• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2  //
3  //                     The LLVM Compiler Infrastructure
4  //
5  // This file is distributed under the University of Illinois Open Source
6  // License. See LICENSE.TXT for details.
7  //
8  //===----------------------------------------------------------------------===//
9  //
10  // This file provides Sema routines for C++ access control semantics.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "clang/Sema/SemaInternal.h"
15  #include "clang/AST/ASTContext.h"
16  #include "clang/AST/CXXInheritance.h"
17  #include "clang/AST/DeclCXX.h"
18  #include "clang/AST/DeclFriend.h"
19  #include "clang/AST/DeclObjC.h"
20  #include "clang/AST/DependentDiagnostic.h"
21  #include "clang/AST/ExprCXX.h"
22  #include "clang/Sema/DelayedDiagnostic.h"
23  #include "clang/Sema/Initialization.h"
24  #include "clang/Sema/Lookup.h"
25  
26  using namespace clang;
27  using namespace sema;
28  
29  /// A copy of Sema's enum without AR_delayed.
30  enum AccessResult {
31    AR_accessible,
32    AR_inaccessible,
33    AR_dependent
34  };
35  
36  /// SetMemberAccessSpecifier - Set the access specifier of a member.
37  /// Returns true on error (when the previous member decl access specifier
38  /// is different from the new member decl access specifier).
SetMemberAccessSpecifier(NamedDecl * MemberDecl,NamedDecl * PrevMemberDecl,AccessSpecifier LexicalAS)39  bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                      NamedDecl *PrevMemberDecl,
41                                      AccessSpecifier LexicalAS) {
42    if (!PrevMemberDecl) {
43      // Use the lexical access specifier.
44      MemberDecl->setAccess(LexicalAS);
45      return false;
46    }
47  
48    // C++ [class.access.spec]p3: When a member is redeclared its access
49    // specifier must be same as its initial declaration.
50    if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51      Diag(MemberDecl->getLocation(),
52           diag::err_class_redeclared_with_different_access)
53        << MemberDecl << LexicalAS;
54      Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55        << PrevMemberDecl << PrevMemberDecl->getAccess();
56  
57      MemberDecl->setAccess(LexicalAS);
58      return true;
59    }
60  
61    MemberDecl->setAccess(PrevMemberDecl->getAccess());
62    return false;
63  }
64  
FindDeclaringClass(NamedDecl * D)65  static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66    DeclContext *DC = D->getDeclContext();
67  
68    // This can only happen at top: enum decls only "publish" their
69    // immediate members.
70    if (isa<EnumDecl>(DC))
71      DC = cast<EnumDecl>(DC)->getDeclContext();
72  
73    CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74    while (DeclaringClass->isAnonymousStructOrUnion())
75      DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76    return DeclaringClass;
77  }
78  
79  namespace {
80  struct EffectiveContext {
EffectiveContext__anon54dfadaf0111::EffectiveContext81    EffectiveContext() : Inner(0), Dependent(false) {}
82  
EffectiveContext__anon54dfadaf0111::EffectiveContext83    explicit EffectiveContext(DeclContext *DC)
84      : Inner(DC),
85        Dependent(DC->isDependentContext()) {
86  
87      // C++ [class.access.nest]p1:
88      //   A nested class is a member and as such has the same access
89      //   rights as any other member.
90      // C++ [class.access]p2:
91      //   A member of a class can also access all the names to which
92      //   the class has access.  A local class of a member function
93      //   may access the same names that the member function itself
94      //   may access.
95      // This almost implies that the privileges of nesting are transitive.
96      // Technically it says nothing about the local classes of non-member
97      // functions (which can gain privileges through friendship), but we
98      // take that as an oversight.
99      while (true) {
100        // We want to add canonical declarations to the EC lists for
101        // simplicity of checking, but we need to walk up through the
102        // actual current DC chain.  Otherwise, something like a local
103        // extern or friend which happens to be the canonical
104        // declaration will really mess us up.
