1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "ScheduleDAGSDNodes.h"
17 #include "InstrEmitter.h"
18 #include "SDNodeDbgValue.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/MC/MCInstrItineraries.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetLowering.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 using namespace llvm;
37
38 STATISTIC(LoadsClustered, "Number of loads clustered together");
39
40 // This allows latency based scheduler to notice high latency instructions
41 // without a target itinerary. The choise if number here has more to do with
42 // balancing scheduler heursitics than with the actual machine latency.
43 static cl::opt<int> HighLatencyCycles(
44 "sched-high-latency-cycles", cl::Hidden, cl::init(10),
45 cl::desc("Roughly estimate the number of cycles that 'long latency'"
46 "instructions take for targets with no itinerary"));
47
ScheduleDAGSDNodes(MachineFunction & mf)48 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
49 : ScheduleDAG(mf), BB(0), DAG(0),
50 InstrItins(mf.getTarget().getInstrItineraryData()) {}
51
52 /// Run - perform scheduling.
53 ///
Run(SelectionDAG * dag,MachineBasicBlock * bb)54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55 BB = bb;
56 DAG = dag;
57
58 // Clear the scheduler's SUnit DAG.
59 ScheduleDAG::clearDAG();
60 Sequence.clear();
61
62 // Invoke the target's selection of scheduler.
63 Schedule();
64 }
65
66 /// NewSUnit - Creates a new SUnit and return a ptr to it.
67 ///
newSUnit(SDNode * N)68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69 #ifndef NDEBUG
70 const SUnit *Addr = 0;
71 if (!SUnits.empty())
72 Addr = &SUnits[0];
73 #endif
74 SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
75 assert((Addr == 0 || Addr == &SUnits[0]) &&
76 "SUnits std::vector reallocated on the fly!");
77 SUnits.back().OrigNode = &SUnits.back();
78 SUnit *SU = &SUnits.back();
79 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80 if (!N ||
81 (N->isMachineOpcode() &&
82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83 SU->SchedulingPref = Sched::None;
84 else
85 SU->SchedulingPref = TLI.getSchedulingPreference(N);
86 return SU;
87 }
88
Clone(SUnit * Old)89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90 SUnit *SU = newSUnit(Old->getNode());
91 SU->OrigNode = Old->OrigNode;
92 SU->Latency = Old->Latency;
93 SU->isVRegCycle = Old->isVRegCycle;
94 SU->isCall = Old->isCall;
95 SU->isCallOp = Old->isCallOp;
96 SU->isTwoAddress = Old->isTwoAddress;
97 SU->isCommutable = Old->isCommutable;
98 SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100 SU->isScheduleHigh = Old->isScheduleHigh;
101 SU->isScheduleLow = Old->isScheduleLow;
102 SU->SchedulingPref = Old->SchedulingPref;
103 Old->isCloned = true;
104 return SU;
105 }
106
107 /// CheckForPhysRegDependency - Check if the dependency between def and use of
108 /// a specified operand is a physical register dependency. If so, returns the
109 /// register and the cost of copying the register.
CheckForPhysRegDependency(SDNode * Def,SDNode * User,unsigned Op,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII,unsigned & PhysReg,int & Cost)110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111 const TargetRegisterInfo *TRI,
112 const TargetInstrInfo *TII,
113 unsigned &PhysReg, int &Cost) {
114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115 return;
116
117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118 if (TargetRegisterInfo::isVirtualRegister(Reg))
119 return;
120
121 unsigned ResNo = User->getOperand(2).getResNo();
122 if (Def->isMachineOpcode()) {
123 const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
124 if (ResNo >= II.getNumDefs() &&
125 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
126 PhysReg = Reg;
127 const TargetRegisterClass *RC =
128 TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
129 Cost = RC->getCopyCost();
130 }
131 }
132 }
133
134 // Helper for AddGlue to clone node operands.
