1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/Support/GetElementPtrTypeIterator.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 namespace {
23
24 /// Class representing coefficient of floating-point addend.
25 /// This class needs to be highly efficient, which is especially true for
26 /// the constructor. As of I write this comment, the cost of the default
27 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
28 /// perform write-merging).
29 ///
30 class FAddendCoef {
31 public:
32 // The constructor has to initialize a APFloat, which is uncessary for
33 // most addends which have coefficient either 1 or -1. So, the constructor
34 // is expensive. In order to avoid the cost of the constructor, we should
35 // reuse some instances whenever possible. The pre-created instances
36 // FAddCombine::Add[0-5] embodies this idea.
37 //
FAddendCoef()38 FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
39 ~FAddendCoef();
40
set(short C)41 void set(short C) {
42 assert(!insaneIntVal(C) && "Insane coefficient");
43 IsFp = false; IntVal = C;
44 }
45
46 void set(const APFloat& C);
47
48 void negate();
49
isZero() const50 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
51 Value *getValue(Type *) const;
52
53 // If possible, don't define operator+/operator- etc because these
54 // operators inevitably call FAddendCoef's constructor which is not cheap.
55 void operator=(const FAddendCoef &A);
56 void operator+=(const FAddendCoef &A);
57 void operator-=(const FAddendCoef &A);
58 void operator*=(const FAddendCoef &S);
59
isOne() const60 bool isOne() const { return isInt() && IntVal == 1; }
isTwo() const61 bool isTwo() const { return isInt() && IntVal == 2; }
isMinusOne() const62 bool isMinusOne() const { return isInt() && IntVal == -1; }
isMinusTwo() const63 bool isMinusTwo() const { return isInt() && IntVal == -2; }
64
65 private:
insaneIntVal(int V)66 bool insaneIntVal(int V) { return V > 4 || V < -4; }
getFpValPtr(void)67 APFloat *getFpValPtr(void)
68 { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
getFpValPtr(void) const69 const APFloat *getFpValPtr(void) const
70 { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
71
getFpVal(void) const72 const APFloat &getFpVal(void) const {
73 assert(IsFp && BufHasFpVal && "Incorret state");
74 return *getFpValPtr();
75 }
76
getFpVal(void)77 APFloat &getFpVal(void)
78 { assert(IsFp && BufHasFpVal && "Incorret state"); return *getFpValPtr(); }
79
isInt() const80 bool isInt() const { return !IsFp; }
81
82 private:
83
84 bool IsFp;
85
86 // True iff FpValBuf contains an instance of APFloat.
87 bool BufHasFpVal;
88
89 // The integer coefficient of an individual addend is either 1 or -1,
90 // and we try to simplify at most 4 addends from neighboring at most
91 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
92 // is overkill of this end.
93 short IntVal;
94
95 AlignedCharArrayUnion<APFloat> FpValBuf;
96 };
97
98 /// FAddend is used to represent floating-point addend. An addend is
99 /// represented as <C, V>, where the V is a symbolic value, and C is a
100 /// constant coefficient. A constant addend is represented as <C, 0>.
101 ///
102 class FAddend {
103 public:
FAddend()104 FAddend() { Val = 0; }
105
getSymVal(void) const106 Value *getSymVal (void) const { return Val; }
getCoef(void) const107 const FAddendCoef &getCoef(void) const { return Coeff; }
108
isConstant() const109 bool isConstant() const { return Val == 0; }
isZero() const110 bool isZero() const { return Coeff.isZero(); }
111
set(short Coefficient,Value * V)112 void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
set(const APFloat & Coefficient,Value * V)113 void set(const APFloat& Coefficient, Value *V)
114 { Coeff.set(Coefficient); Val = V; }
set(const ConstantFP * Coefficient,Value * V)115 void set(const ConstantFP* Coefficient, Value *V)
116 { Coeff.set(Coefficient->getValueAPF()); Val = V; }
117
negate()118 void negate() { Coeff.negate(); }
119
120 /// Drill down the U-D chain one step to find the definition of V, and
121 /// try to break the definition into one or two addends.
122 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
123
124 /// Similar to FAddend::drillDownOneStep() except that the value being
125 /// splitted is the addend itself.
126 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
127
operator +=(const FAddend & T)128 void operator+=(const FAddend &T) {
129 assert((Val == T.Val) && "Symbolic-values disagree");
130 Coeff += T.Coeff;
131 }
132
133 private:
Scale(const FAddendCoef & ScaleAmt)134 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
135
136 // This addend has the value of "Coeff * Val".
137 Value *Val;
138 FAddendCoef Coeff;
139 };
140
141 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
142 /// with its neighboring at most two instructions.
143 ///
144 class FAddCombine {
145 public:
FAddCombine(InstCombiner::BuilderTy * B)146 FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(0) {}
147 Value *simplify(Instruction *FAdd);
148
149 private:
150 typedef SmallVector<const FAddend*, 4> AddendVect;
151
152 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
153
154 Value *performFactorization(Instruction *I);
155
156 /// Convert given addend to a Value
157 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
158
159 /// Return the number of instructions needed to emit the N-ary addition.
160 unsigned calcInstrNumber(const AddendVect& Vect);
161 Value *createFSub(Value *Opnd0, Value *Opnd1);
162 Value *createFAdd(Value *Opnd0, Value *Opnd1);
163 Value *createFMul(Value *Opnd0, Value *Opnd1);
164 Value *createFDiv(Value *Opnd0, Value *Opnd1);
165 Value *createFNeg(Value *V);
166 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
167 void createInstPostProc(Instruction *NewInst);
168
169 InstCombiner::BuilderTy *Builder;
170 Instruction *Instr;
171
172 private:
173 // Debugging stuff are clustered here.