105  
106        if (isa<CXXRecordDecl>(DC)) {
107          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
108          Records.push_back(Record->getCanonicalDecl());
109          DC = Record->getDeclContext();
110        } else if (isa<FunctionDecl>(DC)) {
111          FunctionDecl *Function = cast<FunctionDecl>(DC);
112          Functions.push_back(Function->getCanonicalDecl());
113          if (Function->getFriendObjectKind())
114            DC = Function->getLexicalDeclContext();
115          else
116            DC = Function->getDeclContext();
117        } else if (DC->isFileContext()) {
118          break;
119        } else {
120          DC = DC->getParent();
121        }
122      }
123    }
124  
isDependent__anon54dfadaf0111::EffectiveContext125    bool isDependent() const { return Dependent; }
126  
includesClass__anon54dfadaf0111::EffectiveContext127    bool includesClass(const CXXRecordDecl *R) const {
128      R = R->getCanonicalDecl();
129      return std::find(Records.begin(), Records.end(), R)
130               != Records.end();
131    }
132  
133    /// Retrieves the innermost "useful" context.  Can be null if we're
134    /// doing access-control without privileges.
getInnerContext__anon54dfadaf0111::EffectiveContext135    DeclContext *getInnerContext() const {
136      return Inner;
137    }
138  
139    typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
140  
141    DeclContext *Inner;
142    SmallVector<FunctionDecl*, 4> Functions;
143    SmallVector<CXXRecordDecl*, 4> Records;
144    bool Dependent;
145  };
146  
147  /// Like sema::AccessedEntity, but kindly lets us scribble all over
148  /// it.
149  struct AccessTarget : public AccessedEntity {
AccessTarget__anon54dfadaf0111::AccessTarget150    AccessTarget(const AccessedEntity &Entity)
151      : AccessedEntity(Entity) {
152      initialize();
153    }
154  
AccessTarget__anon54dfadaf0111::AccessTarget155    AccessTarget(ASTContext &Context,
156                 MemberNonce _,
157                 CXXRecordDecl *NamingClass,
158                 DeclAccessPair FoundDecl,
159                 QualType BaseObjectType)
160      : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
161                       FoundDecl, BaseObjectType) {
162      initialize();
163    }
164  
AccessTarget__anon54dfadaf0111::AccessTarget165    AccessTarget(ASTContext &Context,
166                 BaseNonce _,
167                 CXXRecordDecl *BaseClass,
168                 CXXRecordDecl *DerivedClass,
169                 AccessSpecifier Access)
170      : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
171                       Access) {
172      initialize();
173    }
174  
isInstanceMember__anon54dfadaf0111::AccessTarget175    bool isInstanceMember() const {
176      return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
177    }
178  
hasInstanceContext__anon54dfadaf0111::AccessTarget179    bool hasInstanceContext() const {
180      return HasInstanceContext;
181    }
182  
183    class SavedInstanceContext {
184    public:
~SavedInstanceContext()185      ~SavedInstanceContext() {
186        Target.HasInstanceContext = Has;
187      }
188  
189    private:
190      friend struct AccessTarget;
SavedInstanceContext(AccessTarget & Target)191      explicit SavedInstanceContext(AccessTarget &Target)
192        : Target(Target), Has(Target.HasInstanceContext) {}
193      AccessTarget &Target;
194      bool Has;
195    };
196  
saveInstanceContext__anon54dfadaf0111::AccessTarget197    SavedInstanceContext saveInstanceContext() {
198      return SavedInstanceContext(*this);
199    }
200  
suppressInstanceContext__anon54dfadaf0111::AccessTarget201    void suppressInstanceContext() {
202      HasInstanceContext = false;
203    }
204  
resolveInstanceContext__anon54dfadaf0111::AccessTarget205    const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
206      assert(HasInstanceContext);
207      if (CalculatedInstanceContext)
208        return InstanceContext;
209  
210      CalculatedInstanceContext = true;
211      DeclContext *IC = S.computeDeclContext(getBaseObjectType());
212      InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl() : 0);
213      return InstanceContext;
214    }
215  
getDeclaringClass__anon54dfadaf0111::AccessTarget216    const CXXRecordDecl *getDeclaringClass() const {
217      return DeclaringClass;
218    }
219  
220    /// The "effective" naming class is the canonical non-anonymous
221    /// class containing the actual naming class.
