1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a fast scheduler.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "pre-RA-sched"
15 #include "llvm/CodeGen/SchedulerRegistry.h"
16 #include "InstrEmitter.h"
17 #include "ScheduleDAGSDNodes.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 using namespace llvm;
30
31 STATISTIC(NumUnfolds, "Number of nodes unfolded");
32 STATISTIC(NumDups, "Number of duplicated nodes");
33 STATISTIC(NumPRCopies, "Number of physical copies");
34
35 static RegisterScheduler
36 fastDAGScheduler("fast", "Fast suboptimal list scheduling",
37 createFastDAGScheduler);
38 static RegisterScheduler
39 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
40 createDAGLinearizer);
41
42
43 namespace {
44 /// FastPriorityQueue - A degenerate priority queue that considers
45 /// all nodes to have the same priority.
46 ///
47 struct FastPriorityQueue {
48 SmallVector<SUnit *, 16> Queue;
49
empty__anon451d9e440111::FastPriorityQueue50 bool empty() const { return Queue.empty(); }
51
push__anon451d9e440111::FastPriorityQueue52 void push(SUnit *U) {
53 Queue.push_back(U);
54 }
55
pop__anon451d9e440111::FastPriorityQueue56 SUnit *pop() {
57 if (empty()) return NULL;
58 SUnit *V = Queue.back();
59 Queue.pop_back();
60 return V;
61 }
62 };
63
64 //===----------------------------------------------------------------------===//
65 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
66 ///
67 class ScheduleDAGFast : public ScheduleDAGSDNodes {
68 private:
69 /// AvailableQueue - The priority queue to use for the available SUnits.
70 FastPriorityQueue AvailableQueue;
71
72 /// LiveRegDefs - A set of physical registers and their definition
73 /// that are "live". These nodes must be scheduled before any other nodes that
74 /// modifies the registers can be scheduled.
75 unsigned NumLiveRegs;
76 std::vector<SUnit*> LiveRegDefs;
77 std::vector<unsigned> LiveRegCycles;
78
79 public:
ScheduleDAGFast(MachineFunction & mf)80 ScheduleDAGFast(MachineFunction &mf)
81 : ScheduleDAGSDNodes(mf) {}
82
83 void Schedule();
84
85 /// AddPred - adds a predecessor edge to SUnit SU.
86 /// This returns true if this is a new predecessor.
AddPred(SUnit * SU,const SDep & D)87 void AddPred(SUnit *SU, const SDep &D) {
88 SU->addPred(D);
89 }
90
91 /// RemovePred - removes a predecessor edge from SUnit SU.
92 /// This returns true if an edge was removed.
RemovePred(SUnit * SU,const SDep & D)93 void RemovePred(SUnit *SU, const SDep &D) {
94 SU->removePred(D);
95 }
96
97 private:
98 void ReleasePred(SUnit *SU, SDep *PredEdge);
99 void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
100 void ScheduleNodeBottomUp(SUnit*, unsigned);
101 SUnit *CopyAndMoveSuccessors(SUnit*);
102 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
103 const TargetRegisterClass*,
104 const TargetRegisterClass*,
105 SmallVector<SUnit*, 2>&);
106 bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
107 void ListScheduleBottomUp();
108
109 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
forceUnitLatencies() const110 bool forceUnitLatencies() const { return true; }
111 };
112 } // end anonymous namespace
113
114
115 /// Schedule - Schedule the DAG using list scheduling.
Schedule()116 void ScheduleDAGFast::Schedule() {
117 DEBUG(dbgs() << "********** List Scheduling **********\n");
118
119 NumLiveRegs = 0;
120 LiveRegDefs.resize(TRI->getNumRegs(), NULL);
121 LiveRegCycles.resize(TRI->getNumRegs(), 0);
122
123 // Build the scheduling graph.
124 BuildSchedGraph(NULL);
125
126 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
127 SUnits[su].dumpAll(this));
128
129 // Execute the actual scheduling loop.
