• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/CodeGen/Passes.h"
17 #include "AllocationOrder.h"
18 #include "LiveDebugVariables.h"
19 #include "RegAllocBase.h"
20 #include "Spiller.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/CalcSpillWeights.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/LiveRangeEdit.h"
25 #include "llvm/CodeGen/LiveRegMatrix.h"
26 #include "llvm/CodeGen/LiveStackAnalysis.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocRegistry.h"
32 #include "llvm/CodeGen/VirtRegMap.h"
33 #include "llvm/PassAnalysisSupport.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include <cstdlib>
39 #include <queue>
40 
41 using namespace llvm;
42 
43 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
44                                       createBasicRegisterAllocator);
45 
46 namespace {
47   struct CompSpillWeight {
operator ()__anonc68d52670111::CompSpillWeight48     bool operator()(LiveInterval *A, LiveInterval *B) const {
49       return A->weight < B->weight;
50     }
51   };
52 }
53 
54 namespace {
55 /// RABasic provides a minimal implementation of the basic register allocation
56 /// algorithm. It prioritizes live virtual registers by spill weight and spills
57 /// whenever a register is unavailable. This is not practical in production but
58 /// provides a useful baseline both for measuring other allocators and comparing
59 /// the speed of the basic algorithm against other styles of allocators.
60 class RABasic : public MachineFunctionPass, public RegAllocBase
61 {
62   // context
63   MachineFunction *MF;
64 
65   // state
66   std::auto_ptr<Spiller> SpillerInstance;
67   std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
68                       CompSpillWeight> Queue;
69 
70   // Scratch space.  Allocated here to avoid repeated malloc calls in
71   // selectOrSplit().
72   BitVector UsableRegs;
73 
74 public:
75   RABasic();
76 
77   /// Return the pass name.
getPassName() const78   virtual const char* getPassName() const {
79     return "Basic Register Allocator";
80   }
81 
82   /// RABasic analysis usage.
83   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
84 
85   virtual void releaseMemory();
86 
spiller()87   virtual Spiller &spiller() { return *SpillerInstance; }
88 
getPriority(LiveInterval * LI)89   virtual float getPriority(LiveInterval *LI) { return LI->weight; }
90 
enqueue(LiveInterval * LI)91   virtual void enqueue(LiveInterval *LI) {
92     Queue.push(LI);
93   }
94 
dequeue()95   virtual LiveInterval *dequeue() {
96     if (Queue.empty())
97       return 0;
98     LiveInterval *LI = Queue.top();
99     Queue.pop();
100     return LI;
101   }
102 
103   virtual unsigned selectOrSplit(LiveInterval &VirtReg,
104                                  SmallVectorImpl<LiveInterval*> &SplitVRegs);
105 
106   /// Perform register allocation.
107   virtual bool runOnMachineFunction(MachineFunction &mf);
108 
109   // Helper for spilling all live virtual registers currently unified under preg
110   // that interfere with the most recently queried lvr.  Return true if spilling
111   // was successful, and append any new spilled/split intervals to splitLVRs.
112   bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
113                           SmallVectorImpl<LiveInterval*> &SplitVRegs);
114 
115   static char ID;
116 };
117 
118 char RABasic::ID = 0;
119 
120 } // end anonymous namespace
121 
RABasic()122 RABasic::RABasic(): MachineFunctionPass(ID) {
123   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
124   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
125   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
126   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
127   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
128   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
129   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
130   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
131   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
132   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
133   initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
134 }
135 
getAnalysisUsage(AnalysisUsage & AU) const136 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
137   AU.setPreservesCFG();
138   AU.addRequired<AliasAnalysis>();
139   AU.addPreserved<AliasAnalysis>();
140   AU.addRequired<LiveIntervals>();
141   AU.addPreserved<LiveIntervals>();
142   AU.addPreserved<SlotIndexes>();
143   AU.addRequired<LiveDebugVariables>();
144   AU.addPreserved<LiveDebugVariables>();
145   AU.addRequired<CalculateSpillWeights>();
146   AU.addRequired<LiveStacks>();
147   AU.addPreserved<LiveStacks>();
148   AU.addRequiredID(MachineDominatorsID);
149   AU.addPreservedID(MachineDominatorsID);
150   AU.addRequired<MachineLoopInfo>();
151   AU.addPreserved<MachineLoopInfo>();
152   AU.addRequired<VirtRegMap>();
153   AU.addPreserved<VirtRegMap>();
154   AU.addRequired<LiveRegMatrix>();
155   AU.addPreserved<LiveRegMatrix>();
156   MachineFunctionPass::getAnalysisUsage(AU);
157 }
158 
releaseMemory()159 void RABasic::releaseMemory() {
160   SpillerInstance.reset(0);
161 }
162 
163 
164 // Spill or split all live virtual registers currently unified under PhysReg
165 // that interfere with VirtReg. The newly spilled or split live intervals are
166 // returned by appending them to SplitVRegs.
spillInterferences(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<LiveInterval * > & SplitVRegs)167 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
168                                  SmallVectorImpl<LiveInterval*> &SplitVRegs) {
169   // Record each interference and determine if all are spillable before mutating
170   // either the union or live intervals.