CloneNodeWithValues(SDNode * N,SelectionDAG * DAG,SmallVectorImpl<EVT> & VTs,SDValue ExtraOper=SDValue ())135 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG,
136 SmallVectorImpl<EVT> &VTs,
137 SDValue ExtraOper = SDValue()) {
138 SmallVector<SDValue, 4> Ops;
139 for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
140 Ops.push_back(N->getOperand(I));
141
142 if (ExtraOper.getNode())
143 Ops.push_back(ExtraOper);
144
145 SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
146 MachineSDNode::mmo_iterator Begin = 0, End = 0;
147 MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
148
149 // Store memory references.
150 if (MN) {
151 Begin = MN->memoperands_begin();
152 End = MN->memoperands_end();
153 }
154
155 DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
156
157 // Reset the memory references
158 if (MN)
159 MN->setMemRefs(Begin, End);
160 }
161
AddGlue(SDNode * N,SDValue Glue,bool AddGlue,SelectionDAG * DAG)162 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
163 SmallVector<EVT, 4> VTs;
164 SDNode *GlueDestNode = Glue.getNode();
165
166 // Don't add glue from a node to itself.
167 if (GlueDestNode == N) return false;
168
169 // Don't add a glue operand to something that already uses glue.
170 if (GlueDestNode &&
171 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
172 return false;
173 }
174 // Don't add glue to something that already has a glue value.
175 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
176
177 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
178 VTs.push_back(N->getValueType(I));
179
180 if (AddGlue)
181 VTs.push_back(MVT::Glue);
182
183 CloneNodeWithValues(N, DAG, VTs, Glue);
184
185 return true;
186 }
187
188 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
189 // node even though simply shrinking the value list is sufficient.
RemoveUnusedGlue(SDNode * N,SelectionDAG * DAG)190 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
191 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
192 !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
193 "expected an unused glue value");
194
195 SmallVector<EVT, 4> VTs;
196 for (unsigned I = 0, E = N->getNumValues()-1; I != E; ++I)
197 VTs.push_back(N->getValueType(I));
198
199 CloneNodeWithValues(N, DAG, VTs);
200 }
201
202 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
203 /// This function finds loads of the same base and different offsets. If the
204 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
205 /// outputs to ensure they are scheduled together and in order. This
206 /// optimization may benefit some targets by improving cache locality.
ClusterNeighboringLoads(SDNode * Node)207 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
208 SDNode *Chain = 0;
209 unsigned NumOps = Node->getNumOperands();
210 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
211 Chain = Node->getOperand(NumOps-1).getNode();
212 if (!Chain)
213 return;
214
215 // Look for other loads of the same chain. Find loads that are loading from
216 // the same base pointer and different offsets.
217 SmallPtrSet<SDNode*, 16> Visited;
218 SmallVector<int64_t, 4> Offsets;
219 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
220 bool Cluster = false;
221 SDNode *Base = Node;
222 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
223 I != E; ++I) {
224 SDNode *User = *I;
225 if (User == Node || !Visited.insert(User))
226 continue;
227 int64_t Offset1, Offset2;
228 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
229 Offset1 == Offset2)
230 // FIXME: Should be ok if they addresses are identical. But earlier
231 // optimizations really should have eliminated one of the loads.
232 continue;
233 if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
234 Offsets.push_back(Offset1);
235 O2SMap.insert(std::make_pair(Offset2, User));
236 Offsets.push_back(Offset2);
237 if (Offset2 < Offset1)
238 Base = User;
239 Cluster = true;
240 }
241
242 if (!Cluster)
243 return;
244
245 // Sort them in increasing order.
246 std::sort(Offsets.begin(), Offsets.end());
247
248 // Check if the loads are close enough.