130 ListScheduleBottomUp();
131 }
132
133 //===----------------------------------------------------------------------===//
134 // Bottom-Up Scheduling
135 //===----------------------------------------------------------------------===//
136
137 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
138 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
ReleasePred(SUnit * SU,SDep * PredEdge)139 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
140 SUnit *PredSU = PredEdge->getSUnit();
141
142 #ifndef NDEBUG
143 if (PredSU->NumSuccsLeft == 0) {
144 dbgs() << "*** Scheduling failed! ***\n";
145 PredSU->dump(this);
146 dbgs() << " has been released too many times!\n";
147 llvm_unreachable(0);
148 }
149 #endif
150 --PredSU->NumSuccsLeft;
151
152 // If all the node's successors are scheduled, this node is ready
153 // to be scheduled. Ignore the special EntrySU node.
154 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
155 PredSU->isAvailable = true;
156 AvailableQueue.push(PredSU);
157 }
158 }
159
ReleasePredecessors(SUnit * SU,unsigned CurCycle)160 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
161 // Bottom up: release predecessors
162 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
163 I != E; ++I) {
164 ReleasePred(SU, &*I);
165 if (I->isAssignedRegDep()) {
166 // This is a physical register dependency and it's impossible or
167 // expensive to copy the register. Make sure nothing that can
168 // clobber the register is scheduled between the predecessor and
169 // this node.
170 if (!LiveRegDefs[I->getReg()]) {
171 ++NumLiveRegs;
172 LiveRegDefs[I->getReg()] = I->getSUnit();
173 LiveRegCycles[I->getReg()] = CurCycle;
174 }
175 }
176 }
177 }
178
179 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
180 /// count of its predecessors. If a predecessor pending count is zero, add it to
181 /// the Available queue.
ScheduleNodeBottomUp(SUnit * SU,unsigned CurCycle)182 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
183 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
184 DEBUG(SU->dump(this));
185
186 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
187 SU->setHeightToAtLeast(CurCycle);
188 Sequence.push_back(SU);
189
190 ReleasePredecessors(SU, CurCycle);
191
192 // Release all the implicit physical register defs that are live.
193 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
194 I != E; ++I) {
195 if (I->isAssignedRegDep()) {
196 if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
197 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
198 assert(LiveRegDefs[I->getReg()] == SU &&
199 "Physical register dependency violated?");
200 --NumLiveRegs;
201 LiveRegDefs[I->getReg()] = NULL;
202 LiveRegCycles[I->getReg()] = 0;
203 }
204 }
205 }
206
207 SU->isScheduled = true;
208 }
209
210 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
211 /// successors to the newly created node.
CopyAndMoveSuccessors(SUnit * SU)212 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
213 if (SU->getNode()->getGluedNode())
214 return NULL;
215
216 SDNode *N = SU->getNode();
217 if (!N)
218 return NULL;
219
220 SUnit *NewSU;
221 bool TryUnfold = false;
222 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
223 EVT VT = N->getValueType(i);
224 if (VT == MVT::Glue)
225 return NULL;
226 else if (VT == MVT::Other)
227 TryUnfold = true;
228 }
229 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
230 const SDValue &Op = N->getOperand(i);
231 EVT VT = Op.getNode()->getValueType(Op.getResNo());
232 if (VT == MVT::Glue)
233 return NULL;
234 }
235
236 if (TryUnfold) {
237 SmallVector<SDNode*, 2> NewNodes;
238 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
239 return NULL;
240
241 DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
242 assert(NewNodes.size() == 2 && "Expected a load folding node!");
243
244 N = NewNodes[1];
245 SDNode *LoadNode = NewNodes[0];
246 unsigned NumVals = N->getNumValues();
247 unsigned OldNumVals = SU->getNode()->getNumValues();
248 for (unsigned i = 0; i != NumVals; ++i)
249 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
250 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
251 SDValue(LoadNode, 1));
252
253 SUnit *NewSU = newSUnit(N);
254 assert(N->getNodeId() == -1 && "Node already inserted!");
255 N->setNodeId(NewSU->NodeNum);
256
257 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
258 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
259 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
260 NewSU->isTwoAddress = true;
261 break;
262 }
263 }
264 if (MCID.isCommutable())
265 NewSU->isCommutable = true;
266
267 // LoadNode may already exist. This can happen when there is another
268 // load from the same location and producing the same type of value
269 // but it has different alignment or volatileness.
