1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
14 //
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
19 //
20 // When a match is found the functions are folded. If both functions are
21 // overridable, we move the functionality into a new internal function and
22 // leave two overridable thunks to it.
23 //
24 //===----------------------------------------------------------------------===//
25 //
26 // Future work:
27 //
28 // * virtual functions.
29 //
30 // Many functions have their address taken by the virtual function table for
31 // the object they belong to. However, as long as it's only used for a lookup
32 // and call, this is irrelevant, and we'd like to fold such functions.
33 //
34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
35 // bucket.
36 //
37 // * be smarter about bitcasts.
38 //
39 // In order to fold functions, we will sometimes add either bitcast instructions
40 // or bitcast constant expressions. Unfortunately, this can confound further
41 // analysis since the two functions differ where one has a bitcast and the
42 // other doesn't. We should learn to look through bitcasts.
43 //
44 //===----------------------------------------------------------------------===//
45
46 #define DEBUG_TYPE "mergefunc"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/FoldingSet.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/SmallSet.h"
52 #include "llvm/ADT/Statistic.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/CallSite.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/ValueHandle.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include <vector>
68 using namespace llvm;
69
70 STATISTIC(NumFunctionsMerged, "Number of functions merged");
71 STATISTIC(NumThunksWritten, "Number of thunks generated");
72 STATISTIC(NumAliasesWritten, "Number of aliases generated");
73 STATISTIC(NumDoubleWeak, "Number of new functions created");
74
75 /// Creates a hash-code for the function which is the same for any two
76 /// functions that will compare equal, without looking at the instructions
77 /// inside the function.
profileFunction(const Function * F)78 static unsigned profileFunction(const Function *F) {
79 FunctionType *FTy = F->getFunctionType();
80
81 FoldingSetNodeID ID;
82 ID.AddInteger(F->size());
83 ID.AddInteger(F->getCallingConv());
84 ID.AddBoolean(F->hasGC());
85 ID.AddBoolean(FTy->isVarArg());
86 ID.AddInteger(FTy->getReturnType()->getTypeID());
87 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
88 ID.AddInteger(FTy->getParamType(i)->getTypeID());
89 return ID.ComputeHash();
90 }
91
92 namespace {
93
94 /// ComparableFunction - A struct that pairs together functions with a
95 /// DataLayout so that we can keep them together as elements in the DenseSet.
96 class ComparableFunction {
97 public:
98 static const ComparableFunction EmptyKey;
99 static const ComparableFunction TombstoneKey;
100 static DataLayout * const LookupOnly;
101
ComparableFunction(Function * Func,DataLayout * TD)102 ComparableFunction(Function *Func, DataLayout *TD)
103 : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
104
getFunc() const105 Function *getFunc() const { return Func; }
getHash() const106 unsigned getHash() const { return Hash; }
getTD() const107 DataLayout *getTD() const { return TD; }
108
109 // Drops AssertingVH reference to the function. Outside of debug mode, this
110 // does nothing.
release()111 void release() {
112 assert(Func &&
113 "Attempted to release function twice, or release empty/tombstone!");
114 Func = NULL;
115 }
116
117 private:
ComparableFunction(unsigned Hash)118 explicit ComparableFunction(unsigned Hash)
119 : Func(NULL), Hash(Hash), TD(NULL) {}
120
121 AssertingVH<Function> Func;
122 unsigned Hash;
123 DataLayout *TD;
124 };
125
126 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
127 const ComparableFunction ComparableFunction::TombstoneKey =
128 ComparableFunction(1);
129 DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
130
131 }
132
133 namespace llvm {
134 template <>
135 struct DenseMapInfo<ComparableFunction> {
getEmptyKeyllvm::DenseMapInfo136 static ComparableFunction getEmptyKey() {
137 return ComparableFunction::EmptyKey;
138 }
getTombstoneKeyllvm::DenseMapInfo139 static ComparableFunction getTombstoneKey() {
140 return ComparableFunction::TombstoneKey;
141 }
getHashValuellvm::DenseMapInfo142 static unsigned getHashValue(const ComparableFunction &CF) {
143 return CF.getHash();
144 }
145 static bool isEqual(const ComparableFunction &LHS,
146 const ComparableFunction &RHS);
147 };
148 }
149
150 namespace {
151
152 /// FunctionComparator - Compares two functions to determine whether or not
153 /// they will generate machine code with the same behaviour. DataLayout is
154 /// used if available. The comparator always fails conservatively (erring on the
155 /// side of claiming that two functions are different).
