• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
2 //                     The LLVM Compiler Infrastructure
3 //
4 // This file is distributed under the University of Illinois Open Source
5 // License. See LICENSE.TXT for details.
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #define DEBUG_TYPE "hexagon_cfg"
10 #include "Hexagon.h"
11 #include "HexagonMachineFunctionInfo.h"
12 #include "HexagonSubtarget.h"
13 #include "HexagonTargetMachine.h"
14 #include "llvm/CodeGen/MachineDominators.h"
15 #include "llvm/CodeGen/MachineFunctionPass.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineLoopInfo.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetRegisterInfo.h"
26 
27 using namespace llvm;
28 
29 namespace {
30 
31 class HexagonCFGOptimizer : public MachineFunctionPass {
32 
33 private:
34   HexagonTargetMachine& QTM;
35   const HexagonSubtarget &QST;
36 
37   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
38 
39  public:
40   static char ID;
HexagonCFGOptimizer(HexagonTargetMachine & TM)41   HexagonCFGOptimizer(HexagonTargetMachine& TM) : MachineFunctionPass(ID),
42                                                   QTM(TM),
43                                                   QST(*TM.getSubtargetImpl()) {}
44 
getPassName() const45   const char *getPassName() const {
46     return "Hexagon CFG Optimizer";
47   }
48   bool runOnMachineFunction(MachineFunction &Fn);
49 };
50 
51 
52 char HexagonCFGOptimizer::ID = 0;
53 
IsConditionalBranch(int Opc)54 static bool IsConditionalBranch(int Opc) {
55   return (Opc == Hexagon::JMP_c) || (Opc == Hexagon::JMP_cNot)
56     || (Opc == Hexagon::JMP_cdnPt) || (Opc == Hexagon::JMP_cdnNotPt);
57 }
58 
59 
IsUnconditionalJump(int Opc)60 static bool IsUnconditionalJump(int Opc) {
61   return (Opc == Hexagon::JMP);
62 }
63 
64 
65 void
InvertAndChangeJumpTarget(MachineInstr * MI,MachineBasicBlock * NewTarget)66 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
67                                                MachineBasicBlock* NewTarget) {
68   const HexagonInstrInfo *QII = QTM.getInstrInfo();
69   int NewOpcode = 0;
70   switch(MI->getOpcode()) {
71   case Hexagon::JMP_c:
72     NewOpcode = Hexagon::JMP_cNot;
73     break;
74 
75   case Hexagon::JMP_cNot:
76     NewOpcode = Hexagon::JMP_c;
77     break;
78 
79   case Hexagon::JMP_cdnPt:
80     NewOpcode = Hexagon::JMP_cdnNotPt;
81     break;
82 
83   case Hexagon::JMP_cdnNotPt:
84     NewOpcode = Hexagon::JMP_cdnPt;
85     break;
86 
87   default:
88     llvm_unreachable("Cannot handle this case");
89   }
90 
91   MI->setDesc(QII->get(NewOpcode));
92   MI->getOperand(1).setMBB(NewTarget);
93 }
94 
95 
runOnMachineFunction(MachineFunction & Fn)96 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
97 
98   // Loop over all of the basic blocks.
99   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
100        MBBb != MBBe; ++MBBb) {
101     MachineBasicBlock* MBB = MBBb;
102 
103     // Traverse the basic block.
104     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
105     if (MII != MBB->end()) {
106       MachineInstr *MI = MII;
107       int Opc = MI->getOpcode();
108       if (IsConditionalBranch(Opc)) {
109 
110         //
111         // (Case 1) Transform the code if the following condition occurs:
112         //   BB1: if (p0) jump BB3
113         //   ...falls-through to BB2 ...
114         //   BB2: jump BB4
115         //   ...next block in layout is BB3...
116         //   BB3: ...
117         //
118         //  Transform this to:
119         //  BB1: if (!p0) jump BB4
120         //  Remove BB2
121         //  BB3: ...
122         //
123         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
124         //   BB1: if (p0) jump BB3
125         //   ...falls-through to BB2 ...
