1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "isel"
15 #include "llvm/CodeGen/SelectionDAGISel.h"
16 #include "ScheduleDAGSDNodes.h"
17 #include "SelectionDAGBuilder.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/FastISel.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/GCMetadata.h"
26 #include "llvm/CodeGen/GCStrategy.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33 #include "llvm/CodeGen/SchedulerRegistry.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/DebugInfo.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Timer.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLibraryInfo.h"
52 #include "llvm/Target/TargetLowering.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/Target/TargetRegisterInfo.h"
56 #include "llvm/Target/TargetSubtargetInfo.h"
57 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
58 #include <algorithm>
59 using namespace llvm;
60
61 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
62 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
63 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
64 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
65 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
66
67 #ifndef NDEBUG
68 static cl::opt<bool>
69 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
70 cl::desc("Enable extra verbose messages in the \"fast\" "
71 "instruction selector"));
72 // Terminators
73 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
74 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
75 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
76 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
77 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
78 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
79 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
80
81 // Standard binary operators...
82 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
83 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
84 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
85 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
86 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
87 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
88 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
89 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
90 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
91 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
92 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
93 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
94
95 // Logical operators...
96 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
97 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
98 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
99
100 // Memory instructions...
101 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
102 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
103 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
104 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
105 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
106 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
107 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
108
109 // Convert instructions...
110 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
111 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
112 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
113 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
114 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
115 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
116 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
117 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
118 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
119 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
120 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
121 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
122
123 // Other instructions...
124 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
125 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
126 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
127 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
128 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
129 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
130 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
131 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
132 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
133 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
134 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
135 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
136 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
137 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
138 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
139 #endif
140
141 static cl::opt<bool>
142 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
143 cl::desc("Enable verbose messages in the \"fast\" "
144 "instruction selector"));
145 static cl::opt<bool>
146 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
147 cl::desc("Enable abort calls when \"fast\" instruction selection "
148 "fails to lower an instruction"));
149 static cl::opt<bool>
150 EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
151 cl::desc("Enable abort calls when \"fast\" instruction selection "
152 "fails to lower a formal argument"));
153
154 static cl::opt<bool>
155 UseMBPI("use-mbpi",
156 cl::desc("use Machine Branch Probability Info"),
157 cl::init(true), cl::Hidden);
158
159 #ifndef NDEBUG
160 static cl::opt<bool>
161 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
162 cl::desc("Pop up a window to show dags before the first "
163 "dag combine pass"));
164 static cl::opt<bool>
165 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
166 cl::desc("Pop up a window to show dags before legalize types"));
167 static cl::opt<bool>
168 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
169 cl::desc("Pop up a window to show dags before legalize"));
170 static cl::opt<bool>
171 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
172 cl::desc("Pop up a window to show dags before the second "
173 "dag combine pass"));
174 static cl::opt<bool>
175 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
176 cl::desc("Pop up a window to show dags before the post legalize types"
177 " dag combine pass"));
178 static cl::opt<bool>
179 ViewISelDAGs("view-isel-dags", cl::Hidden,
180 cl::desc("Pop up a window to show isel dags as they are selected"));
181 static cl::opt<bool>
182 ViewSchedDAGs("view-sched-dags", cl::Hidden,
183 cl::desc("Pop up a window to show sched dags as they are processed"));
184 static cl::opt<bool>
185 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
186 cl::desc("Pop up a window to show SUnit dags after they are processed"));
187 #else
188 static const bool ViewDAGCombine1 = false,
189 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
190 ViewDAGCombine2 = false,
191 ViewDAGCombineLT = false,
192 ViewISelDAGs = false, ViewSchedDAGs = false,
193 ViewSUnitDAGs = false;
194 #endif
195
196 //===---------------------------------------------------------------------===//
197 ///
198 /// RegisterScheduler class - Track the registration of instruction schedulers.
199 ///
200 //===---------------------------------------------------------------------===//
201 MachinePassRegistry RegisterScheduler::Registry;
202
203 //===---------------------------------------------------------------------===//
204 ///
205 /// ISHeuristic command line option for instruction schedulers.
206 ///
207 //===---------------------------------------------------------------------===//
208 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
209 RegisterPassParser<RegisterScheduler> >
210 ISHeuristic("pre-RA-sched",
211 cl::init(&createDefaultScheduler),
212 cl::desc("Instruction schedulers available (before register"
213 " allocation):"));
214
215 static RegisterScheduler
216 defaultListDAGScheduler("default", "Best scheduler for the target",
217 createDefaultScheduler);
218
219 namespace llvm {
220 //===--------------------------------------------------------------------===//
221 /// createDefaultScheduler - This creates an instruction scheduler appropriate
222 /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)223 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
224 CodeGenOpt::Level OptLevel) {
225 const TargetLowering &TLI = IS->getTargetLowering();
226 const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
227
228 if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
229 TLI.getSchedulingPreference() == Sched::Source)
230 return createSourceListDAGScheduler(IS, OptLevel);
231 if (TLI.getSchedulingPreference() == Sched::RegPressure)
232 return createBURRListDAGScheduler(IS, OptLevel);
233 if (TLI.getSchedulingPreference() == Sched::Hybrid)
234 return createHybridListDAGScheduler(IS, OptLevel);
235 if (TLI.getSchedulingPreference() == Sched::VLIW)
236 return createVLIWDAGScheduler(IS, OptLevel);
237 assert(TLI.getSchedulingPreference() == Sched::ILP &&
238 "Unknown sched type!");
239 return createILPListDAGScheduler(IS, OptLevel);
240 }
241 }
242
243 // EmitInstrWithCustomInserter - This method should be implemented by targets
244 // that mark instructions with the 'usesCustomInserter' flag. These
245 // instructions are special in various ways, which require special support to
246 // insert. The specified MachineInstr is created but not inserted into any
247 // basic blocks, and this method is called to expand it into a sequence of
248 // instructions, potentially also creating new basic blocks and control flow.
249 // When new basic blocks are inserted and the edges from MBB to its successors
250 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
251 // DenseMap.
252 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const253 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
254 MachineBasicBlock *MBB) const {
255 #ifndef NDEBUG
256 dbgs() << "If a target marks an instruction with "
257 "'usesCustomInserter', it must implement "
258 "TargetLowering::EmitInstrWithCustomInserter!";
259 #endif
260 llvm_unreachable(0);
261 }
262
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const263 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
264 SDNode *Node) const {
265 assert(!MI->hasPostISelHook() &&
266 "If a target marks an instruction with 'hasPostISelHook', "
267 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
268 }
269
270 //===----------------------------------------------------------------------===//
271 // SelectionDAGISel code
272 //===----------------------------------------------------------------------===//
273
SelectionDAGISel(const TargetMachine & tm,CodeGenOpt::Level OL)274 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
275 CodeGenOpt::Level OL) :
276 MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
277 FuncInfo(new FunctionLoweringInfo(TLI)),
278 CurDAG(new SelectionDAG(tm, OL)),
279 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
280 GFI(),
281 OptLevel(OL),
282 DAGSize(0) {
283 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
284 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
285 initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
286 initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
287 }
288
~SelectionDAGISel()289 SelectionDAGISel::~SelectionDAGISel() {
290 delete SDB;
291 delete CurDAG;
292 delete FuncInfo;
293 }
294
getAnalysisUsage(AnalysisUsage & AU) const295 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
296 AU.addRequired<AliasAnalysis>();
297 AU.addPreserved<AliasAnalysis>();
298 AU.addRequired<GCModuleInfo>();
299 AU.addPreserved<GCModuleInfo>();
300 AU.addRequired<TargetLibraryInfo>();
301 if (UseMBPI && OptLevel != CodeGenOpt::None)
302 AU.addRequired<BranchProbabilityInfo>();
303 MachineFunctionPass::getAnalysisUsage(AU);
304 }
305
306 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
307 /// may trap on it. In this case we have to split the edge so that the path
308 /// through the predecessor block that doesn't go to the phi block doesn't
309 /// execute the possibly trapping instruction.
310 ///
311 /// This is required for correctness, so it must be done at -O0.
312 ///
SplitCriticalSideEffectEdges(Function & Fn,Pass * SDISel)313 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
314 // Loop for blocks with phi nodes.
315 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
316 PHINode *PN = dyn_cast<PHINode>(BB->begin());
317 if (PN == 0) continue;
318
319 ReprocessBlock:
320 // For each block with a PHI node, check to see if any of the input values
321 // are potentially trapping constant expressions. Constant expressions are
322 // the only potentially trapping value that can occur as the argument to a
323 // PHI.
324 for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
325 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
326 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
327 if (CE == 0 || !CE->canTrap()) continue;
328
329 // The only case we have to worry about is when the edge is critical.
330 // Since this block has a PHI Node, we assume it has multiple input
331 // edges: check to see if the pred has multiple successors.
332 BasicBlock *Pred = PN->getIncomingBlock(i);
333 if (Pred->getTerminator()->getNumSuccessors() == 1)
334 continue;
335
336 // Okay, we have to split this edge.
337 SplitCriticalEdge(Pred->getTerminator(),
338 GetSuccessorNumber(Pred, BB), SDISel, true);
339 goto ReprocessBlock;
340 }
341 }
342 }
343
runOnMachineFunction(MachineFunction & mf)344 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
345 // Do some sanity-checking on the command-line options.
346 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
347 "-fast-isel-verbose requires -fast-isel");
348 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
349 "-fast-isel-abort requires -fast-isel");
350
351 const Function &Fn = *mf.getFunction();
352 const TargetInstrInfo &TII = *TM.getInstrInfo();
353 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
354
355 MF = &mf;
356 RegInfo = &MF->getRegInfo();
357 AA = &getAnalysis<AliasAnalysis>();
358 LibInfo = &getAnalysis<TargetLibraryInfo>();
359 TTI = getAnalysisIfAvailable<TargetTransformInfo>();
360 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
361
362 TargetSubtargetInfo &ST =
363 const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
364 ST.resetSubtargetFeatures(MF);
365 TM.resetTargetOptions(MF);
366
367 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
368
369 SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
370
371 CurDAG->init(*MF, TTI);
372 FuncInfo->set(Fn, *MF);
373
374 if (UseMBPI && OptLevel != CodeGenOpt::None)
375 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
376 else
377 FuncInfo->BPI = 0;
378
379 SDB->init(GFI, *AA, LibInfo);
380
381 MF->setHasMSInlineAsm(false);
382 SelectAllBasicBlocks(Fn);
383
384 // If the first basic block in the function has live ins that need to be
385 // copied into vregs, emit the copies into the top of the block before
386 // emitting the code for the block.
387 MachineBasicBlock *EntryMBB = MF->begin();
388 RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
389
390 DenseMap<unsigned, unsigned> LiveInMap;
391 if (!FuncInfo->ArgDbgValues.empty())
392 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
393 E = RegInfo->livein_end(); LI != E; ++LI)
394 if (LI->second)
395 LiveInMap.insert(std::make_pair(LI->first, LI->second));
396
397 // Insert DBG_VALUE instructions for function arguments to the entry block.
398 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
399 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
400 unsigned Reg = MI->getOperand(0).getReg();
401 if (TargetRegisterInfo::isPhysicalRegister(Reg))
402 EntryMBB->insert(EntryMBB->begin(), MI);
403 else {
404 MachineInstr *Def = RegInfo->getVRegDef(Reg);
405 MachineBasicBlock::iterator InsertPos = Def;
406 // FIXME: VR def may not be in entry block.
407 Def->getParent()->insert(llvm::next(InsertPos), MI);
408 }
409
410 // If Reg is live-in then update debug info to track its copy in a vreg.
411 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
412 if (LDI != LiveInMap.end()) {
413 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
414 MachineBasicBlock::iterator InsertPos = Def;
415 const MDNode *Variable =
416 MI->getOperand(MI->getNumOperands()-1).getMetadata();
417 unsigned Offset = MI->getOperand(1).getImm();
418 // Def is never a terminator here, so it is ok to increment InsertPos.
419 BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
420 TII.get(TargetOpcode::DBG_VALUE))
421 .addReg(LDI->second, RegState::Debug)
422 .addImm(Offset).addMetadata(Variable);
423
424 // If this vreg is directly copied into an exported register then
425 // that COPY instructions also need DBG_VALUE, if it is the only
426 // user of LDI->second.