174 #ifndef NDEBUG
175 unsigned CreateInstrNum;
initCreateInstNum()176 void initCreateInstNum() { CreateInstrNum = 0; }
incCreateInstNum()177 void incCreateInstNum() { CreateInstrNum++; }
178 #else
179 void initCreateInstNum() {}
180 void incCreateInstNum() {}
181 #endif
182 };
183 }
184
185 //===----------------------------------------------------------------------===//
186 //
187 // Implementation of
188 // {FAddendCoef, FAddend, FAddition, FAddCombine}.
189 //
190 //===----------------------------------------------------------------------===//
~FAddendCoef()191 FAddendCoef::~FAddendCoef() {
192 if (BufHasFpVal)
193 getFpValPtr()->~APFloat();
194 }
195
set(const APFloat & C)196 void FAddendCoef::set(const APFloat& C) {
197 APFloat *P = getFpValPtr();
198
199 if (isInt()) {
200 // As the buffer is meanless byte stream, we cannot call
201 // APFloat::operator=().
202 new(P) APFloat(C);
203 } else
204 *P = C;
205
206 IsFp = BufHasFpVal = true;
207 }
208
operator =(const FAddendCoef & That)209 void FAddendCoef::operator=(const FAddendCoef& That) {
210 if (That.isInt())
211 set(That.IntVal);
212 else
213 set(That.getFpVal());
214 }
215
operator +=(const FAddendCoef & That)216 void FAddendCoef::operator+=(const FAddendCoef &That) {
217 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
218 if (isInt() == That.isInt()) {
219 if (isInt())
220 IntVal += That.IntVal;
221 else
222 getFpVal().add(That.getFpVal(), RndMode);
223 return;
224 }
225
226 if (isInt()) {
227 const APFloat &T = That.getFpVal();
228 set(T);
229 getFpVal().add(APFloat(T.getSemantics(), IntVal), RndMode);
230 return;
231 }
232
233 APFloat &T = getFpVal();
234 T.add(APFloat(T.getSemantics(), That.IntVal), RndMode);
235 }
236
operator -=(const FAddendCoef & That)237 void FAddendCoef::operator-=(const FAddendCoef &That) {
238 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
239 if (isInt() == That.isInt()) {
240 if (isInt())
241 IntVal -= That.IntVal;
242 else
243 getFpVal().subtract(That.getFpVal(), RndMode);
244 return;
245 }
246
247 if (isInt()) {
248 const APFloat &T = That.getFpVal();
249 set(T);
250 getFpVal().subtract(APFloat(T.getSemantics(), IntVal), RndMode);
251 return;
252 }
253
254 APFloat &T = getFpVal();
255 T.subtract(APFloat(T.getSemantics(), IntVal), RndMode);
256 }
257
operator *=(const FAddendCoef & That)258 void FAddendCoef::operator*=(const FAddendCoef &That) {
259 if (That.isOne())
260 return;
261
262 if (That.isMinusOne()) {
263 negate();
264 return;
265 }
266
267 if (isInt() && That.isInt()) {
268 int Res = IntVal * (int)That.IntVal;
269 assert(!insaneIntVal(Res) && "Insane int value");
270 IntVal = Res;
271 return;
272 }
273
274 const fltSemantics &Semantic =
275 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
276
277 if (isInt())
278 set(APFloat(Semantic, IntVal));
279 APFloat &F0 = getFpVal();
280
281 if (That.isInt())
282 F0.multiply(APFloat(Semantic, That.IntVal), APFloat::rmNearestTiesToEven);
283 else
284 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
285
286 return;
287 }
288
negate()289 void FAddendCoef::negate() {
290 if (isInt())
291 IntVal = 0 - IntVal;
292 else
293 getFpVal().changeSign();
294 }
295
getValue(Type * Ty) const296 Value *FAddendCoef::getValue(Type *Ty) const {
297 return isInt() ?
298 ConstantFP::get(Ty, float(IntVal)) :
299 ConstantFP::get(Ty->getContext(), getFpVal());
300 }
301
302 // The definition of <Val> Addends
303 // =========================================
304 // A + B <1, A>, <1,B>
305 // A - B <1, A>, <1,B>
306 // 0 - B <-1, B>
307 // C * A, <C, A>
308 // A + C <1, A> <C, NULL>
309 // 0 +/- 0 <0, NULL> (corner case)
310 //
311 // Legend: A and B are not constant, C is constant
312 //
drillValueDownOneStep(Value * Val,FAddend & Addend0,FAddend & Addend1)313 unsigned FAddend::drillValueDownOneStep
314 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
315 Instruction *I = 0;
316 if (Val == 0 || !(I = dyn_cast<Instruction>(Val)))
317 return 0;
318
319 unsigned Opcode = I->getOpcode();
320
321 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
322 ConstantFP *C0, *C1;
323 Value *Opnd0 = I->getOperand(0);
324 Value *Opnd1 = I->getOperand(1);
325 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
326 Opnd0 = 0;
327
328 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
329 Opnd1 = 0;
330
331 if (Opnd0) {
332 if (!C0)
333 Addend0.set(1, Opnd0);
334 else
335 Addend0.set(C0, 0);
336 }
337
338 if (Opnd1) {
339 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
340 if (!C1)
341 Addend.set(1, Opnd1);
342 else
343 Addend.set(C1, 0);
344 if (Opcode == Instruction::FSub)
345 Addend.negate();
346 }
347
348 if (Opnd0 || Opnd1)
349 return Opnd0 && Opnd1 ? 2 : 1;
350
351 // Both operands are zero. Weird!
352 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), 0);
353 return 1;
354 }
355
356 if (I->getOpcode() == Instruction::FMul) {
357 Value *V0 = I->getOperand(0);
358 Value *V1 = I->getOperand(1);
359 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
360 Addend0.set(C, V1);
361 return 1;
362 }
363
364 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
365 Addend0.set(C, V0);
366 return 1;
367 }
368 }
369
370 return 0;
371 }
372
373 // Try to break *this* addend into two addends. e.g. Suppose this addend is
374 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
375 // i.e. <2.3, X> and <2.3, Y>.