249 SmallVector<SDNode*, 4> Loads;
250 unsigned NumLoads = 0;
251 int64_t BaseOff = Offsets[0];
252 SDNode *BaseLoad = O2SMap[BaseOff];
253 Loads.push_back(BaseLoad);
254 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
255 int64_t Offset = Offsets[i];
256 SDNode *Load = O2SMap[Offset];
257 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
258 break; // Stop right here. Ignore loads that are further away.
259 Loads.push_back(Load);
260 ++NumLoads;
261 }
262
263 if (NumLoads == 0)
264 return;
265
266 // Cluster loads by adding MVT::Glue outputs and inputs. This also
267 // ensure they are scheduled in order of increasing addresses.
268 SDNode *Lead = Loads[0];
269 SDValue InGlue = SDValue(0, 0);
270 if (AddGlue(Lead, InGlue, true, DAG))
271 InGlue = SDValue(Lead, Lead->getNumValues() - 1);
272 for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
273 bool OutGlue = I < E - 1;
274 SDNode *Load = Loads[I];
275
276 // If AddGlue fails, we could leave an unsused glue value. This should not
277 // cause any
278 if (AddGlue(Load, InGlue, OutGlue, DAG)) {
279 if (OutGlue)
280 InGlue = SDValue(Load, Load->getNumValues() - 1);
281
282 ++LoadsClustered;
283 }
284 else if (!OutGlue && InGlue.getNode())
285 RemoveUnusedGlue(InGlue.getNode(), DAG);
286 }
287 }
288
289 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
290 ///
ClusterNodes()291 void ScheduleDAGSDNodes::ClusterNodes() {
292 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
293 E = DAG->allnodes_end(); NI != E; ++NI) {
294 SDNode *Node = &*NI;
295 if (!Node || !Node->isMachineOpcode())
296 continue;
297
298 unsigned Opc = Node->getMachineOpcode();
299 const MCInstrDesc &MCID = TII->get(Opc);
300 if (MCID.mayLoad())
301 // Cluster loads from "near" addresses into combined SUnits.
302 ClusterNeighboringLoads(Node);
303 }
304 }
305
BuildSchedUnits()306 void ScheduleDAGSDNodes::BuildSchedUnits() {
307 // During scheduling, the NodeId field of SDNode is used to map SDNodes
308 // to their associated SUnits by holding SUnits table indices. A value
309 // of -1 means the SDNode does not yet have an associated SUnit.
310 unsigned NumNodes = 0;
311 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
312 E = DAG->allnodes_end(); NI != E; ++NI) {
313 NI->setNodeId(-1);
314 ++NumNodes;
315 }
316
317 // Reserve entries in the vector for each of the SUnits we are creating. This
318 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
319 // invalidated.
320 // FIXME: Multiply by 2 because we may clone nodes during scheduling.
321 // This is a temporary workaround.
322 SUnits.reserve(NumNodes * 2);
323
324 // Add all nodes in depth first order.
325 SmallVector<SDNode*, 64> Worklist;
326 SmallPtrSet<SDNode*, 64> Visited;
327 Worklist.push_back(DAG->getRoot().getNode());
328 Visited.insert(DAG->getRoot().getNode());
329
330 SmallVector<SUnit*, 8> CallSUnits;
331 while (!Worklist.empty()) {
332 SDNode *NI = Worklist.pop_back_val();
333
334 // Add all operands to the worklist unless they've already been added.
335 for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
336 if (Visited.insert(NI->getOperand(i).getNode()))
337 Worklist.push_back(NI->getOperand(i).getNode());
338
339 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
340 continue;
341
342 // If this node has already been processed, stop now.
343 if (NI->getNodeId() != -1) continue;
344
345 SUnit *NodeSUnit = newSUnit(NI);
346
347 // See if anything is glued to this node, if so, add them to glued
348 // nodes. Nodes can have at most one glue input and one glue output. Glue
349 // is required to be the last operand and result of a node.
350
351 // Scan up to find glued preds.