427 MachineInstr *CopyUseMI = NULL;
428 for (MachineRegisterInfo::use_iterator
429 UI = RegInfo->use_begin(LDI->second);
430 MachineInstr *UseMI = UI.skipInstruction();) {
431 if (UseMI->isDebugValue()) continue;
432 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
433 CopyUseMI = UseMI; continue;
434 }
435 // Otherwise this is another use or second copy use.
436 CopyUseMI = NULL; break;
437 }
438 if (CopyUseMI) {
439 MachineInstr *NewMI =
440 BuildMI(*MF, CopyUseMI->getDebugLoc(),
441 TII.get(TargetOpcode::DBG_VALUE))
442 .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
443 .addImm(Offset).addMetadata(Variable);
444 MachineBasicBlock::iterator Pos = CopyUseMI;
445 EntryMBB->insertAfter(Pos, NewMI);
446 }
447 }
448 }
449
450 // Determine if there are any calls in this machine function.
451 MachineFrameInfo *MFI = MF->getFrameInfo();
452 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
453 ++I) {
454
455 if (MFI->hasCalls() && MF->hasMSInlineAsm())
456 break;
457
458 const MachineBasicBlock *MBB = I;
459 for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
460 II != IE; ++II) {
461 const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
462 if ((MCID.isCall() && !MCID.isReturn()) ||
463 II->isStackAligningInlineAsm()) {
464 MFI->setHasCalls(true);
465 }
466 if (II->isMSInlineAsm()) {
467 MF->setHasMSInlineAsm(true);
468 }
469 }
470 }
471
472 // Determine if there is a call to setjmp in the machine function.
473 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
474
475 // Replace forward-declared registers with the registers containing
476 // the desired value.
477 MachineRegisterInfo &MRI = MF->getRegInfo();
478 for (DenseMap<unsigned, unsigned>::iterator
479 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
480 I != E; ++I) {
481 unsigned From = I->first;
482 unsigned To = I->second;
483 // If To is also scheduled to be replaced, find what its ultimate
484 // replacement is.
485 for (;;) {
486 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
487 if (J == E) break;
488 To = J->second;
489 }
490 // Replace it.
491 MRI.replaceRegWith(From, To);
492 }
493
494 // Freeze the set of reserved registers now that MachineFrameInfo has been
495 // set up. All the information required by getReservedRegs() should be
496 // available now.
497 MRI.freezeReservedRegs(*MF);
498
499 // Release function-specific state. SDB and CurDAG are already cleared
500 // at this point.
501 FuncInfo->clear();
502
503 return true;
504 }
505
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)506 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
507 BasicBlock::const_iterator End,
508 bool &HadTailCall) {
509 // Lower all of the non-terminator instructions. If a call is emitted
510 // as a tail call, cease emitting nodes for this block. Terminators
511 // are handled below.
512 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
513 SDB->visit(*I);
514
515 // Make sure the root of the DAG is up-to-date.
516 CurDAG->setRoot(SDB->getControlRoot());
517 HadTailCall = SDB->HasTailCall;
518 SDB->clear();
519
520 // Final step, emit the lowered DAG as machine code.
521 CodeGenAndEmitDAG();
522 }
523
ComputeLiveOutVRegInfo()524 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
525 SmallPtrSet<SDNode*, 128> VisitedNodes;
526 SmallVector<SDNode*, 128> Worklist;
527
528 Worklist.push_back(CurDAG->getRoot().getNode());
529
530 APInt KnownZero;
531 APInt KnownOne;
532
533 do {
534 SDNode *N = Worklist.pop_back_val();
535
536 // If we've already seen this node, ignore it.
537 if (!VisitedNodes.insert(N))
538 continue;
539
540 // Otherwise, add all chain operands to the worklist.
541 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
542 if (N->getOperand(i).getValueType() == MVT::Other)
543 Worklist.push_back(N->getOperand(i).getNode());
544
545 // If this is a CopyToReg with a vreg dest, process it.
546 if (N->getOpcode() != ISD::CopyToReg)
547 continue;
548
549 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
550 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
551 continue;
552
553 // Ignore non-scalar or non-integer values.
554 SDValue Src = N->getOperand(2);
555 EVT SrcVT = Src.getValueType();
556 if (!SrcVT.isInteger() || SrcVT.isVector())
557 continue;
558
559 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
560 CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
561 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
562 } while (!Worklist.empty());
563 }
564
CodeGenAndEmitDAG()565 void SelectionDAGISel::CodeGenAndEmitDAG() {
566 std::string GroupName;
567 if (TimePassesIsEnabled)
568 GroupName = "Instruction Selection and Scheduling";
569 std::string BlockName;
570 int BlockNumber = -1;
571 (void)BlockNumber;
572 #ifdef NDEBUG
573 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
574 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
575 ViewSUnitDAGs)
576 #endif
577 {
578 BlockNumber = FuncInfo->MBB->getNumber();
579 BlockName = MF->getName().str() + ":" +
580 FuncInfo->MBB->getBasicBlock()->getName().str();
581 }
582 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
583 << " '" << BlockName << "'\n"; CurDAG->dump());
584
585 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
586
587 // Run the DAG combiner in pre-legalize mode.
588 {
589 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
590 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
591 }
592
593 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
594 << " '" << BlockName << "'\n"; CurDAG->dump());
595
596 // Second step, hack on the DAG until it only uses operations and types that
597 // the target supports.
598 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
599 BlockName);
600
601 bool Changed;
602 {
603 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
604 Changed = CurDAG->LegalizeTypes();
605 }
606
607 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
608 << " '" << BlockName << "'\n"; CurDAG->dump());
609
610 if (Changed) {
611 if (ViewDAGCombineLT)
612 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
613
614 // Run the DAG combiner in post-type-legalize mode.
615 {
616 NamedRegionTimer T("DAG Combining after legalize types", GroupName,
617 TimePassesIsEnabled);
618 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
619 }
620
621 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
622 << " '" << BlockName << "'\n"; CurDAG->dump());
623 }
624
625 {
626 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
627 Changed = CurDAG->LegalizeVectors();
628 }
629
630 if (Changed) {
631 {
632 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
633 CurDAG->LegalizeTypes();
634 }
635
636 if (ViewDAGCombineLT)
637 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
638
639 // Run the DAG combiner in post-type-legalize mode.
640 {
641 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
642 TimePassesIsEnabled);
643 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
644 }
645
646 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
647 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
648 }
649
650 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
651
652 {
653 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
654 CurDAG->Legalize();
655 }
656
657 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
658 << " '" << BlockName << "'\n"; CurDAG->dump());
659
660 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
661
662 // Run the DAG combiner in post-legalize mode.
663 {
664 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
665 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
666 }
667
668 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
669 << " '" << BlockName << "'\n"; CurDAG->dump());
670
671 if (OptLevel != CodeGenOpt::None)
672 ComputeLiveOutVRegInfo();
673
674 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
675
676 // Third, instruction select all of the operations to machine code, adding the
677 // code to the MachineBasicBlock.
678 {
679 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
680 DoInstructionSelection();
681 }
682
683 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
684 << " '" << BlockName << "'\n"; CurDAG->dump());
685
686 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
687
688 // Schedule machine code.
689 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
690 {
691 NamedRegionTimer T("Instruction Scheduling", GroupName,
692 TimePassesIsEnabled);
693 Scheduler->Run(CurDAG, FuncInfo->MBB);
694 }
695
696 if (ViewSUnitDAGs) Scheduler->viewGraph();
697
698 // Emit machine code to BB. This can change 'BB' to the last block being
699 // inserted into.
700 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
701 {
702 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
703
704 // FuncInfo->InsertPt is passed by reference and set to the end of the
705 // scheduled instructions.
706 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
707 }
708
709 // If the block was split, make sure we update any references that are used to
710 // update PHI nodes later on.
711 if (FirstMBB != LastMBB)
712 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
713
714 // Free the scheduler state.
715 {
716 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
717 TimePassesIsEnabled);
718 delete Scheduler;
719 }
720
721 // Free the SelectionDAG state, now that we're finished with it.
722 CurDAG->clear();
723 }
724
725 namespace {
726 /// ISelUpdater - helper class to handle updates of the instruction selection
727 /// graph.
728 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
729 SelectionDAG::allnodes_iterator &ISelPosition;
730 public:
ISelUpdater(SelectionDAG & DAG,SelectionDAG::allnodes_iterator & isp)731 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
732 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
733
734 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
735 /// deleted is the current ISelPosition node, update ISelPosition.
736 ///
NodeDeleted(SDNode * N,SDNode * E)737 virtual void NodeDeleted(SDNode *N, SDNode *E) {
738 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
739 ++ISelPosition;
740 }
741 };
742 } // end anonymous namespace
743
DoInstructionSelection()744 void SelectionDAGISel::DoInstructionSelection() {
745 DEBUG(errs() << "===== Instruction selection begins: BB#"
746 << FuncInfo->MBB->getNumber()
747 << " '" << FuncInfo->MBB->getName() << "'\n");
748
749 PreprocessISelDAG();
750
751 // Select target instructions for the DAG.
752 {
753 // Number all nodes with a topological order and set DAGSize.
754 DAGSize = CurDAG->AssignTopologicalOrder();
755
756 // Create a dummy node (which is not added to allnodes), that adds
757 // a reference to the root node, preventing it from being deleted,
758 // and tracking any changes of the root.
759 HandleSDNode Dummy(CurDAG->getRoot());
760 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
761 ++ISelPosition;
762
763 // Make sure that ISelPosition gets properly updated when nodes are deleted
764 // in calls made from this function.
765 ISelUpdater ISU(*CurDAG, ISelPosition);
766
767 // The AllNodes list is now topological-sorted. Visit the
768 // nodes by starting at the end of the list (the root of the
769 // graph) and preceding back toward the beginning (the entry
770 // node).
771 while (ISelPosition != CurDAG->allnodes_begin()) {
772 SDNode *Node = --ISelPosition;
773 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
774 // but there are currently some corner cases that it misses. Also, this
775 // makes it theoretically possible to disable the DAGCombiner.
776 if (Node->use_empty())
777 continue;
778
779 SDNode *ResNode = Select(Node);
780
781 // FIXME: This is pretty gross. 'Select' should be changed to not return
782 // anything at all and this code should be nuked with a tactical strike.
783
784 // If node should not be replaced, continue with the next one.
785 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
786 continue;
787 // Replace node.
788 if (ResNode)
789 ReplaceUses(Node, ResNode);
790
791 // If after the replacement this node is not used any more,
792 // remove this dead node.
793 if (Node->use_empty()) // Don't delete EntryToken, etc.
794 CurDAG->RemoveDeadNode(Node);
795 }
796
797 CurDAG->setRoot(Dummy.getValue());
798 }
799
800 DEBUG(errs() << "===== Instruction selection ends:\n");
801
802 PostprocessISelDAG();
803 }
804
805 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
806 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()807 void SelectionDAGISel::PrepareEHLandingPad() {
808 MachineBasicBlock *MBB = FuncInfo->MBB;
809
810 // Add a label to mark the beginning of the landing pad. Deletion of the
811 // landing pad can thus be detected via the MachineModuleInfo.
812 MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
813
814 // Assign the call site to the landing pad's begin label.
815 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
816
817 const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
818 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
819 .addSym(Label);
820
821 // Mark exception register as live in.
822 unsigned Reg = TLI.getExceptionPointerRegister();
823 if (Reg) MBB->addLiveIn(Reg);
824
825 // Mark exception selector register as live in.
826 Reg = TLI.getExceptionSelectorRegister();
827 if (Reg) MBB->addLiveIn(Reg);
828 }
829
830 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
831 /// load into the specified FoldInst. Note that we could have a sequence where
832 /// multiple LLVM IR instructions are folded into the same machineinstr. For
833 /// example we could have:
834 /// A: x = load i32 *P
835 /// B: y = icmp A, 42
836 /// C: br y, ...
837 ///
838 /// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and
839 /// any other folded instructions) because it is between A and C.
840 ///
841 /// If we succeed in folding the load into the operation, return true.
842 ///
TryToFoldFastISelLoad(const LoadInst * LI,const Instruction * FoldInst,FastISel * FastIS)843 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
844 const Instruction *FoldInst,
845 FastISel *FastIS) {
846 // We know that the load has a single use, but don't know what it is. If it
847 // isn't one of the folded instructions, then we can't succeed here. Handle
848 // this by scanning the single-use users of the load until we get to FoldInst.