376 //
drillAddendDownOneStep(FAddend & Addend0,FAddend & Addend1) const377 unsigned FAddend::drillAddendDownOneStep
378 (FAddend &Addend0, FAddend &Addend1) const {
379 if (isConstant())
380 return 0;
381
382 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
383 if (!BreakNum || Coeff.isOne())
384 return BreakNum;
385
386 Addend0.Scale(Coeff);
387
388 if (BreakNum == 2)
389 Addend1.Scale(Coeff);
390
391 return BreakNum;
392 }
393
394 // Try to perform following optimization on the input instruction I. Return the
395 // simplified expression if was successful; otherwise, return 0.
396 //
397 // Instruction "I" is Simplified into
398 // -------------------------------------------------------
399 // (x * y) +/- (x * z) x * (y +/- z)
400 // (y / x) +/- (z / x) (y +/- z) / x
401 //
performFactorization(Instruction * I)402 Value *FAddCombine::performFactorization(Instruction *I) {
403 assert((I->getOpcode() == Instruction::FAdd ||
404 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
405
406 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
407 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
408
409 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
410 return 0;
411
412 bool isMpy = false;
413 if (I0->getOpcode() == Instruction::FMul)
414 isMpy = true;
415 else if (I0->getOpcode() != Instruction::FDiv)
416 return 0;
417
418 Value *Opnd0_0 = I0->getOperand(0);
419 Value *Opnd0_1 = I0->getOperand(1);
420 Value *Opnd1_0 = I1->getOperand(0);
421 Value *Opnd1_1 = I1->getOperand(1);
422
423 // Input Instr I Factor AddSub0 AddSub1
424 // ----------------------------------------------
425 // (x*y) +/- (x*z) x y z
426 // (y/x) +/- (z/x) x y z
427 //
428 Value *Factor = 0;
429 Value *AddSub0 = 0, *AddSub1 = 0;
430
431 if (isMpy) {
432 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
433 Factor = Opnd0_0;
434 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
435 Factor = Opnd0_1;
436
437 if (Factor) {
438 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
439 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
440 }
441 } else if (Opnd0_1 == Opnd1_1) {
442 Factor = Opnd0_1;
443 AddSub0 = Opnd0_0;
444 AddSub1 = Opnd1_0;
445 }
446
447 if (!Factor)
448 return 0;
449
450 // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
451 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
452 createFAdd(AddSub0, AddSub1) :
453 createFSub(AddSub0, AddSub1);
454 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
455 const APFloat &F = CFP->getValueAPF();
456 if (!F.isNormal() || F.isDenormal())
457 return 0;
458 }
459
460 if (isMpy)
461 return createFMul(Factor, NewAddSub);
462
463 return createFDiv(NewAddSub, Factor);
464 }
465
simplify(Instruction * I)466 Value *FAddCombine::simplify(Instruction *I) {
467 assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
468
469 // Currently we are not able to handle vector type.
470 if (I->getType()->isVectorTy())
471 return 0;
472
473 assert((I->getOpcode() == Instruction::FAdd ||
474 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
475
476 // Save the instruction before calling other member-functions.
477 Instr = I;
478
479 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
480
481 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
482
483 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
484 unsigned Opnd0_ExpNum = 0;
485 unsigned Opnd1_ExpNum = 0;
486
487 if (!Opnd0.isConstant())
488 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
489
490 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
491 if (OpndNum == 2 && !Opnd1.isConstant())
492 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
493
494 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
495 if (Opnd0_ExpNum && Opnd1_ExpNum) {
496 AddendVect AllOpnds;
497 AllOpnds.push_back(&Opnd0_0);
498 AllOpnds.push_back(&Opnd1_0);
499 if (Opnd0_ExpNum == 2)
500 AllOpnds.push_back(&Opnd0_1);
501 if (Opnd1_ExpNum == 2)
502 AllOpnds.push_back(&Opnd1_1);
503
504 // Compute instruction quota. We should save at least one instruction.
505 unsigned InstQuota = 0;
506
507 Value *V0 = I->getOperand(0);
508 Value *V1 = I->getOperand(1);
509 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
510 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
511
512 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
513 return R;
514 }
515
516 if (OpndNum != 2) {
517 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
518 // splitted into two addends, say "V = X - Y", the instruction would have
519 // been optimized into "I = Y - X" in the previous steps.
520 //
521 const FAddendCoef &CE = Opnd0.getCoef();
522 return CE.isOne() ? Opnd0.getSymVal() : 0;
523 }
524
525 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
526 if (Opnd1_ExpNum) {
527 AddendVect AllOpnds;
528 AllOpnds.push_back(&Opnd0);
529 AllOpnds.push_back(&Opnd1_0);
530 if (Opnd1_ExpNum == 2)
531 AllOpnds.push_back(&Opnd1_1);
532
533 if (Value *R = simplifyFAdd(AllOpnds, 1))
534 return R;
535 }
536
537 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
538 if (Opnd0_ExpNum) {
539 AddendVect AllOpnds;
540 AllOpnds.push_back(&Opnd1);
541 AllOpnds.push_back(&Opnd0_0);
542 if (Opnd0_ExpNum == 2)
543 AllOpnds.push_back(&Opnd0_1);
544
545 if (Value *R = simplifyFAdd(AllOpnds, 1))
546 return R;
547 }
548
549 // step 6: Try factorization as the last resort,
550 return performFactorization(I);
551 }
552
simplifyFAdd(AddendVect & Addends,unsigned InstrQuota)553 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
554
555 unsigned AddendNum = Addends.size();
556 assert(AddendNum <= 4 && "Too many addends");
557
558 // For saving intermediate results;
559 unsigned NextTmpIdx = 0;
560 FAddend TmpResult[3];
561
562 // Points to the constant addend of the resulting simplified expression.