156 class FunctionComparator {
157 public:
FunctionComparator(const DataLayout * TD,const Function * F1,const Function * F2)158 FunctionComparator(const DataLayout *TD, const Function *F1,
159 const Function *F2)
160 : F1(F1), F2(F2), TD(TD) {}
161
162 /// Test whether the two functions have equivalent behaviour.
163 bool compare();
164
165 private:
166 /// Test whether two basic blocks have equivalent behaviour.
167 bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
168
169 /// Assign or look up previously assigned numbers for the two values, and
170 /// return whether the numbers are equal. Numbers are assigned in the order
171 /// visited.
172 bool enumerate(const Value *V1, const Value *V2);
173
174 /// Compare two Instructions for equivalence, similar to
175 /// Instruction::isSameOperationAs but with modifications to the type
176 /// comparison.
177 bool isEquivalentOperation(const Instruction *I1,
178 const Instruction *I2) const;
179
180 /// Compare two GEPs for equivalent pointer arithmetic.
181 bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
isEquivalentGEP(const GetElementPtrInst * GEP1,const GetElementPtrInst * GEP2)182 bool isEquivalentGEP(const GetElementPtrInst *GEP1,
183 const GetElementPtrInst *GEP2) {
184 return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
185 }
186
187 /// Compare two Types, treating all pointer types as equal.
188 bool isEquivalentType(Type *Ty1, Type *Ty2) const;
189
190 // The two functions undergoing comparison.
191 const Function *F1, *F2;
192
193 const DataLayout *TD;
194
195 DenseMap<const Value *, const Value *> id_map;
196 DenseSet<const Value *> seen_values;
197 };
198
199 }
200
201 // Any two pointers in the same address space are equivalent, intptr_t and
202 // pointers are equivalent. Otherwise, standard type equivalence rules apply.
isEquivalentType(Type * Ty1,Type * Ty2) const203 bool FunctionComparator::isEquivalentType(Type *Ty1,
204 Type *Ty2) const {
205 if (Ty1 == Ty2)
206 return true;
207 if (Ty1->getTypeID() != Ty2->getTypeID()) {
208 if (TD) {
209 LLVMContext &Ctx = Ty1->getContext();
210 if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
211 if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
212 }
213 return false;
214 }
215
216 switch (Ty1->getTypeID()) {
217 default:
218 llvm_unreachable("Unknown type!");
219 // Fall through in Release mode.
220 case Type::IntegerTyID:
221 case Type::VectorTyID:
222 // Ty1 == Ty2 would have returned true earlier.