270 bool isNewLoad = true;
271 SUnit *LoadSU;
272 if (LoadNode->getNodeId() != -1) {
273 LoadSU = &SUnits[LoadNode->getNodeId()];
274 isNewLoad = false;
275 } else {
276 LoadSU = newSUnit(LoadNode);
277 LoadNode->setNodeId(LoadSU->NodeNum);
278 }
279
280 SDep ChainPred;
281 SmallVector<SDep, 4> ChainSuccs;
282 SmallVector<SDep, 4> LoadPreds;
283 SmallVector<SDep, 4> NodePreds;
284 SmallVector<SDep, 4> NodeSuccs;
285 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
286 I != E; ++I) {
287 if (I->isCtrl())
288 ChainPred = *I;
289 else if (I->getSUnit()->getNode() &&
290 I->getSUnit()->getNode()->isOperandOf(LoadNode))
291 LoadPreds.push_back(*I);
292 else
293 NodePreds.push_back(*I);
294 }
295 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
296 I != E; ++I) {
297 if (I->isCtrl())
298 ChainSuccs.push_back(*I);
299 else
300 NodeSuccs.push_back(*I);
301 }
302
303 if (ChainPred.getSUnit()) {
304 RemovePred(SU, ChainPred);
305 if (isNewLoad)
306 AddPred(LoadSU, ChainPred);
307 }
308 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
309 const SDep &Pred = LoadPreds[i];
310 RemovePred(SU, Pred);
311 if (isNewLoad) {
312 AddPred(LoadSU, Pred);
313 }
314 }
315 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
316 const SDep &Pred = NodePreds[i];
317 RemovePred(SU, Pred);
318 AddPred(NewSU, Pred);
319 }
320 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
321 SDep D = NodeSuccs[i];
322 SUnit *SuccDep = D.getSUnit();
323 D.setSUnit(SU);
324 RemovePred(SuccDep, D);
325 D.setSUnit(NewSU);
326 AddPred(SuccDep, D);
327 }
328 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
329 SDep D = ChainSuccs[i];
330 SUnit *SuccDep = D.getSUnit();
331 D.setSUnit(SU);
332 RemovePred(SuccDep, D);
333 if (isNewLoad) {
334 D.setSUnit(LoadSU);
335 AddPred(SuccDep, D);
336 }
337 }
338 if (isNewLoad) {
339 SDep D(LoadSU, SDep::Barrier);
340 D.setLatency(LoadSU->Latency);
341 AddPred(NewSU, D);
342 }
343
344 ++NumUnfolds;
345
346 if (NewSU->NumSuccsLeft == 0) {
347 NewSU->isAvailable = true;
348 return NewSU;
349 }
350 SU = NewSU;
351 }
352
353 DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
354 NewSU = Clone(SU);
355
356 // New SUnit has the exact same predecessors.
357 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
358 I != E; ++I)
359 if (!I->isArtificial())
360 AddPred(NewSU, *I);
361
362 // Only copy scheduled successors. Cut them from old node's successor
363 // list and move them over.
364 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
365 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
366 I != E; ++I) {
367 if (I->isArtificial())
368 continue;
369 SUnit *SuccSU = I->getSUnit();
370 if (SuccSU->isScheduled) {
371 SDep D = *I;
372 D.setSUnit(NewSU);
373 AddPred(SuccSU, D);
374 D.setSUnit(SU);
375 DelDeps.push_back(std::make_pair(SuccSU, D));
376 }
377 }
378 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
379 RemovePred(DelDeps[i].first, DelDeps[i].second);
380
381 ++NumDups;
382 return NewSU;
383 }
384
385 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
386 /// scheduled successors of the given SUnit to the last copy.
InsertCopiesAndMoveSuccs(SUnit * SU,unsigned Reg,const TargetRegisterClass * DestRC,const TargetRegisterClass * SrcRC,SmallVector<SUnit *,2> & Copies)387 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
388 const TargetRegisterClass *DestRC,
389 const TargetRegisterClass *SrcRC,
390 SmallVector<SUnit*, 2> &Copies) {
391 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(NULL));
392 CopyFromSU->CopySrcRC = SrcRC;
393 CopyFromSU->CopyDstRC = DestRC;
394
395 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(NULL));
396 CopyToSU->CopySrcRC = DestRC;
397 CopyToSU->CopyDstRC = SrcRC;
398
399 // Only copy scheduled successors. Cut them from old node's successor
400 // list and move them over.