171   SmallVector<LiveInterval*, 8> Intfs;
172 
173   // Collect interferences assigned to any alias of the physical register.
174   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
175     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
176     Q.collectInterferingVRegs();
177     if (Q.seenUnspillableVReg())
178       return false;
179     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
180       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
181       if (!Intf->isSpillable() || Intf->weight > VirtReg.weight)
182         return false;
183       Intfs.push_back(Intf);
184     }
185   }
186   DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
187         " interferences with " << VirtReg << "\n");
188   assert(!Intfs.empty() && "expected interference");
189 
190   // Spill each interfering vreg allocated to PhysReg or an alias.
191   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
192     LiveInterval &Spill = *Intfs[i];
193 
194     // Skip duplicates.
195     if (!VRM->hasPhys(Spill.reg))
196       continue;
197 
198     // Deallocate the interfering vreg by removing it from the union.
199     // A LiveInterval instance may not be in a union during modification!
200     Matrix->unassign(Spill);
201 
202     // Spill the extracted interval.
203     LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM);
204     spiller().spill(LRE);
205   }
206   return true;
207 }
208 
209 // Driver for the register assignment and splitting heuristics.
210 // Manages iteration over the LiveIntervalUnions.
211 //
212 // This is a minimal implementation of register assignment and splitting that
213 // spills whenever we run out of registers.
214 //
215 // selectOrSplit can only be called once per live virtual register. We then do a
216 // single interference test for each register the correct class until we find an
217 // available register. So, the number of interference tests in the worst case is
218 // |vregs| * |machineregs|. And since the number of interference tests is
219 // minimal, there is no value in caching them outside the scope of
220 // selectOrSplit().
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<LiveInterval * > & SplitVRegs)221 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
222                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
223   // Populate a list of physical register spill candidates.
224   SmallVector<unsigned, 8> PhysRegSpillCands;
225 
226   // Check for an available register in this class.
227   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
228   while (unsigned PhysReg = Order.next()) {
229     // Check for interference in PhysReg
230     switch (Matrix->checkInterference(VirtReg, PhysReg)) {
231     case LiveRegMatrix::IK_Free:
232       // PhysReg is available, allocate it.
233       return PhysReg;
234 
235     case LiveRegMatrix::IK_VirtReg:
236       // Only virtual registers in the way, we may be able to spill them.
237       PhysRegSpillCands.push_back(PhysReg);
238       continue;
239 
240     default:
241       // RegMask or RegUnit interference.
242       continue;
243     }
244   }
245 
246   // Try to spill another interfering reg with less spill weight.
247   for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
248        PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
249     if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs))
250       continue;
251 
252     assert(!Matrix->checkInterference(VirtReg, *PhysRegI) &&
253            "Interference after spill.");
254     // Tell the caller to allocate to this newly freed physical register.
255     return *PhysRegI;
256   }
257 
258   // No other spill candidates were found, so spill the current VirtReg.
259   DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
260   if (!VirtReg.isSpillable())
261     return ~0u;
262   LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM);
263   spiller().spill(LRE);
264 
265   // The live virtual register requesting allocation was spilled, so tell
266   // the caller not to allocate anything during this round.
267   return 0;
268 }
269 
runOnMachineFunction(MachineFunction & mf)270 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
271   DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
272                << "********** Function: "
273                << mf.getName() << '\n');
274 
275   MF = &mf;
276   RegAllocBase::init(getAnalysis<VirtRegMap>(),
277                      getAnalysis<LiveIntervals>(),
278                      getAnalysis<LiveRegMatrix>());
279   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
280 
281   allocatePhysRegs();
282 
283   // Diagnostic output before rewriting
284   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
285 
286   releaseMemory();
287   return true;
288 }
289 
createBasicRegisterAllocator()290 FunctionPass* llvm::createBasicRegisterAllocator()
291 {
292   return new RABasic();
293 }
294