352 SDNode *N = NI;
353 while (N->getNumOperands() &&
354 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
355 N = N->getOperand(N->getNumOperands()-1).getNode();
356 assert(N->getNodeId() == -1 && "Node already inserted!");
357 N->setNodeId(NodeSUnit->NodeNum);
358 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
359 NodeSUnit->isCall = true;
360 }
361
362 // Scan down to find any glued succs.
363 N = NI;
364 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
365 SDValue GlueVal(N, N->getNumValues()-1);
366
367 // There are either zero or one users of the Glue result.
368 bool HasGlueUse = false;
369 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
370 UI != E; ++UI)
371 if (GlueVal.isOperandOf(*UI)) {
372 HasGlueUse = true;
373 assert(N->getNodeId() == -1 && "Node already inserted!");
374 N->setNodeId(NodeSUnit->NodeNum);
375 N = *UI;
376 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
377 NodeSUnit->isCall = true;
378 break;
379 }
380 if (!HasGlueUse) break;
381 }
382
383 if (NodeSUnit->isCall)
384 CallSUnits.push_back(NodeSUnit);
385
386 // Schedule zero-latency TokenFactor below any nodes that may increase the
387 // schedule height. Otherwise, ancestors of the TokenFactor may appear to
388 // have false stalls.
389 if (NI->getOpcode() == ISD::TokenFactor)
390 NodeSUnit->isScheduleLow = true;
391
392 // If there are glue operands involved, N is now the bottom-most node
393 // of the sequence of nodes that are glued together.
394 // Update the SUnit.
395 NodeSUnit->setNode(N);
396 assert(N->getNodeId() == -1 && "Node already inserted!");
397 N->setNodeId(NodeSUnit->NodeNum);
398
399 // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
400 InitNumRegDefsLeft(NodeSUnit);
401
402 // Assign the Latency field of NodeSUnit using target-provided information.
403 computeLatency(NodeSUnit);
404 }
405
406 // Find all call operands.
407 while (!CallSUnits.empty()) {
408 SUnit *SU = CallSUnits.pop_back_val();
409 for (const SDNode *SUNode = SU->getNode(); SUNode;
410 SUNode = SUNode->getGluedNode()) {
411 if (SUNode->getOpcode() != ISD::CopyToReg)
412 continue;
413 SDNode *SrcN = SUNode->getOperand(2).getNode();
414 if (isPassiveNode(SrcN)) continue; // Not scheduled.
415 SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
416 SrcSU->isCallOp = true;
417 }
418 }
419 }
420
AddSchedEdges()421 void ScheduleDAGSDNodes::AddSchedEdges() {
422 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
423
424 // Check to see if the scheduler cares about latencies.
425 bool UnitLatencies = forceUnitLatencies();
426
427 // Pass 2: add the preds, succs, etc.
428 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
429 SUnit *SU = &SUnits[su];
430 SDNode *MainNode = SU->getNode();
431
432 if (MainNode->isMachineOpcode()) {
433 unsigned Opc = MainNode->getMachineOpcode();
434 const MCInstrDesc &MCID = TII->get(Opc);
435 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
436 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
437 SU->isTwoAddress = true;
438 break;
439 }
440 }
441 if (MCID.isCommutable())
442 SU->isCommutable = true;
443 }
444
445 // Find all predecessors and successors of the group.
446 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
447 if (N->isMachineOpcode() &&
448 TII->get(N->getMachineOpcode()).getImplicitDefs()) {
449 SU->hasPhysRegClobbers = true;
450 unsigned NumUsed = InstrEmitter::CountResults(N);
451 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
452 --NumUsed; // Skip over unused values at the end.
453 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
454 SU->hasPhysRegDefs = true;
455 }
456
457 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
458 SDNode *OpN = N->getOperand(i).getNode();
459 if (isPassiveNode(OpN)) continue; // Not scheduled.