401 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
402 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
403 I != E; ++I) {
404 if (I->isArtificial())
405 continue;
406 SUnit *SuccSU = I->getSUnit();
407 if (SuccSU->isScheduled) {
408 SDep D = *I;
409 D.setSUnit(CopyToSU);
410 AddPred(SuccSU, D);
411 DelDeps.push_back(std::make_pair(SuccSU, *I));
412 }
413 }
414 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
415 RemovePred(DelDeps[i].first, DelDeps[i].second);
416 }
417 SDep FromDep(SU, SDep::Data, Reg);
418 FromDep.setLatency(SU->Latency);
419 AddPred(CopyFromSU, FromDep);
420 SDep ToDep(CopyFromSU, SDep::Data, 0);
421 ToDep.setLatency(CopyFromSU->Latency);
422 AddPred(CopyToSU, ToDep);
423
424 Copies.push_back(CopyFromSU);
425 Copies.push_back(CopyToSU);
426
427 ++NumPRCopies;
428 }
429
430 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
431 /// definition of the specified node.
432 /// FIXME: Move to SelectionDAG?
getPhysicalRegisterVT(SDNode * N,unsigned Reg,const TargetInstrInfo * TII)433 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
434 const TargetInstrInfo *TII) {
435 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
436 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
437 unsigned NumRes = MCID.getNumDefs();
438 for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
439 if (Reg == *ImpDef)
440 break;
441 ++NumRes;
442 }
443 return N->getValueType(NumRes);
444 }
445
446 /// CheckForLiveRegDef - Return true and update live register vector if the
447 /// specified register def of the specified SUnit clobbers any "live" registers.
CheckForLiveRegDef(SUnit * SU,unsigned Reg,std::vector<SUnit * > & LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVector<unsigned,4> & LRegs,const TargetRegisterInfo * TRI)448 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
449 std::vector<SUnit*> &LiveRegDefs,
450 SmallSet<unsigned, 4> &RegAdded,
451 SmallVector<unsigned, 4> &LRegs,
452 const TargetRegisterInfo *TRI) {
453 bool Added = false;
454 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
455 if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
456 if (RegAdded.insert(*AI)) {
457 LRegs.push_back(*AI);
458 Added = true;
459 }
460 }
461 }
462 return Added;
463 }
464
465 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
466 /// scheduling of the given node to satisfy live physical register dependencies.
467 /// If the specific node is the last one that's available to schedule, do
468 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
DelayForLiveRegsBottomUp(SUnit * SU,SmallVector<unsigned,4> & LRegs)469 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
470 SmallVector<unsigned, 4> &LRegs){
471 if (NumLiveRegs == 0)
472 return false;
473
474 SmallSet<unsigned, 4> RegAdded;
475 // If this node would clobber any "live" register, then it's not ready.
476 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
477 I != E; ++I) {
478 if (I->isAssignedRegDep()) {
479 CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
480 RegAdded, LRegs, TRI);
481 }
482 }
483
484 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
485 if (Node->getOpcode() == ISD::INLINEASM) {
486 // Inline asm can clobber physical defs.
487 unsigned NumOps = Node->getNumOperands();
488 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
489 --NumOps; // Ignore the glue operand.
490
491 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
492 unsigned Flags =
493 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
494 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
495
496 ++i; // Skip the ID value.
497 if (InlineAsm::isRegDefKind(Flags) ||
498 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
499 InlineAsm::isClobberKind(Flags)) {
500 // Check for def of register or earlyclobber register.
501 for (; NumVals; --NumVals, ++i) {
502 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
503 if (TargetRegisterInfo::isPhysicalRegister(Reg))
504 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
505 }
506 } else
507 i += NumVals;
508 }
509 continue;
510 }
511 if (!Node->isMachineOpcode())
512 continue;
513 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
514 if (!MCID.ImplicitDefs)
515 continue;
516 for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
517 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
518 }
519 }
520 return !LRegs.empty();
521 }
522
523
524 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
525 /// schedulers.
ListScheduleBottomUp()526 void ScheduleDAGFast::ListScheduleBottomUp() {
527 unsigned CurCycle = 0;
528
529 // Release any predecessors of the special Exit node.
530 ReleasePredecessors(&ExitSU, CurCycle);
531
532 // Add root to Available queue.
533 if (!SUnits.empty()) {
534 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
535 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
536 RootSU->isAvailable = true;
537 AvailableQueue.push(RootSU);
538 }
539
540 // While Available queue is not empty, grab the node with the highest
541 // priority. If it is not ready put it back. Schedule the node.