849 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
850
851 const Instruction *TheUser = LI->use_back();
852 while (TheUser != FoldInst && // Scan up until we find FoldInst.
853 // Stay in the right block.
854 TheUser->getParent() == FoldInst->getParent() &&
855 --MaxUsers) { // Don't scan too far.
856 // If there are multiple or no uses of this instruction, then bail out.
857 if (!TheUser->hasOneUse())
858 return false;
859
860 TheUser = TheUser->use_back();
861 }
862
863 // If we didn't find the fold instruction, then we failed to collapse the
864 // sequence.
865 if (TheUser != FoldInst)
866 return false;
867
868 // Don't try to fold volatile loads. Target has to deal with alignment
869 // constraints.
870 if (LI->isVolatile()) return false;
871
872 // Figure out which vreg this is going into. If there is no assigned vreg yet
873 // then there actually was no reference to it. Perhaps the load is referenced
874 // by a dead instruction.
875 unsigned LoadReg = FastIS->getRegForValue(LI);
876 if (LoadReg == 0)
877 return false;
878
879 // Check to see what the uses of this vreg are. If it has no uses, or more
880 // than one use (at the machine instr level) then we can't fold it.
881 MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
882 if (RI == RegInfo->reg_end())
883 return false;
884
885 // See if there is exactly one use of the vreg. If there are multiple uses,
886 // then the instruction got lowered to multiple machine instructions or the
887 // use of the loaded value ended up being multiple operands of the result, in
888 // either case, we can't fold this.
889 MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
890 if (PostRI != RegInfo->reg_end())
891 return false;
892
893 assert(RI.getOperand().isUse() &&
894 "The only use of the vreg must be a use, we haven't emitted the def!");
895
896 MachineInstr *User = &*RI;
897
898 // Set the insertion point properly. Folding the load can cause generation of
899 // other random instructions (like sign extends) for addressing modes, make
900 // sure they get inserted in a logical place before the new instruction.
901 FuncInfo->InsertPt = User;
902 FuncInfo->MBB = User->getParent();
903
904 // Ask the target to try folding the load.
905 return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
906 }
907
908 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
909 /// side-effect free and is either dead or folded into a generated instruction.
910 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,FunctionLoweringInfo * FuncInfo)911 static bool isFoldedOrDeadInstruction(const Instruction *I,
912 FunctionLoweringInfo *FuncInfo) {
913 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
914 !isa<TerminatorInst>(I) && // Terminators aren't folded.
915 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
916 !isa<LandingPadInst>(I) && // Landingpad instructions aren't folded.
917 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
918 }
919
920 #ifndef NDEBUG
921 // Collect per Instruction statistics for fast-isel misses. Only those
922 // instructions that cause the bail are accounted for. It does not account for
923 // instructions higher in the block. Thus, summing the per instructions stats
924 // will not add up to what is reported by NumFastIselFailures.
collectFailStats(const Instruction * I)925 static void collectFailStats(const Instruction *I) {
926 switch (I->getOpcode()) {
927 default: assert (0 && "<Invalid operator> ");
928
929 // Terminators
930 case Instruction::Ret: NumFastIselFailRet++; return;
931 case Instruction::Br: NumFastIselFailBr++; return;
932 case Instruction::Switch: NumFastIselFailSwitch++; return;
933 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return;
934 case Instruction::Invoke: NumFastIselFailInvoke++; return;
935 case Instruction::Resume: NumFastIselFailResume++; return;
936 case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
937
938 // Standard binary operators...
939 case Instruction::Add: NumFastIselFailAdd++; return;
940 case Instruction::FAdd: NumFastIselFailFAdd++; return;
941 case Instruction::Sub: NumFastIselFailSub++; return;
942 case Instruction::FSub: NumFastIselFailFSub++; return;
943 case Instruction::Mul: NumFastIselFailMul++; return;
944 case Instruction::FMul: NumFastIselFailFMul++; return;
945 case Instruction::UDiv: NumFastIselFailUDiv++; return;
946 case Instruction::SDiv: NumFastIselFailSDiv++; return;
947 case Instruction::FDiv: NumFastIselFailFDiv++; return;
948 case Instruction::URem: NumFastIselFailURem++; return;
949 case Instruction::SRem: NumFastIselFailSRem++; return;
950 case Instruction::FRem: NumFastIselFailFRem++; return;
951
952 // Logical operators...
953 case Instruction::And: NumFastIselFailAnd++; return;
954 case Instruction::Or: NumFastIselFailOr++; return;
955 case Instruction::Xor: NumFastIselFailXor++; return;
956
957 // Memory instructions...
958 case Instruction::Alloca: NumFastIselFailAlloca++; return;
959 case Instruction::Load: NumFastIselFailLoad++; return;
960 case Instruction::Store: NumFastIselFailStore++; return;
961 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
962 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return;
963 case Instruction::Fence: NumFastIselFailFence++; return;
964 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
965
966 // Convert instructions...
967 case Instruction::Trunc: NumFastIselFailTrunc++; return;
968 case Instruction::ZExt: NumFastIselFailZExt++; return;
969 case Instruction::SExt: NumFastIselFailSExt++; return;
970 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return;
971 case Instruction::FPExt: NumFastIselFailFPExt++; return;
972 case Instruction::FPToUI: NumFastIselFailFPToUI++; return;
973 case Instruction::FPToSI: NumFastIselFailFPToSI++; return;
974 case Instruction::UIToFP: NumFastIselFailUIToFP++; return;
975 case Instruction::SIToFP: NumFastIselFailSIToFP++; return;
976 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
977 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
978 case Instruction::BitCast: NumFastIselFailBitCast++; return;
979
980 // Other instructions...
981 case Instruction::ICmp: NumFastIselFailICmp++; return;
982 case Instruction::FCmp: NumFastIselFailFCmp++; return;
983 case Instruction::PHI: NumFastIselFailPHI++; return;
984 case Instruction::Select: NumFastIselFailSelect++; return;
985 case Instruction::Call: NumFastIselFailCall++; return;
986 case Instruction::Shl: NumFastIselFailShl++; return;
987 case Instruction::LShr: NumFastIselFailLShr++; return;
988 case Instruction::AShr: NumFastIselFailAShr++; return;
989 case Instruction::VAArg: NumFastIselFailVAArg++; return;
990 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
991 case Instruction::InsertElement: NumFastIselFailInsertElement++; return;
992 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return;
993 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return;
994 case Instruction::InsertValue: NumFastIselFailInsertValue++; return;
995 case Instruction::LandingPad: NumFastIselFailLandingPad++; return;
996 }
997 }
998 #endif
999
SelectAllBasicBlocks(const Function & Fn)1000 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1001 // Initialize the Fast-ISel state, if needed.
1002 FastISel *FastIS = 0;
1003 if (TM.Options.EnableFastISel)
1004 FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
1005
1006 // Iterate over all basic blocks in the function.
1007 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1008 for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1009 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1010 const BasicBlock *LLVMBB = *I;
1011
1012 if (OptLevel != CodeGenOpt::None) {
1013 bool AllPredsVisited = true;
1014 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1015 PI != PE; ++PI) {
1016 if (!FuncInfo->VisitedBBs.count(*PI)) {
1017 AllPredsVisited = false;
1018 break;
1019 }
1020 }
1021
1022 if (AllPredsVisited) {
1023 for (BasicBlock::const_iterator I = LLVMBB->begin();
1024 const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1025 FuncInfo->ComputePHILiveOutRegInfo(PN);
1026 } else {
1027 for (BasicBlock::const_iterator I = LLVMBB->begin();
1028 const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1029 FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1030 }
1031
1032 FuncInfo->VisitedBBs.insert(LLVMBB);
1033 }
1034
1035 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1036 BasicBlock::const_iterator const End = LLVMBB->end();
1037 BasicBlock::const_iterator BI = End;
1038
1039 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1040 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1041
1042 // Setup an EH landing-pad block.
1043 if (FuncInfo->MBB->isLandingPad())
1044 PrepareEHLandingPad();
1045
1046 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1047 if (FastIS) {
1048 FastIS->startNewBlock();
1049
1050 // Emit code for any incoming arguments. This must happen before
1051 // beginning FastISel on the entry block.
1052 if (LLVMBB == &Fn.getEntryBlock()) {
1053 // Lower any arguments needed in this block if this is the entry block.
1054 if (!FastIS->LowerArguments()) {
1055 // Fast isel failed to lower these arguments
1056 if (EnableFastISelAbortArgs)
1057 llvm_unreachable("FastISel didn't lower all arguments");
1058
1059 // Use SelectionDAG argument lowering
1060 LowerArguments(Fn);
1061 CurDAG->setRoot(SDB->getControlRoot());
1062 SDB->clear();
1063 CodeGenAndEmitDAG();
1064 }
1065
1066 // If we inserted any instructions at the beginning, make a note of
1067 // where they are, so we can be sure to emit subsequent instructions
1068 // after them.
1069 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1070 FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1071 else
1072 FastIS->setLastLocalValue(0);
1073 }
1074
1075 unsigned NumFastIselRemaining = std::distance(Begin, End);
1076 // Do FastISel on as many instructions as possible.
1077 for (; BI != Begin; --BI) {
1078 const Instruction *Inst = llvm::prior(BI);
1079
1080 // If we no longer require this instruction, skip it.
1081 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1082 --NumFastIselRemaining;
1083 continue;
1084 }
1085
1086 // Bottom-up: reset the insert pos at the top, after any local-value
1087 // instructions.
1088 FastIS->recomputeInsertPt();
1089
1090 // Try to select the instruction with FastISel.
1091 if (FastIS->SelectInstruction(Inst)) {
1092 --NumFastIselRemaining;
1093 ++NumFastIselSuccess;
1094 // If fast isel succeeded, skip over all the folded instructions, and
1095 // then see if there is a load right before the selected instructions.
1096 // Try to fold the load if so.
1097 const Instruction *BeforeInst = Inst;
1098 while (BeforeInst != Begin) {
1099 BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1100 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1101 break;
1102 }
1103 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1104 BeforeInst->hasOneUse() &&
1105 TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1106 // If we succeeded, don't re-select the load.
1107 BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1108 --NumFastIselRemaining;
1109 ++NumFastIselSuccess;
1110 }
1111 continue;
1112 }
1113
1114 #ifndef NDEBUG
1115 if (EnableFastISelVerbose2)
1116 collectFailStats(Inst);
1117 #endif
1118
1119 // Then handle certain instructions as single-LLVM-Instruction blocks.
1120 if (isa<CallInst>(Inst)) {
1121
1122 if (EnableFastISelVerbose || EnableFastISelAbort) {
1123 dbgs() << "FastISel missed call: ";
1124 Inst->dump();
1125 }
1126
1127 if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1128 unsigned &R = FuncInfo->ValueMap[Inst];
1129 if (!R)
1130 R = FuncInfo->CreateRegs(Inst->getType());
1131 }
1132
1133 bool HadTailCall = false;
1134 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1135 SelectBasicBlock(Inst, BI, HadTailCall);
1136
1137 // If the call was emitted as a tail call, we're done with the block.
1138 // We also need to delete any previously emitted instructions.
1139 if (HadTailCall) {
1140 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1141 --BI;
1142 break;
1143 }
1144
1145 // Recompute NumFastIselRemaining as Selection DAG instruction
1146 // selection may have handled the call, input args, etc.
1147 unsigned RemainingNow = std::distance(Begin, BI);
1148 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1149 NumFastIselRemaining = RemainingNow;
1150 continue;
1151 }
1152
1153 if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1154 // Don't abort, and use a different message for terminator misses.
1155 NumFastIselFailures += NumFastIselRemaining;
1156 if (EnableFastISelVerbose || EnableFastISelAbort) {
1157 dbgs() << "FastISel missed terminator: ";
1158 Inst->dump();
1159 }
1160 } else {
1161 NumFastIselFailures += NumFastIselRemaining;
1162 if (EnableFastISelVerbose || EnableFastISelAbort) {
1163 dbgs() << "FastISel miss: ";
1164 Inst->dump();
1165 }
1166 if (EnableFastISelAbort)
1167 // The "fast" selector couldn't handle something and bailed.
1168 // For the purpose of debugging, just abort.