126         //   BB2: jump BB4
127         //   ...other basic blocks ...
128         //   BB4:
129         //   ...not a fall-thru
130         //   BB3: ...
131         //     jump BB4
132         //
133         // Transform this to:
134         //   BB1: if (!p0) jump BB4
135         //   Remove BB2
136         //   BB3: ...
137         //   BB4: ...
138         //
139         unsigned NumSuccs = MBB->succ_size();
140         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
141         MachineBasicBlock* FirstSucc = *SI;
142         MachineBasicBlock* SecondSucc = *(++SI);
143         MachineBasicBlock* LayoutSucc = NULL;
144         MachineBasicBlock* JumpAroundTarget = NULL;
145 
146         if (MBB->isLayoutSuccessor(FirstSucc)) {
147           LayoutSucc = FirstSucc;
148           JumpAroundTarget = SecondSucc;
149         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
150           LayoutSucc = SecondSucc;
151           JumpAroundTarget = FirstSucc;
152         } else {
153           // Odd case...cannot handle.
154         }
155 
156         // The target of the unconditional branch must be JumpAroundTarget.
157         // TODO: If not, we should not invert the unconditional branch.
158         MachineBasicBlock* CondBranchTarget = NULL;
159         if ((MI->getOpcode() == Hexagon::JMP_c) ||
160             (MI->getOpcode() == Hexagon::JMP_cNot)) {
161           CondBranchTarget = MI->getOperand(1).getMBB();
162         }
163 
164         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
165           continue;
166         }
167 
168         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
169 
170           // Ensure that BB2 has one instruction -- an unconditional jump.
171           if ((LayoutSucc->size() == 1) &&
172               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
173             MachineBasicBlock* UncondTarget =
174               LayoutSucc->front().getOperand(0).getMBB();
175             // Check if the layout successor of BB2 is BB3.
176             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
177             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
178               JumpAroundTarget->size() >= 1 &&
179               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
180               JumpAroundTarget->pred_size() == 1 &&
181               JumpAroundTarget->succ_size() == 1;
182 
183             if (case1 || case2) {
184               InvertAndChangeJumpTarget(MI, UncondTarget);
185               MBB->removeSuccessor(JumpAroundTarget);
186               MBB->addSuccessor(UncondTarget);
187 
188               // Remove the unconditional branch in LayoutSucc.
189               LayoutSucc->erase(LayoutSucc->begin());
190               LayoutSucc->removeSuccessor(UncondTarget);
191               LayoutSucc->addSuccessor(JumpAroundTarget);
192 
193               // This code performs the conversion for case 2, which moves
194               // the block to the fall-thru case (BB3 in the code above).
195               if (case2 && !case1) {
196                 JumpAroundTarget->moveAfter(LayoutSucc);
197                 // only move a block if it doesn't have a fall-thru. otherwise
198                 // the CFG will be incorrect.
199                 if (!UncondTarget->canFallThrough()) {
200                   UncondTarget->moveAfter(JumpAroundTarget);
201                 }
202               }
203 
204               //
205               // Correct live-in information. Is used by post-RA scheduler
206               // The live-in to LayoutSucc is now all values live-in to
207               // JumpAroundTarget.
208               //
209               std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
210                                                LayoutSucc->livein_end());
211               std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
212                                               JumpAroundTarget->livein_end());
213               for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
214                 LayoutSucc->removeLiveIn(OrigLiveIn[i]);
215               }
216               for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
217                 LayoutSucc->addLiveIn(NewLiveIn[i]);
218               }
219             }
220           }
221         }
222       }
223     }
224   }
225   return true;
226 }
227 }
228 
229 
230 //===----------------------------------------------------------------------===//
231 //                         Public Constructor Functions
232 //===----------------------------------------------------------------------===//
233 
createHexagonCFGOptimizer(HexagonTargetMachine & TM)234 FunctionPass *llvm::createHexagonCFGOptimizer(HexagonTargetMachine &TM) {
235   return new HexagonCFGOptimizer(TM);
236 }
237