460 SUnit *OpSU = &SUnits[OpN->getNodeId()];
461 assert(OpSU && "Node has no SUnit!");
462 if (OpSU == SU) continue; // In the same group.
463
464 EVT OpVT = N->getOperand(i).getValueType();
465 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
466 bool isChain = OpVT == MVT::Other;
467
468 unsigned PhysReg = 0;
469 int Cost = 1;
470 // Determine if this is a physical register dependency.
471 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
472 assert((PhysReg == 0 || !isChain) &&
473 "Chain dependence via physreg data?");
474 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
475 // emits a copy from the physical register to a virtual register unless
476 // it requires a cross class copy (cost < 0). That means we are only
477 // treating "expensive to copy" register dependency as physical register
478 // dependency. This may change in the future though.
479 if (Cost >= 0 && !StressSched)
480 PhysReg = 0;
481
482 // If this is a ctrl dep, latency is 1.
483 unsigned OpLatency = isChain ? 1 : OpSU->Latency;
484 // Special-case TokenFactor chains as zero-latency.
485 if(isChain && OpN->getOpcode() == ISD::TokenFactor)
486 OpLatency = 0;
487
488 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
489 : SDep(OpSU, SDep::Data, PhysReg);
490 Dep.setLatency(OpLatency);
491 if (!isChain && !UnitLatencies) {
492 computeOperandLatency(OpN, N, i, Dep);
493 ST.adjustSchedDependency(OpSU, SU, Dep);
494 }
495
496 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
497 // Multiple register uses are combined in the same SUnit. For example,
498 // we could have a set of glued nodes with all their defs consumed by
499 // another set of glued nodes. Register pressure tracking sees this as
500 // a single use, so to keep pressure balanced we reduce the defs.
501 //
502 // We can't tell (without more book-keeping) if this results from
503 // glued nodes or duplicate operands. As long as we don't reduce
504 // NumRegDefsLeft to zero, we handle the common cases well.
505 --OpSU->NumRegDefsLeft;
506 }
507 }
508 }
509 }
510 }
511
512 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
513 /// are input. This SUnit graph is similar to the SelectionDAG, but
514 /// excludes nodes that aren't interesting to scheduling, and represents
515 /// glued together nodes with a single SUnit.
BuildSchedGraph(AliasAnalysis * AA)516 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
517 // Cluster certain nodes which should be scheduled together.
518 ClusterNodes();
519 // Populate the SUnits array.
520 BuildSchedUnits();
521 // Compute all the scheduling dependencies between nodes.
522 AddSchedEdges();
523 }
524
525 // Initialize NumNodeDefs for the current Node's opcode.
InitNodeNumDefs()526 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
527 // Check for phys reg copy.
528 if (!Node)
529 return;
530
531 if (!Node->isMachineOpcode()) {
532 if (Node->getOpcode() == ISD::CopyFromReg)
533 NodeNumDefs = 1;
534 else
535 NodeNumDefs = 0;
536 return;
537 }
538 unsigned POpc = Node->getMachineOpcode();
539 if (POpc == TargetOpcode::IMPLICIT_DEF) {
540 // No register need be allocated for this.
541 NodeNumDefs = 0;
542 return;
543 }
544 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
545 // Some instructions define regs that are not represented in the selection DAG
546 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
547 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
548 DefIdx = 0;
549 }
550
551 // Construct a RegDefIter for this SUnit and find the first valid value.
RegDefIter(const SUnit * SU,const ScheduleDAGSDNodes * SD)552 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
553 const ScheduleDAGSDNodes *SD)
554 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
555 InitNodeNumDefs();
556 Advance();
557 }
558
559 // Advance to the next valid value defined by the SUnit.
Advance()560 void ScheduleDAGSDNodes::RegDefIter::Advance() {
561 for (;Node;) { // Visit all glued nodes.