1169 llvm_unreachable("FastISel didn't select the entire block");
1170 }
1171 break;
1172 }
1173
1174 FastIS->recomputeInsertPt();
1175 } else {
1176 // Lower any arguments needed in this block if this is the entry block.
1177 if (LLVMBB == &Fn.getEntryBlock())
1178 LowerArguments(Fn);
1179 }
1180
1181 if (Begin != BI)
1182 ++NumDAGBlocks;
1183 else
1184 ++NumFastIselBlocks;
1185
1186 if (Begin != BI) {
1187 // Run SelectionDAG instruction selection on the remainder of the block
1188 // not handled by FastISel. If FastISel is not run, this is the entire
1189 // block.
1190 bool HadTailCall;
1191 SelectBasicBlock(Begin, BI, HadTailCall);
1192 }
1193
1194 FinishBasicBlock();
1195 FuncInfo->PHINodesToUpdate.clear();
1196 }
1197
1198 delete FastIS;
1199 SDB->clearDanglingDebugInfo();
1200 }
1201
1202 void
FinishBasicBlock()1203 SelectionDAGISel::FinishBasicBlock() {
1204
1205 DEBUG(dbgs() << "Total amount of phi nodes to update: "
1206 << FuncInfo->PHINodesToUpdate.size() << "\n";
1207 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1208 dbgs() << "Node " << i << " : ("
1209 << FuncInfo->PHINodesToUpdate[i].first
1210 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1211
1212 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1213 // PHI nodes in successors.
1214 if (SDB->SwitchCases.empty() &&
1215 SDB->JTCases.empty() &&
1216 SDB->BitTestCases.empty()) {
1217 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1218 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1219 assert(PHI->isPHI() &&
1220 "This is not a machine PHI node that we are updating!");
1221 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1222 continue;
1223 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1224 }
1225 return;
1226 }
1227
1228 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1229 // Lower header first, if it wasn't already lowered
1230 if (!SDB->BitTestCases[i].Emitted) {
1231 // Set the current basic block to the mbb we wish to insert the code into
1232 FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1233 FuncInfo->InsertPt = FuncInfo->MBB->end();
1234 // Emit the code
1235 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1236 CurDAG->setRoot(SDB->getRoot());
1237 SDB->clear();
1238 CodeGenAndEmitDAG();
1239 }
1240
1241 uint32_t UnhandledWeight = 0;
1242 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1243 UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1244
1245 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1246 UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1247 // Set the current basic block to the mbb we wish to insert the code into
1248 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1249 FuncInfo->InsertPt = FuncInfo->MBB->end();
1250 // Emit the code
1251 if (j+1 != ej)
1252 SDB->visitBitTestCase(SDB->BitTestCases[i],
1253 SDB->BitTestCases[i].Cases[j+1].ThisBB,
1254 UnhandledWeight,
1255 SDB->BitTestCases[i].Reg,
1256 SDB->BitTestCases[i].Cases[j],
1257 FuncInfo->MBB);
1258 else
1259 SDB->visitBitTestCase(SDB->BitTestCases[i],
1260 SDB->BitTestCases[i].Default,
1261 UnhandledWeight,
1262 SDB->BitTestCases[i].Reg,
1263 SDB->BitTestCases[i].Cases[j],
1264 FuncInfo->MBB);
1265
1266
1267 CurDAG->setRoot(SDB->getRoot());
1268 SDB->clear();
1269 CodeGenAndEmitDAG();
1270 }
1271
1272 // Update PHI Nodes
1273 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1274 pi != pe; ++pi) {
1275 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1276 MachineBasicBlock *PHIBB = PHI->getParent();
1277 assert(PHI->isPHI() &&
1278 "This is not a machine PHI node that we are updating!");
1279 // This is "default" BB. We have two jumps to it. From "header" BB and
1280 // from last "case" BB.
1281 if (PHIBB == SDB->BitTestCases[i].Default)
1282 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1283 .addMBB(SDB->BitTestCases[i].Parent)
1284 .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1285 .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1286 // One of "cases" BB.
1287 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1288 j != ej; ++j) {
1289 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1290 if (cBB->isSuccessor(PHIBB))
1291 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1292 }
1293 }
1294 }
1295 SDB->BitTestCases.clear();
1296
1297 // If the JumpTable record is filled in, then we need to emit a jump table.
1298 // Updating the PHI nodes is tricky in this case, since we need to determine
1299 // whether the PHI is a successor of the range check MBB or the jump table MBB
1300 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1301 // Lower header first, if it wasn't already lowered
1302 if (!SDB->JTCases[i].first.Emitted) {
1303 // Set the current basic block to the mbb we wish to insert the code into
1304 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1305 FuncInfo->InsertPt = FuncInfo->MBB->end();
1306 // Emit the code
1307 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1308 FuncInfo->MBB);
1309 CurDAG->setRoot(SDB->getRoot());
1310 SDB->clear();
1311 CodeGenAndEmitDAG();
1312 }
1313
1314 // Set the current basic block to the mbb we wish to insert the code into
1315 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1316 FuncInfo->InsertPt = FuncInfo->MBB->end();
1317 // Emit the code
1318 SDB->visitJumpTable(SDB->JTCases[i].second);
1319 CurDAG->setRoot(SDB->getRoot());
1320 SDB->clear();
1321 CodeGenAndEmitDAG();
1322
1323 // Update PHI Nodes
1324 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1325 pi != pe; ++pi) {
1326 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1327 MachineBasicBlock *PHIBB = PHI->getParent();
1328 assert(PHI->isPHI() &&
1329 "This is not a machine PHI node that we are updating!");
1330 // "default" BB. We can go there only from header BB.
1331 if (PHIBB == SDB->JTCases[i].second.Default)
1332 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1333 .addMBB(SDB->JTCases[i].first.HeaderBB);
1334 // JT BB. Just iterate over successors here
1335 if (FuncInfo->MBB->isSuccessor(PHIBB))
1336 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1337 }
1338 }
1339 SDB->JTCases.clear();
1340
1341 // If the switch block involved a branch to one of the actual successors, we
1342 // need to update PHI nodes in that block.
1343 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1344 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1345 assert(PHI->isPHI() &&
1346 "This is not a machine PHI node that we are updating!");
1347 if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1348 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1349 }
1350
1351 // If we generated any switch lowering information, build and codegen any
1352 // additional DAGs necessary.
1353 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1354 // Set the current basic block to the mbb we wish to insert the code into
1355 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1356 FuncInfo->InsertPt = FuncInfo->MBB->end();
1357
1358 // Determine the unique successors.
1359 SmallVector<MachineBasicBlock *, 2> Succs;
1360 Succs.push_back(SDB->SwitchCases[i].TrueBB);
1361 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1362 Succs.push_back(SDB->SwitchCases[i].FalseBB);
1363
1364 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1365 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1366 CurDAG->setRoot(SDB->getRoot());
1367 SDB->clear();
1368 CodeGenAndEmitDAG();
1369
1370 // Remember the last block, now that any splitting is done, for use in
1371 // populating PHI nodes in successors.
1372 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1373
1374 // Handle any PHI nodes in successors of this chunk, as if we were coming
1375 // from the original BB before switch expansion. Note that PHI nodes can
1376 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1377 // handle them the right number of times.
1378 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1379 FuncInfo->MBB = Succs[i];
1380 FuncInfo->InsertPt = FuncInfo->MBB->end();
1381 // FuncInfo->MBB may have been removed from the CFG if a branch was
1382 // constant folded.
1383 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1384 for (MachineBasicBlock::iterator
1385 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1386 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1387 MachineInstrBuilder PHI(*MF, MBBI);
1388 // This value for this PHI node is recorded in PHINodesToUpdate.
1389 for (unsigned pn = 0; ; ++pn) {
1390 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1391 "Didn't find PHI entry!");
1392 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1393 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1394 break;
1395 }
1396 }
1397 }
1398 }
1399 }
1400 }
1401 SDB->SwitchCases.clear();
1402 }
1403
1404
1405 /// Create the scheduler. If a specific scheduler was specified
1406 /// via the SchedulerRegistry, use it, otherwise select the
1407 /// one preferred by the target.
1408 ///
CreateScheduler()1409 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1410 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1411
1412 if (!Ctor) {
1413 Ctor = ISHeuristic;
1414 RegisterScheduler::setDefault(Ctor);
1415 }
1416
1417 return Ctor(this, OptLevel);
1418 }
1419
1420 //===----------------------------------------------------------------------===//
1421 // Helper functions used by the generated instruction selector.
1422 //===----------------------------------------------------------------------===//
1423 // Calls to these methods are generated by tblgen.
1424
1425 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1426 /// the dag combiner simplified the 255, we still want to match. RHS is the
1427 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1428 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1429 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1430 int64_t DesiredMaskS) const {
1431 const APInt &ActualMask = RHS->getAPIntValue();
1432 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1433
1434 // If the actual mask exactly matches, success!
1435 if (ActualMask == DesiredMask)
1436 return true;
1437
1438 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1439 if (ActualMask.intersects(~DesiredMask))
1440 return false;
1441
1442 // Otherwise, the DAG Combiner may have proven that the value coming in is
1443 // either already zero or is not demanded. Check for known zero input bits.
1444 APInt NeededMask = DesiredMask & ~ActualMask;
1445 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1446 return true;
1447
1448 // TODO: check to see if missing bits are just not demanded.
1449
1450 // Otherwise, this pattern doesn't match.
1451 return false;
1452 }
1453
1454 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1455 /// the dag combiner simplified the 255, we still want to match. RHS is the
1456 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1457 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1458 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1459 int64_t DesiredMaskS) const {
1460 const APInt &ActualMask = RHS->getAPIntValue();
1461 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1462
1463 // If the actual mask exactly matches, success!
1464 if (ActualMask == DesiredMask)
1465 return true;
1466
1467 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1468 if (ActualMask.intersects(~DesiredMask))
1469 return false;
1470
1471 // Otherwise, the DAG Combiner may have proven that the value coming in is
1472 // either already zero or is not demanded. Check for known zero input bits.
1473 APInt NeededMask = DesiredMask & ~ActualMask;
1474
1475 APInt KnownZero, KnownOne;
1476 CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1477
1478 // If all the missing bits in the or are already known to be set, match!
1479 if ((NeededMask & KnownOne) == NeededMask)
1480 return true;
1481
1482 // TODO: check to see if missing bits are just not demanded.
1483
1484 // Otherwise, this pattern doesn't match.
1485 return false;
1486 }
1487
1488
1489 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1490 /// by tblgen. Others should not call it.
1491 void SelectionDAGISel::
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops)1492 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1493 std::vector<SDValue> InOps;
1494 std::swap(InOps, Ops);
1495
1496 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1497 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
1498 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
1499 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
1500
1501 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1502 if (InOps[e-1].getValueType() == MVT::Glue)
1503 --e; // Don't process a glue operand if it is here.
1504
1505 while (i != e) {
1506 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1507 if (!InlineAsm::isMemKind(Flags)) {
1508 // Just skip over this operand, copying the operands verbatim.
1509 Ops.insert(Ops.end(), InOps.begin()+i,
1510 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1511 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1512 } else {
1513 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1514 "Memory operand with multiple values?");
1515 // Otherwise, this is a memory operand. Ask the target to select it.
1516 std::vector<SDValue> SelOps;
1517 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1518 report_fatal_error("Could not match memory address. Inline asm"
1519 " failure!");
1520
1521 // Add this to the output node.
1522 unsigned NewFlags =
1523 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1524 Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1525 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1526 i += 2;
1527 }
1528 }
1529
1530 // Add the glue input back if present.
1531 if (e != InOps.size())
1532 Ops.push_back(InOps.back());
1533 }
1534
1535 /// findGlueUse - Return use of MVT::Glue value produced by the specified
1536 /// SDNode.
1537 ///
findGlueUse(SDNode * N)1538 static SDNode *findGlueUse(SDNode *N) {
1539 unsigned FlagResNo = N->getNumValues()-1;
1540 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1541 SDUse &Use = I.getUse();
1542 if (Use.getResNo() == FlagResNo)
1543 return Use.getUser();
1544 }
1545 return NULL;
1546 }
1547
1548 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1549 /// This function recursively traverses up the operand chain, ignoring
1550 /// certain nodes.
findNonImmUse(SDNode * Use,SDNode * Def,SDNode * ImmedUse,SDNode * Root,SmallPtrSet<SDNode *,16> & Visited,bool IgnoreChains)1551 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1552 SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1553 bool IgnoreChains) {
1554 // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1555 // greater than all of its (recursive) operands. If we scan to a point where
1556 // 'use' is smaller than the node we're scanning for, then we know we will
1557 // never find it.