563 // If the resulting expr has constant-addend, this constant-addend is
564 // desirable to reside at the top of the resulting expression tree. Placing
565 // constant close to supper-expr(s) will potentially reveal some optimization
566 // opportunities in super-expr(s).
567 //
568 const FAddend *ConstAdd = 0;
569
570 // Simplified addends are placed <SimpVect>.
571 AddendVect SimpVect;
572
573 // The outer loop works on one symbolic-value at a time. Suppose the input
574 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
575 // The symbolic-values will be processed in this order: x, y, z.
576 //
577 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
578
579 const FAddend *ThisAddend = Addends[SymIdx];
580 if (!ThisAddend) {
581 // This addend was processed before.
582 continue;
583 }
584
585 Value *Val = ThisAddend->getSymVal();
586 unsigned StartIdx = SimpVect.size();
587 SimpVect.push_back(ThisAddend);
588
589 // The inner loop collects addends sharing same symbolic-value, and these
590 // addends will be later on folded into a single addend. Following above
591 // example, if the symbolic value "y" is being processed, the inner loop
592 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
593 // be later on folded into "<b1+b2, y>".
594 //
595 for (unsigned SameSymIdx = SymIdx + 1;
596 SameSymIdx < AddendNum; SameSymIdx++) {
597 const FAddend *T = Addends[SameSymIdx];
598 if (T && T->getSymVal() == Val) {
599 // Set null such that next iteration of the outer loop will not process
600 // this addend again.
601 Addends[SameSymIdx] = 0;
602 SimpVect.push_back(T);
603 }
604 }
605
606 // If multiple addends share same symbolic value, fold them together.
607 if (StartIdx + 1 != SimpVect.size()) {
608 FAddend &R = TmpResult[NextTmpIdx ++];
609 R = *SimpVect[StartIdx];
610 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
611 R += *SimpVect[Idx];
612
613 // Pop all addends being folded and push the resulting folded addend.
614 SimpVect.resize(StartIdx);
615 if (Val != 0) {
616 if (!R.isZero()) {
617 SimpVect.push_back(&R);
618 }
619 } else {
620 // Don't push constant addend at this time. It will be the last element
621 // of <SimpVect>.
622 ConstAdd = &R;
623 }
624 }
625 }
626
627 assert((NextTmpIdx <= sizeof(TmpResult)/sizeof(TmpResult[0]) + 1) &&
628 "out-of-bound access");
629
630 if (ConstAdd)
631 SimpVect.push_back(ConstAdd);
632
633 Value *Result;
634 if (!SimpVect.empty())
635 Result = createNaryFAdd(SimpVect, InstrQuota);
636 else {
637 // The addition is folded to 0.0.
638 Result = ConstantFP::get(Instr->getType(), 0.0);
639 }
640
641 return Result;
642 }
643
createNaryFAdd(const AddendVect & Opnds,unsigned InstrQuota)644 Value *FAddCombine::createNaryFAdd
645 (const AddendVect &Opnds, unsigned InstrQuota) {
646 assert(!Opnds.empty() && "Expect at least one addend");
647
648 // Step 1: Check if the # of instructions needed exceeds the quota.
649 //
650 unsigned InstrNeeded = calcInstrNumber(Opnds);
651 if (InstrNeeded > InstrQuota)
652 return 0;
653
654 initCreateInstNum();
655
656 // step 2: Emit the N-ary addition.
657 // Note that at most three instructions are involved in Fadd-InstCombine: the
658 // addition in question, and at most two neighboring instructions.
659 // The resulting optimized addition should have at least one less instruction
660 // than the original addition expression tree. This implies that the resulting
661 // N-ary addition has at most two instructions, and we don't need to worry
662 // about tree-height when constructing the N-ary addition.
663
664 Value *LastVal = 0;
665 bool LastValNeedNeg = false;
666
667 // Iterate the addends, creating fadd/fsub using adjacent two addends.
668 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
669 I != E; I++) {
670 bool NeedNeg;
671 Value *V = createAddendVal(**I, NeedNeg);
672 if (!LastVal) {
673 LastVal = V;
674 LastValNeedNeg = NeedNeg;
675 continue;
676 }
677
678 if (LastValNeedNeg == NeedNeg) {
679 LastVal = createFAdd(LastVal, V);
680 continue;
681 }
682
683 if (LastValNeedNeg)
684 LastVal = createFSub(V, LastVal);
685 else
686 LastVal = createFSub(LastVal, V);
687
688 LastValNeedNeg = false;
689 }
690
691 if (LastValNeedNeg) {
692 LastVal = createFNeg(LastVal);
693 }
694
695 #ifndef NDEBUG
696 assert(CreateInstrNum == InstrNeeded &&
697 "Inconsistent in instruction numbers");
698 #endif
699
700 return LastVal;
701 }
702
createFSub(Value * Opnd0,Value * Opnd1)703 Value *FAddCombine::createFSub
704 (Value *Opnd0, Value *Opnd1) {
705 Value *V = Builder->CreateFSub(Opnd0, Opnd1);
706 if (Instruction *I = dyn_cast<Instruction>(V))
707 createInstPostProc(I);
708 return V;
709 }
710
createFNeg(Value * V)711 Value *FAddCombine::createFNeg(Value *V) {
712 Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
713 return createFSub(Zero, V);
714 }
715
createFAdd(Value * Opnd0,Value * Opnd1)716 Value *FAddCombine::createFAdd
717 (Value *Opnd0, Value *Opnd1) {
718 Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
719 if (Instruction *I = dyn_cast<Instruction>(V))
720 createInstPostProc(I);
721 return V;
722 }
723
createFMul(Value * Opnd0,Value * Opnd1)724 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
725 Value *V = Builder->CreateFMul(Opnd0, Opnd1);
726 if (Instruction *I = dyn_cast<Instruction>(V))
727 createInstPostProc(I);
728 return V;
729 }
730
createFDiv(Value * Opnd0,Value * Opnd1)731 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
732 Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
733 if (Instruction *I = dyn_cast<Instruction>(V))
734 createInstPostProc(I);
735 return V;
736 }
737
createInstPostProc(Instruction * NewInstr)738 void FAddCombine::createInstPostProc(Instruction *NewInstr) {
739 NewInstr->setDebugLoc(Instr->getDebugLoc());
740
741 // Keep track of the number of instruction created.