562 for (;DefIdx < NodeNumDefs; ++DefIdx) {
563 if (!Node->hasAnyUseOfValue(DefIdx))
564 continue;
565 ValueType = Node->getSimpleValueType(DefIdx);
566 ++DefIdx;
567 return; // Found a normal regdef.
568 }
569 Node = Node->getGluedNode();
570 if (Node == NULL) {
571 return; // No values left to visit.
572 }
573 InitNodeNumDefs();
574 }
575 }
576
InitNumRegDefsLeft(SUnit * SU)577 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
578 assert(SU->NumRegDefsLeft == 0 && "expect a new node");
579 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
580 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
581 ++SU->NumRegDefsLeft;
582 }
583 }
584
computeLatency(SUnit * SU)585 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
586 SDNode *N = SU->getNode();
587
588 // TokenFactor operands are considered zero latency, and some schedulers
589 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
590 // whenever node latency is nonzero.
591 if (N && N->getOpcode() == ISD::TokenFactor) {
592 SU->Latency = 0;
593 return;
594 }
595
596 // Check to see if the scheduler cares about latencies.
597 if (forceUnitLatencies()) {
598 SU->Latency = 1;
599 return;
600 }
601
602 if (!InstrItins || InstrItins->isEmpty()) {
603 if (N && N->isMachineOpcode() &&
604 TII->isHighLatencyDef(N->getMachineOpcode()))
605 SU->Latency = HighLatencyCycles;
606 else
607 SU->Latency = 1;
608 return;
609 }
610
611 // Compute the latency for the node. We use the sum of the latencies for
612 // all nodes glued together into this SUnit.
613 SU->Latency = 0;
614 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
615 if (N->isMachineOpcode())
616 SU->Latency += TII->getInstrLatency(InstrItins, N);
617 }
618
computeOperandLatency(SDNode * Def,SDNode * Use,unsigned OpIdx,SDep & dep) const619 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
620 unsigned OpIdx, SDep& dep) const{
621 // Check to see if the scheduler cares about latencies.
622 if (forceUnitLatencies())
623 return;
624
625 if (dep.getKind() != SDep::Data)
626 return;
627
628 unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
629 if (Use->isMachineOpcode())
630 // Adjust the use operand index by num of defs.
631 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
632 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
633 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
634 !BB->succ_empty()) {
635 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
636 if (TargetRegisterInfo::isVirtualRegister(Reg))
637 // This copy is a liveout value. It is likely coalesced, so reduce the
638 // latency so not to penalize the def.
639 // FIXME: need target specific adjustment here?
640 Latency = (Latency > 1) ? Latency - 1 : 1;
641 }
642 if (Latency >= 0)
643 dep.setLatency(Latency);
644 }
645
dumpNode(const SUnit * SU) const646 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
647 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
648 if (!SU->getNode()) {
649 dbgs() << "PHYS REG COPY\n";
650 return;
651 }
652
653 SU->getNode()->dump(DAG);
654 dbgs() << "\n";
655 SmallVector<SDNode *, 4> GluedNodes;
656 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
657 GluedNodes.push_back(N);
658 while (!GluedNodes.empty()) {
659 dbgs() << " ";
660 GluedNodes.back()->dump(DAG);
661 dbgs() << "\n";
662 GluedNodes.pop_back();
663 }
664 #endif
665 }
666
667 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpSchedule() const668 void ScheduleDAGSDNodes::dumpSchedule() const {
669 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
670 if (SUnit *SU = Sequence[i])
671 SU->dump(this);
672 else
673 dbgs() << "**** NOOP ****\n";
674 }
675 }
676 #endif
677
678 #ifndef NDEBUG
679 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
680 /// their state is consistent with the nodes listed in Sequence.