1558 //
1559 // The Use may be -1 (unassigned) if it is a newly allocated node. This can
1560 // happen because we scan down to newly selected nodes in the case of glue
1561 // uses.
1562 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1563 return false;
1564
1565 // Don't revisit nodes if we already scanned it and didn't fail, we know we
1566 // won't fail if we scan it again.
1567 if (!Visited.insert(Use))
1568 return false;
1569
1570 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1571 // Ignore chain uses, they are validated by HandleMergeInputChains.
1572 if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1573 continue;
1574
1575 SDNode *N = Use->getOperand(i).getNode();
1576 if (N == Def) {
1577 if (Use == ImmedUse || Use == Root)
1578 continue; // We are not looking for immediate use.
1579 assert(N != Root);
1580 return true;
1581 }
1582
1583 // Traverse up the operand chain.
1584 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1585 return true;
1586 }
1587 return false;
1588 }
1589
1590 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
1591 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const1592 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1593 SDNode *Root) const {
1594 if (OptLevel == CodeGenOpt::None) return false;
1595 return N.hasOneUse();
1596 }
1597
1598 /// IsLegalToFold - Returns true if the specific operand node N of
1599 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)1600 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1601 CodeGenOpt::Level OptLevel,
1602 bool IgnoreChains) {
1603 if (OptLevel == CodeGenOpt::None) return false;
1604
1605 // If Root use can somehow reach N through a path that that doesn't contain
1606 // U then folding N would create a cycle. e.g. In the following
1607 // diagram, Root can reach N through X. If N is folded into into Root, then
1608 // X is both a predecessor and a successor of U.
1609 //
1610 // [N*] //
1611 // ^ ^ //
1612 // / \ //
1613 // [U*] [X]? //
1614 // ^ ^ //
1615 // \ / //
1616 // \ / //
1617 // [Root*] //
1618 //
1619 // * indicates nodes to be folded together.
1620 //
1621 // If Root produces glue, then it gets (even more) interesting. Since it
1622 // will be "glued" together with its glue use in the scheduler, we need to
1623 // check if it might reach N.
1624 //
1625 // [N*] //
1626 // ^ ^ //
1627 // / \ //
1628 // [U*] [X]? //
1629 // ^ ^ //
1630 // \ \ //
1631 // \ | //
1632 // [Root*] | //
1633 // ^ | //
1634 // f | //
1635 // | / //
1636 // [Y] / //
1637 // ^ / //
1638 // f / //
1639 // | / //
1640 // [GU] //
1641 //
1642 // If GU (glue use) indirectly reaches N (the load), and Root folds N
1643 // (call it Fold), then X is a predecessor of GU and a successor of
1644 // Fold. But since Fold and GU are glued together, this will create
1645 // a cycle in the scheduling graph.
1646
1647 // If the node has glue, walk down the graph to the "lowest" node in the
1648 // glueged set.
1649 EVT VT = Root->getValueType(Root->getNumValues()-1);
1650 while (VT == MVT::Glue) {
1651 SDNode *GU = findGlueUse(Root);
1652 if (GU == NULL)
1653 break;
1654 Root = GU;
1655 VT = Root->getValueType(Root->getNumValues()-1);
1656
1657 // If our query node has a glue result with a use, we've walked up it. If
1658 // the user (which has already been selected) has a chain or indirectly uses
1659 // the chain, our WalkChainUsers predicate will not consider it. Because of
1660 // this, we cannot ignore chains in this predicate.
1661 IgnoreChains = false;
1662 }
1663
1664
1665 SmallPtrSet<SDNode*, 16> Visited;
1666 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1667 }
1668
Select_INLINEASM(SDNode * N)1669 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1670 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1671 SelectInlineAsmMemoryOperands(Ops);
1672
1673 EVT VTs[] = { MVT::Other, MVT::Glue };
1674 SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1675 VTs, &Ops[0], Ops.size());
1676 New->setNodeId(-1);
1677 return New.getNode();
1678 }
1679
Select_UNDEF(SDNode * N)1680 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1681 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1682 }
1683
1684 /// GetVBR - decode a vbr encoding whose top bit is set.
1685 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)1686 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1687 assert(Val >= 128 && "Not a VBR");
1688 Val &= 127; // Remove first vbr bit.
1689
1690 unsigned Shift = 7;
1691 uint64_t NextBits;
1692 do {
1693 NextBits = MatcherTable[Idx++];
1694 Val |= (NextBits&127) << Shift;
1695 Shift += 7;
1696 } while (NextBits & 128);
1697
1698 return Val;
1699 }
1700
1701
1702 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1703 /// interior glue and chain results to use the new glue and chain results.
1704 void SelectionDAGISel::
UpdateChainsAndGlue(SDNode * NodeToMatch,SDValue InputChain,const SmallVectorImpl<SDNode * > & ChainNodesMatched,SDValue InputGlue,const SmallVectorImpl<SDNode * > & GlueResultNodesMatched,bool isMorphNodeTo)1705 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1706 const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1707 SDValue InputGlue,
1708 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1709 bool isMorphNodeTo) {
1710 SmallVector<SDNode*, 4> NowDeadNodes;
1711
1712 // Now that all the normal results are replaced, we replace the chain and
1713 // glue results if present.
1714 if (!ChainNodesMatched.empty()) {
1715 assert(InputChain.getNode() != 0 &&
1716 "Matched input chains but didn't produce a chain");
1717 // Loop over all of the nodes we matched that produced a chain result.
1718 // Replace all the chain results with the final chain we ended up with.
1719 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1720 SDNode *ChainNode = ChainNodesMatched[i];
1721
1722 // If this node was already deleted, don't look at it.
1723 if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1724 continue;
1725
1726 // Don't replace the results of the root node if we're doing a
1727 // MorphNodeTo.
1728 if (ChainNode == NodeToMatch && isMorphNodeTo)
1729 continue;
1730
1731 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1732 if (ChainVal.getValueType() == MVT::Glue)
1733 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1734 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1735 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1736
1737 // If the node became dead and we haven't already seen it, delete it.
1738 if (ChainNode->use_empty() &&
1739 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1740 NowDeadNodes.push_back(ChainNode);
1741 }
1742 }
1743
1744 // If the result produces glue, update any glue results in the matched
1745 // pattern with the glue result.
1746 if (InputGlue.getNode() != 0) {
1747 // Handle any interior nodes explicitly marked.
1748 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1749 SDNode *FRN = GlueResultNodesMatched[i];
1750
1751 // If this node was already deleted, don't look at it.
1752 if (FRN->getOpcode() == ISD::DELETED_NODE)
1753 continue;
1754
1755 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1756 "Doesn't have a glue result");
1757 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1758 InputGlue);
1759
1760 // If the node became dead and we haven't already seen it, delete it.
1761 if (FRN->use_empty() &&
1762 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1763 NowDeadNodes.push_back(FRN);
1764 }
1765 }
1766
1767 if (!NowDeadNodes.empty())
1768 CurDAG->RemoveDeadNodes(NowDeadNodes);
1769
1770 DEBUG(errs() << "ISEL: Match complete!\n");
1771 }
1772
1773 enum ChainResult {
1774 CR_Simple,
1775 CR_InducesCycle,
1776 CR_LeadsToInteriorNode
1777 };
1778
1779 /// WalkChainUsers - Walk down the users of the specified chained node that is
1780 /// part of the pattern we're matching, looking at all of the users we find.
1781 /// This determines whether something is an interior node, whether we have a
1782 /// non-pattern node in between two pattern nodes (which prevent folding because
1783 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1784 /// between pattern nodes (in which case the TF becomes part of the pattern).
1785 ///
1786 /// The walk we do here is guaranteed to be small because we quickly get down to
1787 /// already selected nodes "below" us.
1788 static ChainResult
WalkChainUsers(const SDNode * ChainedNode,SmallVectorImpl<SDNode * > & ChainedNodesInPattern,SmallVectorImpl<SDNode * > & InteriorChainedNodes)1789 WalkChainUsers(const SDNode *ChainedNode,
1790 SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1791 SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1792 ChainResult Result = CR_Simple;
1793
1794 for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1795 E = ChainedNode->use_end(); UI != E; ++UI) {
1796 // Make sure the use is of the chain, not some other value we produce.
1797 if (UI.getUse().getValueType() != MVT::Other) continue;
1798
1799 SDNode *User = *UI;
1800
1801 // If we see an already-selected machine node, then we've gone beyond the
1802 // pattern that we're selecting down into the already selected chunk of the
1803 // DAG.
1804 if (User->isMachineOpcode() ||
1805 User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
1806 continue;
1807
1808 unsigned UserOpcode = User->getOpcode();
1809 if (UserOpcode == ISD::CopyToReg ||
1810 UserOpcode == ISD::CopyFromReg ||
1811 UserOpcode == ISD::INLINEASM ||
1812 UserOpcode == ISD::EH_LABEL ||
1813 UserOpcode == ISD::LIFETIME_START ||
1814 UserOpcode == ISD::LIFETIME_END) {
1815 // If their node ID got reset to -1 then they've already been selected.
1816 // Treat them like a MachineOpcode.
1817 if (User->getNodeId() == -1)
1818 continue;
1819 }
1820
1821 // If we have a TokenFactor, we handle it specially.
1822 if (User->getOpcode() != ISD::TokenFactor) {
1823 // If the node isn't a token factor and isn't part of our pattern, then it
1824 // must be a random chained node in between two nodes we're selecting.
1825 // This happens when we have something like:
1826 // x = load ptr
1827 // call
1828 // y = x+4
1829 // store y -> ptr
1830 // Because we structurally match the load/store as a read/modify/write,
1831 // but the call is chained between them. We cannot fold in this case
1832 // because it would induce a cycle in the graph.
1833 if (!std::count(ChainedNodesInPattern.begin(),
1834 ChainedNodesInPattern.end(), User))
1835 return CR_InducesCycle;
1836
1837 // Otherwise we found a node that is part of our pattern. For example in:
1838 // x = load ptr
1839 // y = x+4
1840 // store y -> ptr
1841 // This would happen when we're scanning down from the load and see the
1842 // store as a user. Record that there is a use of ChainedNode that is
1843 // part of the pattern and keep scanning uses.
1844 Result = CR_LeadsToInteriorNode;
1845 InteriorChainedNodes.push_back(User);
1846 continue;
1847 }
1848
1849 // If we found a TokenFactor, there are two cases to consider: first if the
1850 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1851 // uses of the TF are in our pattern) we just want to ignore it. Second,
1852 // the TokenFactor can be sandwiched in between two chained nodes, like so:
1853 // [Load chain]
1854 // ^
1855 // |
1856 // [Load]
1857 // ^ ^
1858 // | \ DAG's like cheese
1859 // / \ do you?
1860 // / |
1861 // [TokenFactor] [Op]
1862 // ^ ^
1863 // | |
1864 // \ /
1865 // \ /
1866 // [Store]
1867 //
1868 // In this case, the TokenFactor becomes part of our match and we rewrite it
1869 // as a new TokenFactor.
1870 //
1871 // To distinguish these two cases, do a recursive walk down the uses.
1872 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1873 case CR_Simple:
1874 // If the uses of the TokenFactor are just already-selected nodes, ignore
1875 // it, it is "below" our pattern.
1876 continue;
1877 case CR_InducesCycle:
1878 // If the uses of the TokenFactor lead to nodes that are not part of our
1879 // pattern that are not selected, folding would turn this into a cycle,
1880 // bail out now.
1881 return CR_InducesCycle;
1882 case CR_LeadsToInteriorNode:
1883 break; // Otherwise, keep processing.
1884 }
1885
1886 // Okay, we know we're in the interesting interior case. The TokenFactor
1887 // is now going to be considered part of the pattern so that we rewrite its
1888 // uses (it may have uses that are not part of the pattern) with the
1889 // ultimate chain result of the generated code. We will also add its chain
1890 // inputs as inputs to the ultimate TokenFactor we create.