742 incCreateInstNum();
743
744 // Propagate fast-math flags
745 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
746 }
747
748 // Return the number of instruction needed to emit the N-ary addition.
749 // NOTE: Keep this function in sync with createAddendVal().
calcInstrNumber(const AddendVect & Opnds)750 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
751 unsigned OpndNum = Opnds.size();
752 unsigned InstrNeeded = OpndNum - 1;
753
754 // The number of addends in the form of "(-1)*x".
755 unsigned NegOpndNum = 0;
756
757 // Adjust the number of instructions needed to emit the N-ary add.
758 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
759 I != E; I++) {
760 const FAddend *Opnd = *I;
761 if (Opnd->isConstant())
762 continue;
763
764 const FAddendCoef &CE = Opnd->getCoef();
765 if (CE.isMinusOne() || CE.isMinusTwo())
766 NegOpndNum++;
767
768 // Let the addend be "c * x". If "c == +/-1", the value of the addend
769 // is immediately available; otherwise, it needs exactly one instruction
770 // to evaluate the value.
771 if (!CE.isMinusOne() && !CE.isOne())
772 InstrNeeded++;
773 }
774 if (NegOpndNum == OpndNum)
775 InstrNeeded++;
776 return InstrNeeded;
777 }
778
779 // Input Addend Value NeedNeg(output)
780 // ================================================================
781 // Constant C C false
782 // <+/-1, V> V coefficient is -1
783 // <2/-2, V> "fadd V, V" coefficient is -2
784 // <C, V> "fmul V, C" false
785 //
786 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
createAddendVal(const FAddend & Opnd,bool & NeedNeg)787 Value *FAddCombine::createAddendVal
788 (const FAddend &Opnd, bool &NeedNeg) {
789 const FAddendCoef &Coeff = Opnd.getCoef();
790
791 if (Opnd.isConstant()) {
792 NeedNeg = false;
793 return Coeff.getValue(Instr->getType());
794 }
795
796 Value *OpndVal = Opnd.getSymVal();
797
798 if (Coeff.isMinusOne() || Coeff.isOne()) {
799 NeedNeg = Coeff.isMinusOne();
800 return OpndVal;
801 }
802
803 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
804 NeedNeg = Coeff.isMinusTwo();
805 return createFAdd(OpndVal, OpndVal);
806 }
807
808 NeedNeg = false;
809 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
810 }
811
812 /// AddOne - Add one to a ConstantInt.
AddOne(Constant * C)813 static Constant *AddOne(Constant *C) {
814 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
815 }
816
817 /// SubOne - Subtract one from a ConstantInt.
SubOne(ConstantInt * C)818 static Constant *SubOne(ConstantInt *C) {
819 return ConstantInt::get(C->getContext(), C->getValue()-1);
820 }
821
822
823 // dyn_castFoldableMul - If this value is a multiply that can be folded into
824 // other computations (because it has a constant operand), return the
825 // non-constant operand of the multiply, and set CST to point to the multiplier.
826 // Otherwise, return null.
827 //
dyn_castFoldableMul(Value * V,ConstantInt * & CST)828 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
829 if (!V->hasOneUse() || !V->getType()->isIntegerTy())
830 return 0;
831
832 Instruction *I = dyn_cast<Instruction>(V);
833 if (I == 0) return 0;
834
835 if (I->getOpcode() == Instruction::Mul)
836 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
837 return I->getOperand(0);
838 if (I->getOpcode() == Instruction::Shl)
839 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
840 // The multiplier is really 1 << CST.
841 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
842 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
843 CST = ConstantInt::get(V->getType()->getContext(),
844 APInt(BitWidth, 1).shl(CSTVal));
845 return I->getOperand(0);
846 }
847 return 0;
848 }
849
850
851 /// WillNotOverflowSignedAdd - Return true if we can prove that:
852 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
853 /// This basically requires proving that the add in the original type would not
854 /// overflow to change the sign bit or have a carry out.
WillNotOverflowSignedAdd(Value * LHS,Value * RHS)855 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
856 // There are different heuristics we can use for this. Here are some simple
857 // ones.
858
859 // Add has the property that adding any two 2's complement numbers can only
860 // have one carry bit which can change a sign. As such, if LHS and RHS each
861 // have at least two sign bits, we know that the addition of the two values
862 // will sign extend fine.
863 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
864 return true;
865
866
867 // If one of the operands only has one non-zero bit, and if the other operand
868 // has a known-zero bit in a more significant place than it (not including the
869 // sign bit) the ripple may go up to and fill the zero, but won't change the
870 // sign. For example, (X & ~4) + 1.
871
872 // TODO: Implement.
873
874 return false;
875 }
876
visitAdd(BinaryOperator & I)877 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
878 bool Changed = SimplifyAssociativeOrCommutative(I);
879 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
880
881 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
882 I.hasNoUnsignedWrap(), TD))
883 return ReplaceInstUsesWith(I, V);
884
885 // (A*B)+(A*C) -> A*(B+C) etc
886 if (Value *V = SimplifyUsingDistributiveLaws(I))
887 return ReplaceInstUsesWith(I, V);
888
889 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
890 // X + (signbit) --> X ^ signbit
891 const APInt &Val = CI->getValue();
892 if (Val.isSignBit())
893 return BinaryOperator::CreateXor(LHS, RHS);
894
895 // See if SimplifyDemandedBits can simplify this. This handles stuff like
896 // (X & 254)+1 -> (X&254)|1
897 if (SimplifyDemandedInstructionBits(I))
898 return &I;
899
900 // zext(bool) + C -> bool ? C + 1 : C
901 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
902 if (ZI->getSrcTy()->isIntegerTy(1))
903 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
904
905 Value *XorLHS = 0; ConstantInt *XorRHS = 0;
906 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
907 uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
908 const APInt &RHSVal = CI->getValue();
909 unsigned ExtendAmt = 0;
910 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
911 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
912 if (XorRHS->getValue() == -RHSVal) {
913 if (RHSVal.isPowerOf2())
914 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
915 else if (XorRHS->getValue().isPowerOf2())
916 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
917 }
918
919 if (ExtendAmt) {
920 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
921 if (!MaskedValueIsZero(XorLHS, Mask))
922 ExtendAmt = 0;
923 }
924
925 if (ExtendAmt) {
926 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
927 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
928 return BinaryOperator::CreateAShr(NewShl, ShAmt);
929 }
930
931 // If this is a xor that was canonicalized from a sub, turn it back into
932 // a sub and fuse this add with it.