223 return false;
224
225 case Type::VoidTyID:
226 case Type::FloatTyID:
227 case Type::DoubleTyID:
228 case Type::X86_FP80TyID:
229 case Type::FP128TyID:
230 case Type::PPC_FP128TyID:
231 case Type::LabelTyID:
232 case Type::MetadataTyID:
233 return true;
234
235 case Type::PointerTyID: {
236 PointerType *PTy1 = cast<PointerType>(Ty1);
237 PointerType *PTy2 = cast<PointerType>(Ty2);
238 return PTy1->getAddressSpace() == PTy2->getAddressSpace();
239 }
240
241 case Type::StructTyID: {
242 StructType *STy1 = cast<StructType>(Ty1);
243 StructType *STy2 = cast<StructType>(Ty2);
244 if (STy1->getNumElements() != STy2->getNumElements())
245 return false;
246
247 if (STy1->isPacked() != STy2->isPacked())
248 return false;
249
250 for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
251 if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
252 return false;
253 }
254 return true;
255 }
256
257 case Type::FunctionTyID: {
258 FunctionType *FTy1 = cast<FunctionType>(Ty1);
259 FunctionType *FTy2 = cast<FunctionType>(Ty2);
260 if (FTy1->getNumParams() != FTy2->getNumParams() ||
261 FTy1->isVarArg() != FTy2->isVarArg())
262 return false;
263
264 if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
265 return false;
266
267 for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
268 if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
269 return false;
270 }
271 return true;
272 }
273
274 case Type::ArrayTyID: {
275 ArrayType *ATy1 = cast<ArrayType>(Ty1);
276 ArrayType *ATy2 = cast<ArrayType>(Ty2);
277 return ATy1->getNumElements() == ATy2->getNumElements() &&
278 isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
279 }
280 }
281 }
282
283 // Determine whether the two operations are the same except that pointer-to-A
284 // and pointer-to-B are equivalent. This should be kept in sync with
285 // Instruction::isSameOperationAs.
isEquivalentOperation(const Instruction * I1,const Instruction * I2) const286 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
287 const Instruction *I2) const {
288 // Differences from Instruction::isSameOperationAs:
289 // * replace type comparison with calls to isEquivalentType.
290 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
291 // * because of the above, we don't test for the tail bit on calls later on
292 if (I1->getOpcode() != I2->getOpcode() ||
293 I1->getNumOperands() != I2->getNumOperands() ||
294 !isEquivalentType(I1->getType(), I2->getType()) ||
295 !I1->hasSameSubclassOptionalData(I2))
296 return false;
297
298 // We have two instructions of identical opcode and #operands. Check to see
299 // if all operands are the same type
300 for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
301 if (!isEquivalentType(I1->getOperand(i)->getType(),
302 I2->getOperand(i)->getType()))
303 return false;
304
305 // Check special state that is a part of some instructions.
306 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
307 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
308 LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
309 LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
310 LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
311 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
312 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
313 SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
314 SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
315 SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
316 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
317 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
318 if (const CallInst *CI = dyn_cast<CallInst>(I1))
319 return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
320 CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
321 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
322 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
323 CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
324 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
325 return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
326 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
327 return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
328 if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
329 return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
330 FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
331 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
332 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
333 CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
334 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
335 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
336 return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
337 RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
338 RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
339 RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
340
341 return true;
342 }
343
344 // Determine whether two GEP operations perform the same underlying arithmetic.
isEquivalentGEP(const GEPOperator * GEP1,const GEPOperator * GEP2)345 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
346 const GEPOperator *GEP2) {
347 // When we have target data, we can reduce the GEP down to the value in bytes
348 // added to the address.
349 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 1;
350 APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
351 if (TD &&
352 GEP1->accumulateConstantOffset(*TD, Offset1) &&
353 GEP2->accumulateConstantOffset(*TD, Offset2)) {
354 return Offset1 == Offset2;
355 }
356
357 if (GEP1->getPointerOperand()->getType() !=
358 GEP2->getPointerOperand()->getType())
359 return false;
360
361 if (GEP1->getNumOperands() != GEP2->getNumOperands())
362 return false;
363
364 for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
365 if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
366 return false;
367 }
368
369 return true;
370 }
371
372 // Compare two values used by the two functions under pair-wise comparison. If
373 // this is the first time the values are seen, they're added to the mapping so
374 // that we will detect mismatches on next use.
enumerate(const Value * V1,const Value * V2)375 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
376 // Check for function @f1 referring to itself and function @f2 referring to
377 // itself, or referring to each other, or both referring to either of them.