1891 Result = CR_LeadsToInteriorNode;
1892 ChainedNodesInPattern.push_back(User);
1893 InteriorChainedNodes.push_back(User);
1894 continue;
1895 }
1896
1897 return Result;
1898 }
1899
1900 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1901 /// operation for when the pattern matched at least one node with a chains. The
1902 /// input vector contains a list of all of the chained nodes that we match. We
1903 /// must determine if this is a valid thing to cover (i.e. matching it won't
1904 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1905 /// be used as the input node chain for the generated nodes.
1906 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)1907 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1908 SelectionDAG *CurDAG) {
1909 // Walk all of the chained nodes we've matched, recursively scanning down the
1910 // users of the chain result. This adds any TokenFactor nodes that are caught
1911 // in between chained nodes to the chained and interior nodes list.
1912 SmallVector<SDNode*, 3> InteriorChainedNodes;
1913 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1914 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1915 InteriorChainedNodes) == CR_InducesCycle)
1916 return SDValue(); // Would induce a cycle.
1917 }
1918
1919 // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1920 // that we are interested in. Form our input TokenFactor node.
1921 SmallVector<SDValue, 3> InputChains;
1922 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1923 // Add the input chain of this node to the InputChains list (which will be
1924 // the operands of the generated TokenFactor) if it's not an interior node.
1925 SDNode *N = ChainNodesMatched[i];
1926 if (N->getOpcode() != ISD::TokenFactor) {
1927 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1928 continue;
1929
1930 // Otherwise, add the input chain.
1931 SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1932 assert(InChain.getValueType() == MVT::Other && "Not a chain");
1933 InputChains.push_back(InChain);
1934 continue;
1935 }
1936
1937 // If we have a token factor, we want to add all inputs of the token factor
1938 // that are not part of the pattern we're matching.
1939 for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1940 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1941 N->getOperand(op).getNode()))
1942 InputChains.push_back(N->getOperand(op));
1943 }
1944 }
1945
1946 SDValue Res;
1947 if (InputChains.size() == 1)
1948 return InputChains[0];
1949 return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1950 MVT::Other, &InputChains[0], InputChains.size());
1951 }
1952
1953 /// MorphNode - Handle morphing a node in place for the selector.
1954 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,const SDValue * Ops,unsigned NumOps,unsigned EmitNodeInfo)1955 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1956 const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1957 // It is possible we're using MorphNodeTo to replace a node with no
1958 // normal results with one that has a normal result (or we could be
1959 // adding a chain) and the input could have glue and chains as well.
1960 // In this case we need to shift the operands down.
1961 // FIXME: This is a horrible hack and broken in obscure cases, no worse
1962 // than the old isel though.
1963 int OldGlueResultNo = -1, OldChainResultNo = -1;
1964
1965 unsigned NTMNumResults = Node->getNumValues();
1966 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1967 OldGlueResultNo = NTMNumResults-1;
1968 if (NTMNumResults != 1 &&
1969 Node->getValueType(NTMNumResults-2) == MVT::Other)
1970 OldChainResultNo = NTMNumResults-2;
1971 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1972 OldChainResultNo = NTMNumResults-1;
1973
1974 // Call the underlying SelectionDAG routine to do the transmogrification. Note
1975 // that this deletes operands of the old node that become dead.
1976 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1977
1978 // MorphNodeTo can operate in two ways: if an existing node with the
1979 // specified operands exists, it can just return it. Otherwise, it
1980 // updates the node in place to have the requested operands.
1981 if (Res == Node) {
1982 // If we updated the node in place, reset the node ID. To the isel,
1983 // this should be just like a newly allocated machine node.
1984 Res->setNodeId(-1);
1985 }
1986
1987 unsigned ResNumResults = Res->getNumValues();
1988 // Move the glue if needed.
1989 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1990 (unsigned)OldGlueResultNo != ResNumResults-1)
1991 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1992 SDValue(Res, ResNumResults-1));
1993
1994 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1995 --ResNumResults;
1996
1997 // Move the chain reference if needed.
1998 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1999 (unsigned)OldChainResultNo != ResNumResults-1)
2000 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2001 SDValue(Res, ResNumResults-1));
2002
2003 // Otherwise, no replacement happened because the node already exists. Replace
2004 // Uses of the old node with the new one.
2005 if (Res != Node)
2006 CurDAG->ReplaceAllUsesWith(Node, Res);
2007
2008 return Res;
2009 }
2010
2011 /// CheckSame - Implements OP_CheckSame.
2012 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2013 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2014 SDValue N,
2015 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2016 // Accept if it is exactly the same as a previously recorded node.
2017 unsigned RecNo = MatcherTable[MatcherIndex++];
2018 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2019 return N == RecordedNodes[RecNo].first;
2020 }
2021
2022 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2023 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel)2024 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2025 const SelectionDAGISel &SDISel) {
2026 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2027 }
2028
2029 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2030 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel,SDNode * N)2031 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2032 const SelectionDAGISel &SDISel, SDNode *N) {
2033 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2034 }
2035
2036 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2037 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2038 SDNode *N) {
2039 uint16_t Opc = MatcherTable[MatcherIndex++];
2040 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2041 return N->getOpcode() == Opc;
2042 }
2043
2044 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering & TLI)2045 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2046 SDValue N, const TargetLowering &TLI) {
2047 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2048 if (N.getValueType() == VT) return true;
2049
2050 // Handle the case when VT is iPTR.
2051 return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2052 }
2053
2054 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering & TLI,unsigned ChildNo)2055 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2056 SDValue N, const TargetLowering &TLI,
2057 unsigned ChildNo) {
2058 if (ChildNo >= N.getNumOperands())
2059 return false; // Match fails if out of range child #.
2060 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2061 }
2062
2063
2064 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2065 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2066 SDValue N) {
2067 return cast<CondCodeSDNode>(N)->get() ==
2068 (ISD::CondCode)MatcherTable[MatcherIndex++];
2069 }
2070
2071 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering & TLI)2072 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2073 SDValue N, const TargetLowering &TLI) {
2074 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2075 if (cast<VTSDNode>(N)->getVT() == VT)
2076 return true;
2077
2078 // Handle the case when VT is iPTR.
2079 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2080 }
2081
2082 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2083 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2084 SDValue N) {
2085 int64_t Val = MatcherTable[MatcherIndex++];
2086 if (Val & 128)
2087 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2088
2089 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2090 return C != 0 && C->getSExtValue() == Val;
2091 }
2092
2093 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2094 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2095 SDValue N, const SelectionDAGISel &SDISel) {
2096 int64_t Val = MatcherTable[MatcherIndex++];
2097 if (Val & 128)
2098 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2099
2100 if (N->getOpcode() != ISD::AND) return false;
2101
2102 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2103 return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2104 }
2105
2106 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2107 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2108 SDValue N, const SelectionDAGISel &SDISel) {
2109 int64_t Val = MatcherTable[MatcherIndex++];
2110 if (Val & 128)
2111 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2112
2113 if (N->getOpcode() != ISD::OR) return false;
2114
2115 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2116 return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2117 }
2118
2119 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2120 /// scope, evaluate the current node. If the current predicate is known to
2121 /// fail, set Result=true and return anything. If the current predicate is
2122 /// known to pass, set Result=false and return the MatcherIndex to continue
2123 /// with. If the current predicate is unknown, set Result=false and return the
2124 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,const SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2125 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2126 unsigned Index, SDValue N,
2127 bool &Result,
2128 const SelectionDAGISel &SDISel,
2129 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2130 switch (Table[Index++]) {
2131 default:
2132 Result = false;
2133 return Index-1; // Could not evaluate this predicate.
2134 case SelectionDAGISel::OPC_CheckSame:
2135 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2136 return Index;
2137 case SelectionDAGISel::OPC_CheckPatternPredicate:
2138 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2139 return Index;
2140 case SelectionDAGISel::OPC_CheckPredicate:
2141 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2142 return Index;
2143 case SelectionDAGISel::OPC_CheckOpcode:
2144 Result = !::CheckOpcode(Table, Index, N.getNode());
2145 return Index;
2146 case SelectionDAGISel::OPC_CheckType:
2147 Result = !::CheckType(Table, Index, N, SDISel.TLI);
2148 return Index;
2149 case SelectionDAGISel::OPC_CheckChild0Type:
2150 case SelectionDAGISel::OPC_CheckChild1Type:
2151 case SelectionDAGISel::OPC_CheckChild2Type:
2152 case SelectionDAGISel::OPC_CheckChild3Type:
2153 case SelectionDAGISel::OPC_CheckChild4Type:
2154 case SelectionDAGISel::OPC_CheckChild5Type:
2155 case SelectionDAGISel::OPC_CheckChild6Type:
2156 case SelectionDAGISel::OPC_CheckChild7Type:
2157 Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2158 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2159 return Index;
2160 case SelectionDAGISel::OPC_CheckCondCode:
2161 Result = !::CheckCondCode(Table, Index, N);
2162 return Index;
2163 case SelectionDAGISel::OPC_CheckValueType:
2164 Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2165 return Index;
2166 case SelectionDAGISel::OPC_CheckInteger:
2167 Result = !::CheckInteger(Table, Index, N);
2168 return Index;
2169 case SelectionDAGISel::OPC_CheckAndImm:
2170 Result = !::CheckAndImm(Table, Index, N, SDISel);
2171 return Index;
2172 case SelectionDAGISel::OPC_CheckOrImm:
2173 Result = !::CheckOrImm(Table, Index, N, SDISel);
2174 return Index;
2175 }
2176 }
2177
2178 namespace {
2179
2180 struct MatchScope {
2181 /// FailIndex - If this match fails, this is the index to continue with.
2182 unsigned FailIndex;
2183
2184 /// NodeStack - The node stack when the scope was formed.
2185 SmallVector<SDValue, 4> NodeStack;
2186
2187 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2188 unsigned NumRecordedNodes;
2189
2190 /// NumMatchedMemRefs - The number of matched memref entries.
2191 unsigned NumMatchedMemRefs;
2192
2193 /// InputChain/InputGlue - The current chain/glue
2194 SDValue InputChain, InputGlue;
2195
2196 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2197 bool HasChainNodesMatched, HasGlueResultNodesMatched;
2198 };
2199
2200 }
2201
2202 SDNode *SelectionDAGISel::
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2203 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2204 unsigned TableSize) {
2205 // FIXME: Should these even be selected? Handle these cases in the caller?
2206 switch (NodeToMatch->getOpcode()) {
2207 default:
2208 break;
2209 case ISD::EntryToken: // These nodes remain the same.
2210 case ISD::BasicBlock:
2211 case ISD::Register:
2212 case ISD::RegisterMask:
2213 //case ISD::VALUETYPE:
2214 //case ISD::CONDCODE:
2215 case ISD::HANDLENODE:
2216 case ISD::MDNODE_SDNODE:
2217 case ISD::TargetConstant:
2218 case ISD::TargetConstantFP:
2219 case ISD::TargetConstantPool:
2220 case ISD::TargetFrameIndex:
2221 case ISD::TargetExternalSymbol:
2222 case ISD::TargetBlockAddress:
2223 case ISD::TargetJumpTable:
2224 case ISD::TargetGlobalTLSAddress:
2225 case ISD::TargetGlobalAddress:
2226 case ISD::TokenFactor:
2227 case ISD::CopyFromReg:
2228 case ISD::CopyToReg:
2229 case ISD::EH_LABEL:
2230 case ISD::LIFETIME_START:
2231 case ISD::LIFETIME_END:
2232 NodeToMatch->setNodeId(-1); // Mark selected.
2233 return 0;
2234 case ISD::AssertSext:
2235 case ISD::AssertZext:
2236 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2237 NodeToMatch->getOperand(0));
2238 return 0;
2239 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2240 case ISD::UNDEF: return Select_UNDEF(NodeToMatch);
2241 }
2242
2243 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2244
2245 // Set up the node stack with NodeToMatch as the only node on the stack.
2246 SmallVector<SDValue, 8> NodeStack;
2247 SDValue N = SDValue(NodeToMatch, 0);
2248 NodeStack.push_back(N);
2249
2250 // MatchScopes - Scopes used when matching, if a match failure happens, this
2251 // indicates where to continue checking.
2252 SmallVector<MatchScope, 8> MatchScopes;
2253
2254 // RecordedNodes - This is the set of nodes that have been recorded by the
2255 // state machine. The second value is the parent of the node, or null if the
2256 // root is recorded.
2257 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2258
2259 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2260 // pattern.
2261 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2262
2263 // These are the current input chain and glue for use when generating nodes.