933 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
934 IntegerType *IT = cast<IntegerType>(I.getType());
935 APInt LHSKnownOne(IT->getBitWidth(), 0);
936 APInt LHSKnownZero(IT->getBitWidth(), 0);
937 ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
938 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
939 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
940 XorLHS);
941 }
942 }
943 }
944
945 if (isa<Constant>(RHS) && isa<PHINode>(LHS))
946 if (Instruction *NV = FoldOpIntoPhi(I))
947 return NV;
948
949 if (I.getType()->isIntegerTy(1))
950 return BinaryOperator::CreateXor(LHS, RHS);
951
952 // X + X --> X << 1
953 if (LHS == RHS) {
954 BinaryOperator *New =
955 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
956 New->setHasNoSignedWrap(I.hasNoSignedWrap());
957 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
958 return New;
959 }
960
961 // -A + B --> B - A
962 // -A + -B --> -(A + B)
963 if (Value *LHSV = dyn_castNegVal(LHS)) {
964 if (!isa<Constant>(RHS))
965 if (Value *RHSV = dyn_castNegVal(RHS)) {
966 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
967 return BinaryOperator::CreateNeg(NewAdd);
968 }
969
970 return BinaryOperator::CreateSub(RHS, LHSV);
971 }
972
973 // A + -B --> A - B
974 if (!isa<Constant>(RHS))
975 if (Value *V = dyn_castNegVal(RHS))
976 return BinaryOperator::CreateSub(LHS, V);
977
978
979 ConstantInt *C2;
980 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
981 if (X == RHS) // X*C + X --> X * (C+1)
982 return BinaryOperator::CreateMul(RHS, AddOne(C2));
983
984 // X*C1 + X*C2 --> X * (C1+C2)
985 ConstantInt *C1;
986 if (X == dyn_castFoldableMul(RHS, C1))
987 return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
988 }
989
990 // X + X*C --> X * (C+1)
991 if (dyn_castFoldableMul(RHS, C2) == LHS)
992 return BinaryOperator::CreateMul(LHS, AddOne(C2));
993
994 // A+B --> A|B iff A and B have no bits set in common.
995 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
996 APInt LHSKnownOne(IT->getBitWidth(), 0);
997 APInt LHSKnownZero(IT->getBitWidth(), 0);
998 ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
999 if (LHSKnownZero != 0) {
1000 APInt RHSKnownOne(IT->getBitWidth(), 0);
1001 APInt RHSKnownZero(IT->getBitWidth(), 0);
1002 ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
1003
1004 // No bits in common -> bitwise or.
1005 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
1006 return BinaryOperator::CreateOr(LHS, RHS);
1007 }
1008 }
1009
1010 // W*X + Y*Z --> W * (X+Z) iff W == Y
1011 {
1012 Value *W, *X, *Y, *Z;
1013 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
1014 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
1015 if (W != Y) {
1016 if (W == Z) {
1017 std::swap(Y, Z);
1018 } else if (Y == X) {
1019 std::swap(W, X);
1020 } else if (X == Z) {
1021 std::swap(Y, Z);
1022 std::swap(W, X);
1023 }
1024 }
1025
1026 if (W == Y) {
1027 Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
1028 return BinaryOperator::CreateMul(W, NewAdd);
1029 }
1030 }
1031 }
1032
1033 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1034 Value *X = 0;
1035 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1036 return BinaryOperator::CreateSub(SubOne(CRHS), X);
1037
1038 // (X & FF00) + xx00 -> (X+xx00) & FF00
1039 if (LHS->hasOneUse() &&
1040 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1041 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1042 // See if all bits from the first bit set in the Add RHS up are included
1043 // in the mask. First, get the rightmost bit.
1044 const APInt &AddRHSV = CRHS->getValue();
1045
1046 // Form a mask of all bits from the lowest bit added through the top.
1047 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1048
1049 // See if the and mask includes all of these bits.
1050 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1051
1052 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1053 // Okay, the xform is safe. Insert the new add pronto.
1054 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1055 return BinaryOperator::CreateAnd(NewAdd, C2);
1056 }
1057 }
1058
1059 // Try to fold constant add into select arguments.
1060 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1061 if (Instruction *R = FoldOpIntoSelect(I, SI))
1062 return R;
1063 }
1064
1065 // add (select X 0 (sub n A)) A --> select X A n
1066 {
1067 SelectInst *SI = dyn_cast<SelectInst>(LHS);
1068 Value *A = RHS;
1069 if (!SI) {
1070 SI = dyn_cast<SelectInst>(RHS);
1071 A = LHS;
1072 }
1073 if (SI && SI->hasOneUse()) {
1074 Value *TV = SI->getTrueValue();
1075 Value *FV = SI->getFalseValue();
1076 Value *N;
1077
1078 // Can we fold the add into the argument of the select?
1079 // We check both true and false select arguments for a matching subtract.
1080 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1081 // Fold the add into the true select value.
1082 return SelectInst::Create(SI->getCondition(), N, A);
1083
1084 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1085 // Fold the add into the false select value.