542 SmallVector<SUnit*, 4> NotReady;
543 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
544 Sequence.reserve(SUnits.size());
545 while (!AvailableQueue.empty()) {
546 bool Delayed = false;
547 LRegsMap.clear();
548 SUnit *CurSU = AvailableQueue.pop();
549 while (CurSU) {
550 SmallVector<unsigned, 4> LRegs;
551 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
552 break;
553 Delayed = true;
554 LRegsMap.insert(std::make_pair(CurSU, LRegs));
555
556 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
557 NotReady.push_back(CurSU);
558 CurSU = AvailableQueue.pop();
559 }
560
561 // All candidates are delayed due to live physical reg dependencies.
562 // Try code duplication or inserting cross class copies
563 // to resolve it.
564 if (Delayed && !CurSU) {
565 if (!CurSU) {
566 // Try duplicating the nodes that produces these
567 // "expensive to copy" values to break the dependency. In case even
568 // that doesn't work, insert cross class copies.
569 SUnit *TrySU = NotReady[0];
570 SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
571 assert(LRegs.size() == 1 && "Can't handle this yet!");
572 unsigned Reg = LRegs[0];
573 SUnit *LRDef = LiveRegDefs[Reg];
574 EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
575 const TargetRegisterClass *RC =
576 TRI->getMinimalPhysRegClass(Reg, VT);
577 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
578
579 // If cross copy register class is the same as RC, then it must be
580 // possible copy the value directly. Do not try duplicate the def.
581 // If cross copy register class is not the same as RC, then it's
582 // possible to copy the value but it require cross register class copies
583 // and it is expensive.
584 // If cross copy register class is null, then it's not possible to copy
585 // the value at all.
586 SUnit *NewDef = 0;
587 if (DestRC != RC) {
588 NewDef = CopyAndMoveSuccessors(LRDef);
589 if (!DestRC && !NewDef)
590 report_fatal_error("Can't handle live physical "
591 "register dependency!");
592 }
593 if (!NewDef) {
594 // Issue copies, these can be expensive cross register class copies.
595 SmallVector<SUnit*, 2> Copies;
596 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
597 DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
598 << " to SU #" << Copies.front()->NodeNum << "\n");
599 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
600 NewDef = Copies.back();
601 }
602
603 DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
604 << " to SU #" << TrySU->NodeNum << "\n");
605 LiveRegDefs[Reg] = NewDef;
606 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
607 TrySU->isAvailable = false;
608 CurSU = NewDef;
609 }
610
611 if (!CurSU) {
612 llvm_unreachable("Unable to resolve live physical register dependencies!");
613 }
614 }
615
616 // Add the nodes that aren't ready back onto the available list.
617 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
618 NotReady[i]->isPending = false;
619 // May no longer be available due to backtracking.
620 if (NotReady[i]->isAvailable)
621 AvailableQueue.push(NotReady[i]);
622 }
623 NotReady.clear();
624
625 if (CurSU)
626 ScheduleNodeBottomUp(CurSU, CurCycle);
627 ++CurCycle;
628 }
629
630 // Reverse the order since it is bottom up.
631 std::reverse(Sequence.begin(), Sequence.end());
632
633 #ifndef NDEBUG
634 VerifyScheduledSequence(/*isBottomUp=*/true);
635 #endif
636 }
637
638
639 namespace {
640 //===----------------------------------------------------------------------===//
641 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
642 // DAG in topological order.
643 // IMPORTANT: this may not work for targets with phyreg dependency.
644 //
645 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
646 public:
ScheduleDAGLinearize(MachineFunction & mf)647 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
648
649 void Schedule();
650
651 MachineBasicBlock *EmitSchedule(MachineBasicBlock::iterator &InsertPos);
652
653 private:
654 std::vector<SDNode*> Sequence;
655 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user
656
657 void ScheduleNode(SDNode *N);
658 };
659 } // end anonymous namespace
660
ScheduleNode(SDNode * N)661 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
662 if (N->getNodeId() != 0)
663 llvm_unreachable(0);
664
665 if (!N->isMachineOpcode() &&
666 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
667 // These nodes do not need to be translated into MIs.