2264 // Various Emit operations change these. For example, emitting a copytoreg
2265 // uses and updates these.
2266 SDValue InputChain, InputGlue;
2267
2268 // ChainNodesMatched - If a pattern matches nodes that have input/output
2269 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2270 // which ones they are. The result is captured into this list so that we can
2271 // update the chain results when the pattern is complete.
2272 SmallVector<SDNode*, 3> ChainNodesMatched;
2273 SmallVector<SDNode*, 3> GlueResultNodesMatched;
2274
2275 DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2276 NodeToMatch->dump(CurDAG);
2277 errs() << '\n');
2278
2279 // Determine where to start the interpreter. Normally we start at opcode #0,
2280 // but if the state machine starts with an OPC_SwitchOpcode, then we
2281 // accelerate the first lookup (which is guaranteed to be hot) with the
2282 // OpcodeOffset table.
2283 unsigned MatcherIndex = 0;
2284
2285 if (!OpcodeOffset.empty()) {
2286 // Already computed the OpcodeOffset table, just index into it.
2287 if (N.getOpcode() < OpcodeOffset.size())
2288 MatcherIndex = OpcodeOffset[N.getOpcode()];
2289 DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n");
2290
2291 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2292 // Otherwise, the table isn't computed, but the state machine does start
2293 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2294 // is the first time we're selecting an instruction.
2295 unsigned Idx = 1;
2296 while (1) {
2297 // Get the size of this case.
2298 unsigned CaseSize = MatcherTable[Idx++];
2299 if (CaseSize & 128)
2300 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2301 if (CaseSize == 0) break;
2302
2303 // Get the opcode, add the index to the table.
2304 uint16_t Opc = MatcherTable[Idx++];
2305 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2306 if (Opc >= OpcodeOffset.size())
2307 OpcodeOffset.resize((Opc+1)*2);
2308 OpcodeOffset[Opc] = Idx;
2309 Idx += CaseSize;
2310 }
2311
2312 // Okay, do the lookup for the first opcode.
2313 if (N.getOpcode() < OpcodeOffset.size())
2314 MatcherIndex = OpcodeOffset[N.getOpcode()];
2315 }
2316
2317 while (1) {
2318 assert(MatcherIndex < TableSize && "Invalid index");
2319 #ifndef NDEBUG
2320 unsigned CurrentOpcodeIndex = MatcherIndex;
2321 #endif
2322 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2323 switch (Opcode) {
2324 case OPC_Scope: {
2325 // Okay, the semantics of this operation are that we should push a scope
2326 // then evaluate the first child. However, pushing a scope only to have
2327 // the first check fail (which then pops it) is inefficient. If we can
2328 // determine immediately that the first check (or first several) will
2329 // immediately fail, don't even bother pushing a scope for them.
2330 unsigned FailIndex;
2331
2332 while (1) {
2333 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2334 if (NumToSkip & 128)
2335 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2336 // Found the end of the scope with no match.
2337 if (NumToSkip == 0) {
2338 FailIndex = 0;
2339 break;
2340 }
2341
2342 FailIndex = MatcherIndex+NumToSkip;
2343
2344 unsigned MatcherIndexOfPredicate = MatcherIndex;
2345 (void)MatcherIndexOfPredicate; // silence warning.
2346
2347 // If we can't evaluate this predicate without pushing a scope (e.g. if
2348 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2349 // push the scope and evaluate the full predicate chain.
2350 bool Result;
2351 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2352 Result, *this, RecordedNodes);
2353 if (!Result)
2354 break;
2355
2356 DEBUG(errs() << " Skipped scope entry (due to false predicate) at "
2357 << "index " << MatcherIndexOfPredicate
2358 << ", continuing at " << FailIndex << "\n");
2359 ++NumDAGIselRetries;
2360
2361 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2362 // move to the next case.
2363 MatcherIndex = FailIndex;
2364 }
2365
2366 // If the whole scope failed to match, bail.
2367 if (FailIndex == 0) break;
2368
2369 // Push a MatchScope which indicates where to go if the first child fails
2370 // to match.
2371 MatchScope NewEntry;
2372 NewEntry.FailIndex = FailIndex;
2373 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2374 NewEntry.NumRecordedNodes = RecordedNodes.size();
2375 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2376 NewEntry.InputChain = InputChain;
2377 NewEntry.InputGlue = InputGlue;
2378 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2379 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2380 MatchScopes.push_back(NewEntry);
2381 continue;
2382 }
2383 case OPC_RecordNode: {
2384 // Remember this node, it may end up being an operand in the pattern.
2385 SDNode *Parent = 0;
2386 if (NodeStack.size() > 1)
2387 Parent = NodeStack[NodeStack.size()-2].getNode();
2388 RecordedNodes.push_back(std::make_pair(N, Parent));
2389 continue;
2390 }
2391
2392 case OPC_RecordChild0: case OPC_RecordChild1:
2393 case OPC_RecordChild2: case OPC_RecordChild3:
2394 case OPC_RecordChild4: case OPC_RecordChild5:
2395 case OPC_RecordChild6: case OPC_RecordChild7: {
2396 unsigned ChildNo = Opcode-OPC_RecordChild0;
2397 if (ChildNo >= N.getNumOperands())
2398 break; // Match fails if out of range child #.
2399
2400 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2401 N.getNode()));
2402 continue;
2403 }
2404 case OPC_RecordMemRef:
2405 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2406 continue;
2407
2408 case OPC_CaptureGlueInput:
2409 // If the current node has an input glue, capture it in InputGlue.
2410 if (N->getNumOperands() != 0 &&
2411 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2412 InputGlue = N->getOperand(N->getNumOperands()-1);
2413 continue;
2414
2415 case OPC_MoveChild: {
2416 unsigned ChildNo = MatcherTable[MatcherIndex++];
2417 if (ChildNo >= N.getNumOperands())
2418 break; // Match fails if out of range child #.
2419 N = N.getOperand(ChildNo);
2420 NodeStack.push_back(N);
2421 continue;
2422 }
2423
2424 case OPC_MoveParent:
2425 // Pop the current node off the NodeStack.
2426 NodeStack.pop_back();
2427 assert(!NodeStack.empty() && "Node stack imbalance!");
2428 N = NodeStack.back();
2429 continue;
2430
2431 case OPC_CheckSame:
2432 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2433 continue;
2434 case OPC_CheckPatternPredicate:
2435 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2436 continue;
2437 case OPC_CheckPredicate:
2438 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2439 N.getNode()))
2440 break;
2441 continue;
2442 case OPC_CheckComplexPat: {
2443 unsigned CPNum = MatcherTable[MatcherIndex++];
2444 unsigned RecNo = MatcherTable[MatcherIndex++];
2445 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2446 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2447 RecordedNodes[RecNo].first, CPNum,
2448 RecordedNodes))
2449 break;
2450 continue;
2451 }
2452 case OPC_CheckOpcode:
2453 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2454 continue;
2455
2456 case OPC_CheckType:
2457 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2458 continue;
2459
2460 case OPC_SwitchOpcode: {
2461 unsigned CurNodeOpcode = N.getOpcode();
2462 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2463 unsigned CaseSize;
2464 while (1) {
2465 // Get the size of this case.
2466 CaseSize = MatcherTable[MatcherIndex++];
2467 if (CaseSize & 128)
2468 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2469 if (CaseSize == 0) break;
2470
2471 uint16_t Opc = MatcherTable[MatcherIndex++];
2472 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2473
2474 // If the opcode matches, then we will execute this case.
2475 if (CurNodeOpcode == Opc)
2476 break;
2477
2478 // Otherwise, skip over this case.
2479 MatcherIndex += CaseSize;
2480 }
2481
2482 // If no cases matched, bail out.
2483 if (CaseSize == 0) break;
2484
2485 // Otherwise, execute the case we found.
2486 DEBUG(errs() << " OpcodeSwitch from " << SwitchStart
2487 << " to " << MatcherIndex << "\n");
2488 continue;
2489 }
2490
2491 case OPC_SwitchType: {
2492 MVT CurNodeVT = N.getValueType().getSimpleVT();
2493 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2494 unsigned CaseSize;
2495 while (1) {
2496 // Get the size of this case.
2497 CaseSize = MatcherTable[MatcherIndex++];
2498 if (CaseSize & 128)
2499 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2500 if (CaseSize == 0) break;
2501
2502 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2503 if (CaseVT == MVT::iPTR)
2504 CaseVT = TLI.getPointerTy();
2505
2506 // If the VT matches, then we will execute this case.
2507 if (CurNodeVT == CaseVT)
2508 break;
2509
2510 // Otherwise, skip over this case.
2511 MatcherIndex += CaseSize;
2512 }
2513
2514 // If no cases matched, bail out.
2515 if (CaseSize == 0) break;
2516
2517 // Otherwise, execute the case we found.
2518 DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2519 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2520 continue;
2521 }
2522 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2523 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2524 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2525 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2526 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2527 Opcode-OPC_CheckChild0Type))
2528 break;
2529 continue;
2530 case OPC_CheckCondCode:
2531 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2532 continue;
2533 case OPC_CheckValueType:
2534 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2535 continue;
2536 case OPC_CheckInteger:
2537 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2538 continue;
2539 case OPC_CheckAndImm:
2540 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2541 continue;
2542 case OPC_CheckOrImm:
2543 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2544 continue;
2545
2546 case OPC_CheckFoldableChainNode: {
2547 assert(NodeStack.size() != 1 && "No parent node");
2548 // Verify that all intermediate nodes between the root and this one have
2549 // a single use.
2550 bool HasMultipleUses = false;
2551 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2552 if (!NodeStack[i].hasOneUse()) {
2553 HasMultipleUses = true;
2554 break;
2555 }
2556 if (HasMultipleUses) break;
2557
2558 // Check to see that the target thinks this is profitable to fold and that
2559 // we can fold it without inducing cycles in the graph.
2560 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2561 NodeToMatch) ||
2562 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2563 NodeToMatch, OptLevel,
2564 true/*We validate our own chains*/))
2565 break;
2566
2567 continue;
2568 }
2569 case OPC_EmitInteger: {
2570 MVT::SimpleValueType VT =
2571 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2572 int64_t Val = MatcherTable[MatcherIndex++];
2573 if (Val & 128)
2574 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2575 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2576 CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2577 continue;
2578 }
2579 case OPC_EmitRegister: {
2580 MVT::SimpleValueType VT =
2581 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2582 unsigned RegNo = MatcherTable[MatcherIndex++];
2583 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2584 CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2585 continue;
2586 }
2587 case OPC_EmitRegister2: {
2588 // For targets w/ more than 256 register names, the register enum
2589 // values are stored in two bytes in the matcher table (just like
2590 // opcodes).
2591 MVT::SimpleValueType VT =
2592 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2593 unsigned RegNo = MatcherTable[MatcherIndex++];
2594 RegNo |= MatcherTable[MatcherIndex++] << 8;
2595 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2596 CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2597 continue;
2598 }
2599
2600 case OPC_EmitConvertToTarget: {
2601 // Convert from IMM/FPIMM to target version.
2602 unsigned RecNo = MatcherTable[MatcherIndex++];
2603 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2604 SDValue Imm = RecordedNodes[RecNo].first;
2605
2606 if (Imm->getOpcode() == ISD::Constant) {
2607 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2608 Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2609 } else if (Imm->getOpcode() == ISD::ConstantFP) {
2610 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2611 Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2612 }
2613
2614 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2615 continue;
2616 }
2617
2618 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
2619 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1
2620 // These are space-optimized forms of OPC_EmitMergeInputChains.
2621 assert(InputChain.getNode() == 0 &&
2622 "EmitMergeInputChains should be the first chain producing node");
2623 assert(ChainNodesMatched.empty() &&
2624 "Should only have one EmitMergeInputChains per match");
2625
2626 // Read all of the chained nodes.
2627 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2628 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2629 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2630
2631 // FIXME: What if other value results of the node have uses not matched
2632 // by this pattern?
2633 if (ChainNodesMatched.back() != NodeToMatch &&
2634 !RecordedNodes[RecNo].first.hasOneUse()) {
2635 ChainNodesMatched.clear();
2636 break;
2637 }
2638
2639 // Merge the input chains if they are not intra-pattern references.
2640 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2641
2642 if (InputChain.getNode() == 0)
2643 break; // Failed to merge.