681 ///
VerifyScheduledSequence(bool isBottomUp)682 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
683 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
684 unsigned Noops = 0;
685 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
686 if (!Sequence[i])
687 ++Noops;
688 assert(Sequence.size() - Noops == ScheduledNodes &&
689 "The number of nodes scheduled doesn't match the expected number!");
690 }
691 #endif // NDEBUG
692
693 namespace {
694 struct OrderSorter {
operator ()__anon818a5c460111::OrderSorter695 bool operator()(const std::pair<unsigned, MachineInstr*> &A,
696 const std::pair<unsigned, MachineInstr*> &B) {
697 return A.first < B.first;
698 }
699 };
700 }
701
702 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
ProcessSDDbgValues(SDNode * N,SelectionDAG * DAG,InstrEmitter & Emitter,SmallVector<std::pair<unsigned,MachineInstr * >,32> & Orders,DenseMap<SDValue,unsigned> & VRBaseMap,unsigned Order)703 static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
704 InstrEmitter &Emitter,
705 SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
706 DenseMap<SDValue, unsigned> &VRBaseMap,
707 unsigned Order) {
708 if (!N->getHasDebugValue())
709 return;
710
711 // Opportunistically insert immediate dbg_value uses, i.e. those with source
712 // order number right after the N.
713 MachineBasicBlock *BB = Emitter.getBlock();
714 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
715 ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
716 for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
717 if (DVs[i]->isInvalidated())
718 continue;
719 unsigned DVOrder = DVs[i]->getOrder();
720 if (!Order || DVOrder == ++Order) {
721 MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
722 if (DbgMI) {
723 Orders.push_back(std::make_pair(DVOrder, DbgMI));
724 BB->insert(InsertPos, DbgMI);
725 }
726 DVs[i]->setIsInvalidated();
727 }
728 }
729 }
730
731 // ProcessSourceNode - Process nodes with source order numbers. These are added
732 // to a vector which EmitSchedule uses to determine how to insert dbg_value
733 // instructions in the right order.
ProcessSourceNode(SDNode * N,SelectionDAG * DAG,InstrEmitter & Emitter,DenseMap<SDValue,unsigned> & VRBaseMap,SmallVector<std::pair<unsigned,MachineInstr * >,32> & Orders,SmallSet<unsigned,8> & Seen)734 static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
735 InstrEmitter &Emitter,
736 DenseMap<SDValue, unsigned> &VRBaseMap,
737 SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
738 SmallSet<unsigned, 8> &Seen) {
739 unsigned Order = DAG->GetOrdering(N);
740 if (!Order || !Seen.insert(Order)) {
741 // Process any valid SDDbgValues even if node does not have any order
742 // assigned.
743 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
744 return;
745 }
746
747 MachineBasicBlock *BB = Emitter.getBlock();
748 if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
749 // Did not insert any instruction.
750 Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
751 return;
752 }
753
754 Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
755 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
756 }
757
758 void ScheduleDAGSDNodes::
EmitPhysRegCopy(SUnit * SU,DenseMap<SUnit *,unsigned> & VRBaseMap,MachineBasicBlock::iterator InsertPos)759 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
760 MachineBasicBlock::iterator InsertPos) {
761 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
762 I != E; ++I) {
763 if (I->isCtrl()) continue; // ignore chain preds
764 if (I->getSUnit()->CopyDstRC) {
765 // Copy to physical register.
766 DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
767 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
768 // Find the destination physical register.
769 unsigned Reg = 0;
770 for (SUnit::const_succ_iterator II = SU->Succs.begin(),
771 EE = SU->Succs.end(); II != EE; ++II) {
772 if (II->isCtrl()) continue; // ignore chain preds
773 if (II->getReg()) {
774 Reg = II->getReg();
775 break;
776 }
777 }
778 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
779 .addReg(VRI->second);
780 } else {
781 // Copy from physical register.
782 assert(I->getReg() && "Unknown physical register!");
783 unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
784 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
785 (void)isNew; // Silence compiler warning.