668 return;
669
670 DEBUG(dbgs() << "\n*** Scheduling: ");
671 DEBUG(N->dump(DAG));
672 Sequence.push_back(N);
673
674 unsigned NumOps = N->getNumOperands();
675 if (unsigned NumLeft = NumOps) {
676 SDNode *GluedOpN = 0;
677 do {
678 const SDValue &Op = N->getOperand(NumLeft-1);
679 SDNode *OpN = Op.getNode();
680
681 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
682 // Schedule glue operand right above N.
683 GluedOpN = OpN;
684 assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
685 OpN->setNodeId(0);
686 ScheduleNode(OpN);
687 continue;
688 }
689
690 if (OpN == GluedOpN)
691 // Glue operand is already scheduled.
692 continue;
693
694 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
695 if (DI != GluedMap.end() && DI->second != N)
696 // Users of glues are counted against the glued users.
697 OpN = DI->second;
698
699 unsigned Degree = OpN->getNodeId();
700 assert(Degree > 0 && "Predecessor over-released!");
701 OpN->setNodeId(--Degree);
702 if (Degree == 0)
703 ScheduleNode(OpN);
704 } while (--NumLeft);
705 }
706 }
707
708 /// findGluedUser - Find the representative use of a glue value by walking
709 /// the use chain.
findGluedUser(SDNode * N)710 static SDNode *findGluedUser(SDNode *N) {
711 while (SDNode *Glued = N->getGluedUser())
712 N = Glued;
713 return N;
714 }
715
Schedule()716 void ScheduleDAGLinearize::Schedule() {
717 DEBUG(dbgs() << "********** DAG Linearization **********\n");
718
719 SmallVector<SDNode*, 8> Glues;
720 unsigned DAGSize = 0;
721 for (SelectionDAG::allnodes_iterator I = DAG->allnodes_begin(),
722 E = DAG->allnodes_end(); I != E; ++I) {
723 SDNode *N = I;
724
725 // Use node id to record degree.
726 unsigned Degree = N->use_size();
727 N->setNodeId(Degree);
728 unsigned NumVals = N->getNumValues();
729 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
730 N->hasAnyUseOfValue(NumVals-1)) {
731 SDNode *User = findGluedUser(N);
732 if (User) {
733 Glues.push_back(N);
734 GluedMap.insert(std::make_pair(N, User));
735 }
736 }
737
738 if (N->isMachineOpcode() ||
739 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
740 ++DAGSize;
741 }
742
743 for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
744 SDNode *Glue = Glues[i];
745 SDNode *GUser = GluedMap[Glue];
746 unsigned Degree = Glue->getNodeId();
747 unsigned UDegree = GUser->getNodeId();
748
749 // Glue user must be scheduled together with the glue operand. So other
750 // users of the glue operand must be treated as its users.
751 SDNode *ImmGUser = Glue->getGluedUser();
752 for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
753 ui != ue; ++ui)
754 if (*ui == ImmGUser)
755 --Degree;
756 GUser->setNodeId(UDegree + Degree);
757 Glue->setNodeId(1);
758 }
759
760 Sequence.reserve(DAGSize);
761 ScheduleNode(DAG->getRoot().getNode());
762 }
763
764 MachineBasicBlock*
EmitSchedule(MachineBasicBlock::iterator & InsertPos)765 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
766 InstrEmitter Emitter(BB, InsertPos);
767 DenseMap<SDValue, unsigned> VRBaseMap;
768
769 DEBUG({
770 dbgs() << "\n*** Final schedule ***\n";
771 });
772
773 // FIXME: Handle dbg_values.
774 unsigned NumNodes = Sequence.size();
775 for (unsigned i = 0; i != NumNodes; ++i) {
776 SDNode *N = Sequence[NumNodes-i-1];
777 DEBUG(N->dump(DAG));
778 Emitter.EmitNode(N, false, false, VRBaseMap);
779 }
780
781 DEBUG(dbgs() << '\n');
782
783 InsertPos = Emitter.getInsertPos();
784 return Emitter.getBlock();
785 }
786
787 //===----------------------------------------------------------------------===//
788 // Public Constructor Functions
789 //===----------------------------------------------------------------------===//
790
791 llvm::ScheduleDAGSDNodes *
createFastDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level)792 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
793 return new ScheduleDAGFast(*IS->MF);
794 }
795
796 llvm::ScheduleDAGSDNodes *
createDAGLinearizer(SelectionDAGISel * IS,CodeGenOpt::Level)797 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
798 return new ScheduleDAGLinearize(*IS->MF);
799 }
800