2644 continue;
2645 }
2646
2647 case OPC_EmitMergeInputChains: {
2648 assert(InputChain.getNode() == 0 &&
2649 "EmitMergeInputChains should be the first chain producing node");
2650 // This node gets a list of nodes we matched in the input that have
2651 // chains. We want to token factor all of the input chains to these nodes
2652 // together. However, if any of the input chains is actually one of the
2653 // nodes matched in this pattern, then we have an intra-match reference.
2654 // Ignore these because the newly token factored chain should not refer to
2655 // the old nodes.
2656 unsigned NumChains = MatcherTable[MatcherIndex++];
2657 assert(NumChains != 0 && "Can't TF zero chains");
2658
2659 assert(ChainNodesMatched.empty() &&
2660 "Should only have one EmitMergeInputChains per match");
2661
2662 // Read all of the chained nodes.
2663 for (unsigned i = 0; i != NumChains; ++i) {
2664 unsigned RecNo = MatcherTable[MatcherIndex++];
2665 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2666 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2667
2668 // FIXME: What if other value results of the node have uses not matched
2669 // by this pattern?
2670 if (ChainNodesMatched.back() != NodeToMatch &&
2671 !RecordedNodes[RecNo].first.hasOneUse()) {
2672 ChainNodesMatched.clear();
2673 break;
2674 }
2675 }
2676
2677 // If the inner loop broke out, the match fails.
2678 if (ChainNodesMatched.empty())
2679 break;
2680
2681 // Merge the input chains if they are not intra-pattern references.
2682 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2683
2684 if (InputChain.getNode() == 0)
2685 break; // Failed to merge.
2686
2687 continue;
2688 }
2689
2690 case OPC_EmitCopyToReg: {
2691 unsigned RecNo = MatcherTable[MatcherIndex++];
2692 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2693 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2694
2695 if (InputChain.getNode() == 0)
2696 InputChain = CurDAG->getEntryNode();
2697
2698 InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2699 DestPhysReg, RecordedNodes[RecNo].first,
2700 InputGlue);
2701
2702 InputGlue = InputChain.getValue(1);
2703 continue;
2704 }
2705
2706 case OPC_EmitNodeXForm: {
2707 unsigned XFormNo = MatcherTable[MatcherIndex++];
2708 unsigned RecNo = MatcherTable[MatcherIndex++];
2709 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2710 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2711 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2712 continue;
2713 }
2714
2715 case OPC_EmitNode:
2716 case OPC_MorphNodeTo: {
2717 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2718 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2719 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2720 // Get the result VT list.
2721 unsigned NumVTs = MatcherTable[MatcherIndex++];
2722 SmallVector<EVT, 4> VTs;
2723 for (unsigned i = 0; i != NumVTs; ++i) {
2724 MVT::SimpleValueType VT =
2725 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2726 if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2727 VTs.push_back(VT);
2728 }
2729
2730 if (EmitNodeInfo & OPFL_Chain)
2731 VTs.push_back(MVT::Other);
2732 if (EmitNodeInfo & OPFL_GlueOutput)
2733 VTs.push_back(MVT::Glue);
2734
2735 // This is hot code, so optimize the two most common cases of 1 and 2
2736 // results.
2737 SDVTList VTList;
2738 if (VTs.size() == 1)
2739 VTList = CurDAG->getVTList(VTs[0]);
2740 else if (VTs.size() == 2)
2741 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2742 else
2743 VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2744
2745 // Get the operand list.
2746 unsigned NumOps = MatcherTable[MatcherIndex++];
2747 SmallVector<SDValue, 8> Ops;
2748 for (unsigned i = 0; i != NumOps; ++i) {
2749 unsigned RecNo = MatcherTable[MatcherIndex++];
2750 if (RecNo & 128)
2751 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2752
2753 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2754 Ops.push_back(RecordedNodes[RecNo].first);
2755 }
2756
2757 // If there are variadic operands to add, handle them now.
2758 if (EmitNodeInfo & OPFL_VariadicInfo) {
2759 // Determine the start index to copy from.
2760 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2761 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2762 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2763 "Invalid variadic node");
2764 // Copy all of the variadic operands, not including a potential glue
2765 // input.
2766 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2767 i != e; ++i) {
2768 SDValue V = NodeToMatch->getOperand(i);
2769 if (V.getValueType() == MVT::Glue) break;
2770 Ops.push_back(V);
2771 }
2772 }
2773
2774 // If this has chain/glue inputs, add them.
2775 if (EmitNodeInfo & OPFL_Chain)
2776 Ops.push_back(InputChain);
2777 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2778 Ops.push_back(InputGlue);
2779
2780 // Create the node.
2781 SDNode *Res = 0;
2782 if (Opcode != OPC_MorphNodeTo) {
2783 // If this is a normal EmitNode command, just create the new node and
2784 // add the results to the RecordedNodes list.
2785 Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2786 VTList, Ops.data(), Ops.size());
2787
2788 // Add all the non-glue/non-chain results to the RecordedNodes list.
2789 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2790 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2791 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2792 (SDNode*) 0));
2793 }
2794
2795 } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2796 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2797 EmitNodeInfo);
2798 } else {
2799 // NodeToMatch was eliminated by CSE when the target changed the DAG.
2800 // We will visit the equivalent node later.
2801 DEBUG(dbgs() << "Node was eliminated by CSE\n");
2802 return 0;
2803 }
2804
2805 // If the node had chain/glue results, update our notion of the current
2806 // chain and glue.
2807 if (EmitNodeInfo & OPFL_GlueOutput) {
2808 InputGlue = SDValue(Res, VTs.size()-1);
2809 if (EmitNodeInfo & OPFL_Chain)
2810 InputChain = SDValue(Res, VTs.size()-2);
2811 } else if (EmitNodeInfo & OPFL_Chain)
2812 InputChain = SDValue(Res, VTs.size()-1);
2813
2814 // If the OPFL_MemRefs glue is set on this node, slap all of the
2815 // accumulated memrefs onto it.
2816 //
2817 // FIXME: This is vastly incorrect for patterns with multiple outputs
2818 // instructions that access memory and for ComplexPatterns that match
2819 // loads.
2820 if (EmitNodeInfo & OPFL_MemRefs) {
2821 // Only attach load or store memory operands if the generated
2822 // instruction may load or store.
2823 const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2824 bool mayLoad = MCID.mayLoad();
2825 bool mayStore = MCID.mayStore();
2826
2827 unsigned NumMemRefs = 0;
2828 for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2829 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2830 if ((*I)->isLoad()) {
2831 if (mayLoad)
2832 ++NumMemRefs;
2833 } else if ((*I)->isStore()) {
2834 if (mayStore)
2835 ++NumMemRefs;
2836 } else {
2837 ++NumMemRefs;
2838 }
2839 }
2840
2841 MachineSDNode::mmo_iterator MemRefs =
2842 MF->allocateMemRefsArray(NumMemRefs);
2843
2844 MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2845 for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2846 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2847 if ((*I)->isLoad()) {
2848 if (mayLoad)
2849 *MemRefsPos++ = *I;
2850 } else if ((*I)->isStore()) {
2851 if (mayStore)
2852 *MemRefsPos++ = *I;
2853 } else {
2854 *MemRefsPos++ = *I;
2855 }
2856 }
2857
2858 cast<MachineSDNode>(Res)
2859 ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2860 }
2861
2862 DEBUG(errs() << " "
2863 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2864 << " node: "; Res->dump(CurDAG); errs() << "\n");
2865
2866 // If this was a MorphNodeTo then we're completely done!
2867 if (Opcode == OPC_MorphNodeTo) {
2868 // Update chain and glue uses.
2869 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2870 InputGlue, GlueResultNodesMatched, true);
2871 return Res;
2872 }
2873
2874 continue;
2875 }
2876
2877 case OPC_MarkGlueResults: {
2878 unsigned NumNodes = MatcherTable[MatcherIndex++];
2879
2880 // Read and remember all the glue-result nodes.
2881 for (unsigned i = 0; i != NumNodes; ++i) {
2882 unsigned RecNo = MatcherTable[MatcherIndex++];
2883 if (RecNo & 128)
2884 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2885
2886 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2887 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2888 }
2889 continue;
2890 }
2891
2892 case OPC_CompleteMatch: {
2893 // The match has been completed, and any new nodes (if any) have been
2894 // created. Patch up references to the matched dag to use the newly
2895 // created nodes.
2896 unsigned NumResults = MatcherTable[MatcherIndex++];
2897
2898 for (unsigned i = 0; i != NumResults; ++i) {
2899 unsigned ResSlot = MatcherTable[MatcherIndex++];
2900 if (ResSlot & 128)
2901 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2902
2903 assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2904 SDValue Res = RecordedNodes[ResSlot].first;
2905
2906 assert(i < NodeToMatch->getNumValues() &&
2907 NodeToMatch->getValueType(i) != MVT::Other &&
2908 NodeToMatch->getValueType(i) != MVT::Glue &&
2909 "Invalid number of results to complete!");
2910 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2911 NodeToMatch->getValueType(i) == MVT::iPTR ||
2912 Res.getValueType() == MVT::iPTR ||
2913 NodeToMatch->getValueType(i).getSizeInBits() ==
2914 Res.getValueType().getSizeInBits()) &&
2915 "invalid replacement");
2916 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2917 }
2918
2919 // If the root node defines glue, add it to the glue nodes to update list.
2920 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2921 GlueResultNodesMatched.push_back(NodeToMatch);
2922
2923 // Update chain and glue uses.
2924 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2925 InputGlue, GlueResultNodesMatched, false);
2926
2927 assert(NodeToMatch->use_empty() &&
2928 "Didn't replace all uses of the node?");
2929
2930 // FIXME: We just return here, which interacts correctly with SelectRoot
2931 // above. We should fix this to not return an SDNode* anymore.
2932 return 0;
2933 }
2934 }
2935
2936 // If the code reached this point, then the match failed. See if there is
2937 // another child to try in the current 'Scope', otherwise pop it until we
2938 // find a case to check.
2939 DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
2940 ++NumDAGIselRetries;
2941 while (1) {
2942 if (MatchScopes.empty()) {
2943 CannotYetSelect(NodeToMatch);
2944 return 0;
2945 }
2946
2947 // Restore the interpreter state back to the point where the scope was
2948 // formed.
2949 MatchScope &LastScope = MatchScopes.back();
2950 RecordedNodes.resize(LastScope.NumRecordedNodes);
2951 NodeStack.clear();
2952 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2953 N = NodeStack.back();
2954
2955 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2956 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2957 MatcherIndex = LastScope.FailIndex;
2958
2959 DEBUG(errs() << " Continuing at " << MatcherIndex << "\n");
2960
2961 InputChain = LastScope.InputChain;
2962 InputGlue = LastScope.InputGlue;
2963 if (!LastScope.HasChainNodesMatched)
2964 ChainNodesMatched.clear();
2965 if (!LastScope.HasGlueResultNodesMatched)
2966 GlueResultNodesMatched.clear();
2967
2968 // Check to see what the offset is at the new MatcherIndex. If it is zero
2969 // we have reached the end of this scope, otherwise we have another child
2970 // in the current scope to try.
2971 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2972 if (NumToSkip & 128)
2973 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2974
2975 // If we have another child in this scope to match, update FailIndex and
2976 // try it.
2977 if (NumToSkip != 0) {
2978 LastScope.FailIndex = MatcherIndex+NumToSkip;
2979 break;
2980 }
2981
2982 // End of this scope, pop it and try the next child in the containing
2983 // scope.
2984 MatchScopes.pop_back();
2985 }
2986 }
2987 }
2988
2989
2990
CannotYetSelect(SDNode * N)2991 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2992 std::string msg;
2993 raw_string_ostream Msg(msg);
2994 Msg << "Cannot select: ";
2995
2996 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2997 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2998 N->getOpcode() != ISD::INTRINSIC_VOID) {
2999 N->printrFull(Msg, CurDAG);
3000 Msg << "\nIn function: " << MF->getName();
3001 } else {
3002 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3003 unsigned iid =
3004 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3005 if (iid < Intrinsic::num_intrinsics)
3006 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3007 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3008 Msg << "target intrinsic %" << TII->getName(iid);
3009 else
3010 Msg << "unknown intrinsic #" << iid;
3011 }
3012 report_fatal_error(Msg.str());
3013 }
3014
3015 char SelectionDAGISel::ID = 0;
3016