378 // They're all equivalent if the two functions are otherwise equivalent.
379 if (V1 == F1 && V2 == F2)
380 return true;
381 if (V1 == F2 && V2 == F1)
382 return true;
383
384 if (const Constant *C1 = dyn_cast<Constant>(V1)) {
385 if (V1 == V2) return true;
386 const Constant *C2 = dyn_cast<Constant>(V2);
387 if (!C2) return false;
388 // TODO: constant expressions with GEP or references to F1 or F2.
389 if (C1->isNullValue() && C2->isNullValue() &&
390 isEquivalentType(C1->getType(), C2->getType()))
391 return true;
392 // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
393 // then they must have equal bit patterns.
394 return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
395 C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
396 }
397
398 if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
399 return V1 == V2;
400
401 // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
402 // check whether it's equal to V2. When there is no mapping then we need to
403 // ensure that V2 isn't already equivalent to something else. For this
404 // purpose, we track the V2 values in a set.
405
406 const Value *&map_elem = id_map[V1];
407 if (map_elem)
408 return map_elem == V2;
409 if (!seen_values.insert(V2).second)
410 return false;
411 map_elem = V2;
412 return true;
413 }
414
415 // Test whether two basic blocks have equivalent behaviour.
compare(const BasicBlock * BB1,const BasicBlock * BB2)416 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
417 BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
418 BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
419
420 do {
421 if (!enumerate(F1I, F2I))
422 return false;
423
424 if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
425 const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
426 if (!GEP2)
427 return false;
428
429 if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
430 return false;
431
432 if (!isEquivalentGEP(GEP1, GEP2))
433 return false;
434 } else {
435 if (!isEquivalentOperation(F1I, F2I))
436 return false;
437
438 assert(F1I->getNumOperands() == F2I->getNumOperands());
439 for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
440 Value *OpF1 = F1I->getOperand(i);
441 Value *OpF2 = F2I->getOperand(i);
442
443 if (!enumerate(OpF1, OpF2))
444 return false;
445
446 if (OpF1->getValueID() != OpF2->getValueID() ||
447 !isEquivalentType(OpF1->getType(), OpF2->getType()))
448 return false;
449 }
450 }
451
452 ++F1I, ++F2I;
453 } while (F1I != F1E && F2I != F2E);
454
455 return F1I == F1E && F2I == F2E;
456 }
457
458 // Test whether the two functions have equivalent behaviour.
compare()459 bool FunctionComparator::compare() {
460 // We need to recheck everything, but check the things that weren't included
461 // in the hash first.
462
463 if (F1->getAttributes() != F2->getAttributes())
464 return false;
465
466 if (F1->hasGC() != F2->hasGC())
467 return false;
468
469 if (F1->hasGC() && F1->getGC() != F2->getGC())
470 return false;
471
472 if (F1->hasSection() != F2->hasSection())
473 return false;
474
475 if (F1->hasSection() && F1->getSection() != F2->getSection())
476 return false;
477
478 if (F1->isVarArg() != F2->isVarArg())
479 return false;
480
481 // TODO: if it's internal and only used in direct calls, we could handle this
482 // case too.
483 if (F1->getCallingConv() != F2->getCallingConv())
484 return false;
485
486 if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
487 return false;
488
489 assert(F1->arg_size() == F2->arg_size() &&
490 "Identically typed functions have different numbers of args!");
491
492 // Visit the arguments so that they get enumerated in the order they're
493 // passed in.
494 for (Function::const_arg_iterator f1i = F1->arg_begin(),
495 f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
496 if (!enumerate(f1i, f2i))
497 llvm_unreachable("Arguments repeat!");
498 }
499
500 // We do a CFG-ordered walk since the actual ordering of the blocks in the
501 // linked list is immaterial. Our walk starts at the entry block for both
502 // functions, then takes each block from each terminator in order. As an
503 // artifact, this also means that unreachable blocks are ignored.