786 assert(isNew && "Node emitted out of order - early");
787 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
788 .addReg(I->getReg());
789 }
790 break;
791 }
792 }
793
794 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
795 /// InsertPos and MachineBasicBlock that contains this insertion
796 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
797 /// not necessarily refer to returned BB. The emitter may split blocks.
798 MachineBasicBlock *ScheduleDAGSDNodes::
EmitSchedule(MachineBasicBlock::iterator & InsertPos)799 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
800 InstrEmitter Emitter(BB, InsertPos);
801 DenseMap<SDValue, unsigned> VRBaseMap;
802 DenseMap<SUnit*, unsigned> CopyVRBaseMap;
803 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
804 SmallSet<unsigned, 8> Seen;
805 bool HasDbg = DAG->hasDebugValues();
806
807 // If this is the first BB, emit byval parameter dbg_value's.
808 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
809 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
810 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
811 for (; PDI != PDE; ++PDI) {
812 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
813 if (DbgMI)
814 BB->insert(InsertPos, DbgMI);
815 }
816 }
817
818 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
819 SUnit *SU = Sequence[i];
820 if (!SU) {
821 // Null SUnit* is a noop.
822 TII->insertNoop(*Emitter.getBlock(), InsertPos);
823 continue;
824 }
825
826 // For pre-regalloc scheduling, create instructions corresponding to the
827 // SDNode and any glued SDNodes and append them to the block.
828 if (!SU->getNode()) {
829 // Emit a copy.
830 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
831 continue;
832 }
833
834 SmallVector<SDNode *, 4> GluedNodes;
835 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
836 GluedNodes.push_back(N);
837 while (!GluedNodes.empty()) {
838 SDNode *N = GluedNodes.back();
839 Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
840 VRBaseMap);
841 // Remember the source order of the inserted instruction.
842 if (HasDbg)
843 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
844 GluedNodes.pop_back();
845 }
846 Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
847 VRBaseMap);
848 // Remember the source order of the inserted instruction.
849 if (HasDbg)
850 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
851 Seen);
852 }
853
854 // Insert all the dbg_values which have not already been inserted in source
855 // order sequence.
856 if (HasDbg) {
857 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
858
859 // Sort the source order instructions and use the order to insert debug
860 // values.
861 std::sort(Orders.begin(), Orders.end(), OrderSorter());
862
863 SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
864 SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
865 // Now emit the rest according to source order.
866 unsigned LastOrder = 0;
867 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
868 unsigned Order = Orders[i].first;
869 MachineInstr *MI = Orders[i].second;
870 // Insert all SDDbgValue's whose order(s) are before "Order".
871 if (!MI)
872 continue;
873 for (; DI != DE &&
874 (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
875 if ((*DI)->isInvalidated())
876 continue;
877 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
878 if (DbgMI) {
879 if (!LastOrder)
880 // Insert to start of the BB (after PHIs).
881 BB->insert(BBBegin, DbgMI);
882 else {
883 // Insert at the instruction, which may be in a different
884 // block, if the block was split by a custom inserter.
885 MachineBasicBlock::iterator Pos = MI;
886 MI->getParent()->insert(llvm::next(Pos), DbgMI);
887 }
888 }
889 }
890 LastOrder = Order;
891 }
892 // Add trailing DbgValue's before the terminator. FIXME: May want to add
893 // some of them before one or more conditional branches?
894 SmallVector<MachineInstr*, 8> DbgMIs;
895 while (DI != DE) {
896 if (!(*DI)->isInvalidated())
897 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
898 DbgMIs.push_back(DbgMI);
899 ++DI;
900 }
901
902 MachineBasicBlock *InsertBB = Emitter.getBlock();
903 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
904 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
905 }
906
907 InsertPos = Emitter.getInsertPos();
908 return Emitter.getBlock();
909 }
910
911 /// Return the basic block label.
getDAGName() const912 std::string ScheduleDAGSDNodes::getDAGName() const {
913 return "sunit-dag." + BB->getFullName();
914 }
915