1086 return SelectInst::Create(SI->getCondition(), A, N);
1087 }
1088 }
1089
1090 // Check for (add (sext x), y), see if we can merge this into an
1091 // integer add followed by a sext.
1092 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1093 // (add (sext x), cst) --> (sext (add x, cst'))
1094 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1095 Constant *CI =
1096 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1097 if (LHSConv->hasOneUse() &&
1098 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1099 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1100 // Insert the new, smaller add.
1101 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1102 CI, "addconv");
1103 return new SExtInst(NewAdd, I.getType());
1104 }
1105 }
1106
1107 // (add (sext x), (sext y)) --> (sext (add int x, y))
1108 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1109 // Only do this if x/y have the same type, if at last one of them has a
1110 // single use (so we don't increase the number of sexts), and if the
1111 // integer add will not overflow.
1112 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1113 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1114 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1115 RHSConv->getOperand(0))) {
1116 // Insert the new integer add.
1117 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1118 RHSConv->getOperand(0), "addconv");
1119 return new SExtInst(NewAdd, I.getType());
1120 }
1121 }
1122 }
1123
1124 // Check for (x & y) + (x ^ y)
1125 {
1126 Value *A = 0, *B = 0;
1127 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1128 (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1129 match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1130 return BinaryOperator::CreateOr(A, B);
1131
1132 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1133 (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1134 match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1135 return BinaryOperator::CreateOr(A, B);
1136 }
1137
1138 return Changed ? &I : 0;
1139 }
1140
visitFAdd(BinaryOperator & I)1141 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1142 bool Changed = SimplifyAssociativeOrCommutative(I);
1143 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1144
1145 if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), TD))
1146 return ReplaceInstUsesWith(I, V);
1147
1148 if (isa<Constant>(RHS) && isa<PHINode>(LHS))
1149 if (Instruction *NV = FoldOpIntoPhi(I))
1150 return NV;
1151
1152 // -A + B --> B - A
1153 // -A + -B --> -(A + B)
1154 if (Value *LHSV = dyn_castFNegVal(LHS))
1155 return BinaryOperator::CreateFSub(RHS, LHSV);
1156
1157 // A + -B --> A - B
1158 if (!isa<Constant>(RHS))
1159 if (Value *V = dyn_castFNegVal(RHS))
1160 return BinaryOperator::CreateFSub(LHS, V);
1161
1162 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1163 // integer add followed by a promotion.
1164 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1165 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1166 // ... if the constant fits in the integer value. This is useful for things
1167 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1168 // requires a constant pool load, and generally allows the add to be better
1169 // instcombined.
1170 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1171 Constant *CI =
1172 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1173 if (LHSConv->hasOneUse() &&
1174 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1175 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1176 // Insert the new integer add.
1177 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1178 CI, "addconv");
1179 return new SIToFPInst(NewAdd, I.getType());
1180 }
1181 }
1182
1183 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1184 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1185 // Only do this if x/y have the same type, if at last one of them has a
1186 // single use (so we don't increase the number of int->fp conversions),
1187 // and if the integer add will not overflow.
1188 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1189 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1190 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1191 RHSConv->getOperand(0))) {
1192 // Insert the new integer add.
1193 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1194 RHSConv->getOperand(0),"addconv");
1195 return new SIToFPInst(NewAdd, I.getType());
1196 }
1197 }
1198 }
1199
1200 if (I.hasUnsafeAlgebra()) {
1201 if (Value *V = FAddCombine(Builder).simplify(&I))
1202 return ReplaceInstUsesWith(I, V);
1203 }
1204
1205 return Changed ? &I : 0;
1206 }
1207
1208
1209 /// Optimize pointer differences into the same array into a size. Consider:
1210 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1211 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1212 ///
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty)1213 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1214 Type *Ty) {
1215 assert(TD && "Must have target data info for this");
1216
1217 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1218 // this.
1219 bool Swapped = false;
1220 GEPOperator *GEP1 = 0, *GEP2 = 0;
1221
1222 // For now we require one side to be the base pointer "A" or a constant
1223 // GEP derived from it.
1224 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1225 // (gep X, ...) - X
1226 if (LHSGEP->getOperand(0) == RHS) {
1227 GEP1 = LHSGEP;
1228 Swapped = false;
1229 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1230 // (gep X, ...) - (gep X, ...)
1231 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1232 RHSGEP->getOperand(0)->stripPointerCasts()) {
1233 GEP2 = RHSGEP;
1234 GEP1 = LHSGEP;
1235 Swapped = false;
1236 }
1237 }
1238 }
1239
1240 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1241 // X - (gep X, ...)
1242 if (RHSGEP->getOperand(0) == LHS) {
1243 GEP1 = RHSGEP;
1244 Swapped = true;
1245 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1246 // (gep X, ...) - (gep X, ...)
1247 if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1248 LHSGEP->getOperand(0)->stripPointerCasts()) {
1249 GEP2 = LHSGEP;
1250 GEP1 = RHSGEP;
1251 Swapped = true;
1252 }
1253 }
1254 }
1255
1256 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1257 // multiple users.
1258 if (GEP1 == 0 ||
1259 (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1260 return 0;
1261
1262 // Emit the offset of the GEP and an intptr_t.
1263 Value *Result = EmitGEPOffset(GEP1);
1264
1265 // If we had a constant expression GEP on the other side offsetting the
1266 // pointer, subtract it from the offset we have.
1267 if (GEP2) {
1268 Value *Offset = EmitGEPOffset(GEP2);
1269 Result = Builder->CreateSub(Result, Offset);
1270 }
1271
1272 // If we have p - gep(p, ...) then we have to negate the result.