504 SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
505 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
506
507 F1BBs.push_back(&F1->getEntryBlock());
508 F2BBs.push_back(&F2->getEntryBlock());
509
510 VisitedBBs.insert(F1BBs[0]);
511 while (!F1BBs.empty()) {
512 const BasicBlock *F1BB = F1BBs.pop_back_val();
513 const BasicBlock *F2BB = F2BBs.pop_back_val();
514
515 if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
516 return false;
517
518 const TerminatorInst *F1TI = F1BB->getTerminator();
519 const TerminatorInst *F2TI = F2BB->getTerminator();
520
521 assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
522 for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
523 if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
524 continue;
525
526 F1BBs.push_back(F1TI->getSuccessor(i));
527 F2BBs.push_back(F2TI->getSuccessor(i));
528 }
529 }
530 return true;
531 }
532
533 namespace {
534
535 /// MergeFunctions finds functions which will generate identical machine code,
536 /// by considering all pointer types to be equivalent. Once identified,
537 /// MergeFunctions will fold them by replacing a call to one to a call to a
538 /// bitcast of the other.
539 ///
540 class MergeFunctions : public ModulePass {
541 public:
542 static char ID;
MergeFunctions()543 MergeFunctions()
544 : ModulePass(ID), HasGlobalAliases(false) {
545 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
546 }
547
548 bool runOnModule(Module &M);
549
550 private:
551 typedef DenseSet<ComparableFunction> FnSetType;
552
553 /// A work queue of functions that may have been modified and should be
554 /// analyzed again.
555 std::vector<WeakVH> Deferred;
556
557 /// Insert a ComparableFunction into the FnSet, or merge it away if it's
558 /// equal to one that's already present.
559 bool insert(ComparableFunction &NewF);
560
561 /// Remove a Function from the FnSet and queue it up for a second sweep of
562 /// analysis.
563 void remove(Function *F);
564
565 /// Find the functions that use this Value and remove them from FnSet and
566 /// queue the functions.
567 void removeUsers(Value *V);
568
569 /// Replace all direct calls of Old with calls of New. Will bitcast New if
570 /// necessary to make types match.
571 void replaceDirectCallers(Function *Old, Function *New);
572
573 /// Merge two equivalent functions. Upon completion, G may be deleted, or may
574 /// be converted into a thunk. In either case, it should never be visited
575 /// again.
576 void mergeTwoFunctions(Function *F, Function *G);
577
578 /// Replace G with a thunk or an alias to F. Deletes G.
579 void writeThunkOrAlias(Function *F, Function *G);
580
581 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
582 /// of G with bitcast(F). Deletes G.
583 void writeThunk(Function *F, Function *G);
584
585 /// Replace G with an alias to F. Deletes G.
586 void writeAlias(Function *F, Function *G);
587
588 /// The set of all distinct functions. Use the insert() and remove() methods
589 /// to modify it.
590 FnSetType FnSet;
591
592 /// DataLayout for more accurate GEP comparisons. May be NULL.
593 DataLayout *TD;
594
595 /// Whether or not the target supports global aliases.
596 bool HasGlobalAliases;
597 };
598
599 } // end anonymous namespace
600
601 char MergeFunctions::ID = 0;
602 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
603
createMergeFunctionsPass()604 ModulePass *llvm::createMergeFunctionsPass() {
605 return new MergeFunctions();
606 }
607
runOnModule(Module & M)608 bool MergeFunctions::runOnModule(Module &M) {
609 bool Changed = false;
610 TD = getAnalysisIfAvailable<DataLayout>();
611
612 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
613 if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
614 Deferred.push_back(WeakVH(I));
615 }
616 FnSet.resize(Deferred.size());
617
618 do {
619 std::vector<WeakVH> Worklist;
620 Deferred.swap(Worklist);
621
622 DEBUG(dbgs() << "size of module: " << M.size() << '\n');
623 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
624
625 // Insert only strong functions and merge them. Strong function merging
626 // always deletes one of them.
