->getParamType(0)->isPointerTy() ||
3117 !FTy->getParamType(1)->isPointerTy() ||
3118 !FTy->getParamType(2)->isPointerTy())
3119 return 0;
3120
3121 return Fn;
3122 }
3123
3124 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
3125 /// destructor and can therefore be eliminated.
3126 /// Note that we assume that other optimization passes have already simplified
3127 /// the code so we only look for a function with a single basic block, where
3128 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
3129 /// other side-effect free instructions.
cxxDtorIsEmpty(const Function & Fn,SmallPtrSet<const Function *,8> & CalledFunctions)3130 static bool cxxDtorIsEmpty(const Function &Fn,
3131 SmallPtrSet<const Function *, 8> &CalledFunctions) {
3132 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3133 // nounwind, but that doesn't seem worth doing.
3134 if (Fn.isDeclaration())
3135 return false;
3136
3137 if (++Fn.begin() != Fn.end())
3138 return false;
3139
3140 const BasicBlock &EntryBlock = Fn.getEntryBlock();
3141 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
3142 I != E; ++I) {
3143 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
3144 // Ignore debug intrinsics.
3145 if (isa<DbgInfoIntrinsic>(CI))
3146 continue;
3147
3148 const Function *CalledFn = CI->getCalledFunction();
3149
3150 if (!CalledFn)
3151 return false;
3152
3153 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
3154
3155 // Don't treat recursive functions as empty.
3156 if (!NewCalledFunctions.insert(CalledFn))
3157 return false;
3158
3159 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
3160 return false;
3161 } else if (isa<ReturnInst>(*I))
3162 return true; // We're done.
3163 else if (I->mayHaveSideEffects())
3164 return false; // Destructor with side effects, bail.
3165 }
3166
3167 return false;
3168 }
3169
OptimizeEmptyGlobalCXXDtors(Function * CXAAtExitFn)3170 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3171 /// Itanium C++ ABI p3.3.5:
3172 ///
3173 /// After constructing a global (or local static) object, that will require
3174 /// destruction on exit, a termination function is registered as follows:
3175 ///
3176 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3177 ///
3178 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3179 /// call f(p) when DSO d is unloaded, before all such termination calls
3180 /// registered before this one. It returns zero if registration is
3181 /// successful, nonzero on failure.
3182
3183 // This pass will look for calls to __cxa_atexit where the function is trivial
3184 // and remove them.
3185 bool Changed = false;
3186
3187 for (Function::use_iterator I = CXAAtExitFn->use_begin(),
3188 E = CXAAtExitFn->use_end(); I != E;) {
3189 // We're only interested in calls. Theoretically, we could handle invoke
3190 // instructions as well, but neither llvm-gcc nor clang generate invokes
3191 // to __cxa_atexit.
3192 CallInst *CI = dyn_cast<CallInst>(*I++);
3193 if (!CI)
3194 continue;
3195
3196 Function *DtorFn =
3197 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3198 if (!DtorFn)
3199 continue;
3200
3201 SmallPtrSet<const Function *, 8> CalledFunctions;
3202 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3203 continue;
3204
3205 // Just remove the call.
3206 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3207 CI->eraseFromParent();
3208
3209 ++NumCXXDtorsRemoved;
3210
3211 Changed |= true;
3212 }
3213
3214 return Changed;
3215 }
3216
runOnModule(Module & M)3217 bool GlobalOpt::runOnModule(Module &M) {
3218 bool Changed = false;
3219
3220 TD = getAnalysisIfAvailable<DataLayout>();
3221 TLI = &getAnalysis<TargetLibraryInfo>();
3222
3223 // Try to find the llvm.globalctors list.
3224 GlobalVariable *GlobalCtors = FindGlobalCtors(M);
3225
3226 Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3227
3228 bool LocalChange = true;
3229 while (LocalChange) {
3230 LocalChange = false;
3231
3232 // Delete functions that are trivially dead, ccc -> fastcc
3233 LocalChange |= OptimizeFunctions(M);
3234
3235 // Optimize global_ctors list.
3236 if (GlobalCtors)
3237 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
3238
3239 // Optimize non-address-taken globals.
3240 LocalChange |= OptimizeGlobalVars(M);
3241
3242 // Resolve aliases, when possible.
3243 LocalChange |= OptimizeGlobalAliases(M);
3244
3245 // Try to remove trivial global destructors.
3246 if (CXAAtExitFn)
3247 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3248
3249 Changed |= LocalChange;
3250 }
3251
3252 // TODO: Move all global ctors functions to the end of the module for code
3253 // layout.
3254
3255 return Changed;
3256 }
3257