1273 if (Swapped)
1274 Result = Builder->CreateNeg(Result, "diff.neg");
1275
1276 return Builder->CreateIntCast(Result, Ty, true);
1277 }
1278
1279
visitSub(BinaryOperator & I)1280 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1281 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1282
1283 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1284 I.hasNoUnsignedWrap(), TD))
1285 return ReplaceInstUsesWith(I, V);
1286
1287 // (A*B)-(A*C) -> A*(B-C) etc
1288 if (Value *V = SimplifyUsingDistributiveLaws(I))
1289 return ReplaceInstUsesWith(I, V);
1290
1291 // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
1292 if (Value *V = dyn_castNegVal(Op1)) {
1293 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1294 Res->setHasNoSignedWrap(I.hasNoSignedWrap());
1295 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1296 return Res;
1297 }
1298
1299 if (I.getType()->isIntegerTy(1))
1300 return BinaryOperator::CreateXor(Op0, Op1);
1301
1302 // Replace (-1 - A) with (~A).
1303 if (match(Op0, m_AllOnes()))
1304 return BinaryOperator::CreateNot(Op1);
1305
1306 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1307 // C - ~X == X + (1+C)
1308 Value *X = 0;
1309 if (match(Op1, m_Not(m_Value(X))))
1310 return BinaryOperator::CreateAdd(X, AddOne(C));
1311
1312 // -(X >>u 31) -> (X >>s 31)
1313 // -(X >>s 31) -> (X >>u 31)
1314 if (C->isZero()) {
1315 Value *X; ConstantInt *CI;
1316 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1317 // Verify we are shifting out everything but the sign bit.
1318 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1319 return BinaryOperator::CreateAShr(X, CI);
1320
1321 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1322 // Verify we are shifting out everything but the sign bit.
1323 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1324 return BinaryOperator::CreateLShr(X, CI);
1325 }
1326
1327 // Try to fold constant sub into select arguments.
1328 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1329 if (Instruction *R = FoldOpIntoSelect(I, SI))
1330 return R;
1331
1332 // C-(X+C2) --> (C-C2)-X
1333 ConstantInt *C2;
1334 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
1335 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1336
1337 if (SimplifyDemandedInstructionBits(I))
1338 return &I;
1339
1340 // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1341 if (C->isZero() && match(Op1, m_ZExt(m_Value(X))))
1342 if (X->getType()->isIntegerTy(1))
1343 return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1344
1345 // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1346 if (C->isZero() && match(Op1, m_SExt(m_Value(X))))
1347 if (X->getType()->isIntegerTy(1))
1348 return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1349 }
1350
1351
1352 { Value *Y;
1353 // X-(X+Y) == -Y X-(Y+X) == -Y
1354 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1355 match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1356 return BinaryOperator::CreateNeg(Y);
1357
1358 // (X-Y)-X == -Y
1359 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1360 return BinaryOperator::CreateNeg(Y);
1361 }
1362
1363 if (Op1->hasOneUse()) {
1364 Value *X = 0, *Y = 0, *Z = 0;
1365 Constant *C = 0;
1366 ConstantInt *CI = 0;
1367
1368 // (X - (Y - Z)) --> (X + (Z - Y)).
1369 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1370 return BinaryOperator::CreateAdd(Op0,
1371 Builder->CreateSub(Z, Y, Op1->getName()));
1372
1373 // (X - (X & Y)) --> (X & ~Y)
1374 //
1375 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1376 match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1377 return BinaryOperator::CreateAnd(Op0,
1378 Builder->CreateNot(Y, Y->getName() + ".not"));
1379
1380 // 0 - (X sdiv C) -> (X sdiv -C)
1381 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
1382 match(Op0, m_Zero()))
1383 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1384
1385 // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
1386 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1387 if (Value *XNeg = dyn_castNegVal(X))
1388 return BinaryOperator::CreateShl(XNeg, Y);
1389
1390 // X - X*C --> X * (1-C)
1391 if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
1392 Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
1393 return BinaryOperator::CreateMul(Op0, CP1);
1394 }
1395
1396 // X - X<<C --> X * (1-(1<<C))
1397 if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
1398 Constant *One = ConstantInt::get(I.getType(), 1);
1399 C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
1400 return BinaryOperator::CreateMul(Op0, C);
1401 }
1402
1403 // X - A*-B -> X + A*B
1404 // X - -A*B -> X + A*B
1405 Value *A, *B;
1406 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1407 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1408 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1409
1410 // X - A*CI -> X + A*-CI
1411 // X - CI*A -> X + A*-CI
1412 if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
1413 match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
1414 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1415 return BinaryOperator::CreateAdd(Op0, NewMul);
1416 }
1417 }
1418
1419 ConstantInt *C1;
1420 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1421 if (X == Op1) // X*C - X --> X * (C-1)
1422 return BinaryOperator::CreateMul(Op1, SubOne(C1));
1423
1424 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
1425 if (X == dyn_castFoldableMul(Op1, C2))
1426 return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
1427 }
1428
1429 // Optimize pointer differences into the same array into a size. Consider:
1430 // &A[10] - &A[0]: we should compile this to "10".
1431 if (TD) {
1432 Value *LHSOp, *RHSOp;
1433 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1434 match(Op1, m_PtrToInt(m_Value(RHSOp))))
1435 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1436 return ReplaceInstUsesWith(I, Res);
1437
1438 // trunc(p)-trunc(q) -> trunc(p-q)
1439 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1440 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1441 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1442 return ReplaceInstUsesWith(I, Res);
1443 }
1444
1445 return 0;
1446 }
1447
visitFSub(BinaryOperator & I)1448 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1449 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1450
1451 if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), TD))
1452 return ReplaceInstUsesWith(I, V);
1453
1454 // If this is a 'B = x-(-A)', change to B = x+A...
1455 if (Value *V = dyn_castFNegVal(Op1))
1456 return BinaryOperator::CreateFAdd(Op0, V);
1457
1458 if (I.hasUnsafeAlgebra()) {
1459 if (Value *V = FAddCombine(Builder).simplify(&I))
1460 return ReplaceInstUsesWith(I, V);
1461 }
1462
1463 return 0;
1464 }
1465