627 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
628 E = Worklist.end(); I != E; ++I) {
629 if (!*I) continue;
630 Function *F = cast<Function>(*I);
631 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
632 !F->mayBeOverridden()) {
633 ComparableFunction CF = ComparableFunction(F, TD);
634 Changed |= insert(CF);
635 }
636 }
637
638 // Insert only weak functions and merge them. By doing these second we
639 // create thunks to the strong function when possible. When two weak
640 // functions are identical, we create a new strong function with two weak
641 // weak thunks to it which are identical but not mergable.
642 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
643 E = Worklist.end(); I != E; ++I) {
644 if (!*I) continue;
645 Function *F = cast<Function>(*I);
646 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
647 F->mayBeOverridden()) {
648 ComparableFunction CF = ComparableFunction(F, TD);
649 Changed |= insert(CF);
650 }
651 }
652 DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
653 } while (!Deferred.empty());
654
655 FnSet.clear();
656
657 return Changed;
658 }
659
isEqual(const ComparableFunction & LHS,const ComparableFunction & RHS)660 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
661 const ComparableFunction &RHS) {
662 if (LHS.getFunc() == RHS.getFunc() &&
663 LHS.getHash() == RHS.getHash())
664 return true;
665 if (!LHS.getFunc() || !RHS.getFunc())
666 return false;
667
668 // One of these is a special "underlying pointer comparison only" object.
669 if (LHS.getTD() == ComparableFunction::LookupOnly ||
670 RHS.getTD() == ComparableFunction::LookupOnly)
671 return false;
672
673 assert(LHS.getTD() == RHS.getTD() &&
674 "Comparing functions for different targets");
675
676 return FunctionComparator(LHS.getTD(), LHS.getFunc(),
677 RHS.getFunc()).compare();
678 }
679
680 // Replace direct callers of Old with New.
replaceDirectCallers(Function * Old,Function * New)681 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
682 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
683 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
684 UI != UE;) {
685 Value::use_iterator TheIter = UI;
686 ++UI;
687 CallSite CS(*TheIter);
688 if (CS && CS.isCallee(TheIter)) {
689 remove(CS.getInstruction()->getParent()->getParent());
690 TheIter.getUse().set(BitcastNew);
691 }
692 }
693 }
694
695 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
writeThunkOrAlias(Function * F,Function * G)696 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
697 if (HasGlobalAliases && G->hasUnnamedAddr()) {
698 if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
699 G->hasWeakLinkage()) {
700 writeAlias(F, G);
701 return;
702 }
703 }
704
705 writeThunk(F, G);
706 }
707
708 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
709 // of G with bitcast(F). Deletes G.
writeThunk(Function * F,Function * G)710 void MergeFunctions::writeThunk(Function *F, Function *G) {
711 if (!G->mayBeOverridden()) {
712 // Redirect direct callers of G to F.
713 replaceDirectCallers(G, F);
714 }
715
716 // If G was internal then we may have replaced all uses of G with F. If so,
717 // stop here and delete G. There's no need for a thunk.
718 if (G->hasLocalLinkage() && G->use_empty()) {
719 G->eraseFromParent();
720 return;
721 }
722
723 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
724 G->getParent());
725 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
726 IRBuilder<false> Builder(BB);
727
728 SmallVector<Value *, 16> Args;
729 unsigned i = 0;
730 FunctionType *FFTy = F->getFunctionType();
731 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
732 AI != AE; ++AI) {
733 Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
734 ++i;
735 }
736
737 CallInst *CI = Builder.CreateCall(F, Args);
738 CI->setTailCall();
739 CI->setCallingConv(F->getCallingConv());
740 if (NewG->getReturnType()->isVoidTy()) {
741 Builder.CreateRetVoid();
742 } else {
743 Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
744 }
745
746 NewG->copyAttributesFrom(G);
747 NewG->takeName(G);
748 removeUsers(G);
749 G->replaceAllUsesWith(NewG);
750 G->eraseFromParent();
751
752 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
753 ++NumThunksWritten;
754 }
755
756 // Replace G with an alias to F and delete G.
writeAlias(Function * F,Function * G)757 void MergeFunctions::writeAlias(Function *F, Function *G) {
758 Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
759 GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
760 BitcastF, G->getParent());
761 F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
762 GA->takeName(G);
763 GA->setVisibility(G->getVisibility());
764 removeUsers(G);
765 G->replaceAllUsesWith(GA);
766 G->eraseFromParent();
767
768 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
769 ++NumAliasesWritten;
770 }
771
772 // Merge two equivalent functions. Upon completion, Function G is deleted.
mergeTwoFunctions(Function * F,Function * G)773 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
774 if (F->mayBeOverridden()) {
775 assert(G->mayBeOverridden());
776
777 if (HasGlobalAliases) {
778 // Make them both thunks to the same internal function.
779 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
780 F->getParent());
781 H->copyAttributesFrom(F);
782 H->takeName(F);
783 removeUsers(F);
784 F->replaceAllUsesWith(H);
785
786 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
787
788 writeAlias(F, G);
789 writeAlias(F, H);
790
791 F->setAlignment(MaxAlignment);
792 F->setLinkage(GlobalValue::PrivateLinkage);
793 } else {
794 // We can't merge them. Instead, pick one and update all direct callers
795 // to call it and hope that we improve the instruction cache hit rate.
796 replaceDirectCallers(G, F);
797 }
798
799 ++NumDoubleWeak;
800 } else {
801 writeThunkOrAlias(F, G);
802 }
803
804 ++NumFunctionsMerged;
805 }
806
807 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
808 // that was already inserted.
insert(ComparableFunction & NewF)809 bool MergeFunctions::insert(ComparableFunction &NewF) {
810 std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
811 if (Result.second) {
812 DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
813 return false;
814 }
815
816 const ComparableFunction &OldF = *Result.first;
817
818 // Never thunk a strong function to a weak function.
819 assert(!OldF.getFunc()->mayBeOverridden() ||
820 NewF.getFunc()->mayBeOverridden());
821
822 DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == "
823 << NewF.getFunc()->getName() << '\n');
824
825 Function *DeleteF = NewF.getFunc();
826 NewF.release();
827 mergeTwoFunctions(OldF.getFunc(), DeleteF);
828 return true;
829 }
830
831 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
832 // so that we'll look at it in the next round.
remove(Function * F)833 void MergeFunctions::remove(Function *F) {
834 // We need to make sure we remove F, not a function "equal" to F per the
835 // function equality comparator.
836 //
837 // The special "lookup only" ComparableFunction bypasses the expensive
838 // function comparison in favour of a pointer comparison on the underlying
839 // Function*'s.
840 ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
841 if (FnSet.erase(CF)) {
842 DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
843 Deferred.push_back(F);
844 }
845 }
846
847 // For each instruction used by the value, remove() the function that contains
848 // the instruction. This should happen right before a call to RAUW.
removeUsers(Value * V)849 void MergeFunctions::removeUsers(Value *V) {
850 std::vector<Value *> Worklist;
851 Worklist.push_back(V);
852 while (!Worklist.empty()) {
853 Value *V = Worklist.back();
854 Worklist.pop_back();
855
856 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
857 UI != UE; ++UI) {
858 Use &U = UI.getUse();
859 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
860 remove(I->getParent()->getParent());
861 } else if (isa<GlobalValue>(U.getUser())) {
862 // do nothing
863 } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
864 for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
865 CUI != CUE; ++CUI)
866 Worklist.push_back(*CUI);
867 }
868 }
869 }
870 }
871