getEffectiveNamingClass__anon54dfadaf0111::AccessTarget222    const CXXRecordDecl *getEffectiveNamingClass() const {
223      const CXXRecordDecl *namingClass = getNamingClass();
224      while (namingClass->isAnonymousStructOrUnion())
225        namingClass = cast<CXXRecordDecl>(namingClass->getParent());
226      return namingClass->getCanonicalDecl();
227    }
228  
229  private:
initialize__anon54dfadaf0111::AccessTarget230    void initialize() {
231      HasInstanceContext = (isMemberAccess() &&
232                            !getBaseObjectType().isNull() &&
233                            getTargetDecl()->isCXXInstanceMember());
234      CalculatedInstanceContext = false;
235      InstanceContext = 0;
236  
237      if (isMemberAccess())
238        DeclaringClass = FindDeclaringClass(getTargetDecl());
239      else
240        DeclaringClass = getBaseClass();
241      DeclaringClass = DeclaringClass->getCanonicalDecl();
242    }
243  
244    bool HasInstanceContext : 1;
245    mutable bool CalculatedInstanceContext : 1;
246    mutable const CXXRecordDecl *InstanceContext;
247    const CXXRecordDecl *DeclaringClass;
248  };
249  
250  }
251  
252  /// Checks whether one class might instantiate to the other.
MightInstantiateTo(const CXXRecordDecl * From,const CXXRecordDecl * To)253  static bool MightInstantiateTo(const CXXRecordDecl *From,
254                                 const CXXRecordDecl *To) {
255    // Declaration names are always preserved by instantiation.
256    if (From->getDeclName() != To->getDeclName())
257      return false;
258  
259    const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
260    const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
261    if (FromDC == ToDC) return true;
262    if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
263  
264    // Be conservative.
265    return true;
266  }
267  
268  /// Checks whether one class is derived from another, inclusively.
269  /// Properly indicates when it couldn't be determined due to
270  /// dependence.
271  ///
272  /// This should probably be donated to AST or at least Sema.
IsDerivedFromInclusive(const CXXRecordDecl * Derived,const CXXRecordDecl * Target)273  static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
274                                             const CXXRecordDecl *Target) {
275    assert(Derived->getCanonicalDecl() == Derived);
276    assert(Target->getCanonicalDecl() == Target);
277  
278    if (Derived == Target) return AR_accessible;
279  
280    bool CheckDependent = Derived->isDependentContext();
281    if (CheckDependent && MightInstantiateTo(Derived, Target))
282      return AR_dependent;
283  
284    AccessResult OnFailure = AR_inaccessible;
285    SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
286  
287    while (true) {
288      if (Derived->isDependentContext() && !Derived->hasDefinition())
289        return AR_dependent;
290  
291      for (CXXRecordDecl::base_class_const_iterator
292             I = Derived->bases_begin(), E = Derived->bases_end(); I != E; ++I) {
293  
294        const CXXRecordDecl *RD;
295  
296        QualType T = I->getType();
297        if (const RecordType *RT = T->getAs<RecordType>()) {
298          RD = cast<CXXRecordDecl>(RT->getDecl());
299        } else if (const InjectedClassNameType *IT
300                     = T->getAs<InjectedClassNameType>()) {
301          RD = IT->getDecl();
302        } else {
303          assert(T->isDependentType() && "non-dependent base wasn't a record?");
304          OnFailure = AR_dependent;
305          continue;
306        }
307  
308        RD = RD->getCanonicalDecl();
309        if (RD == Target) return AR_accessible;
310        if (CheckDependent && MightInstantiateTo(RD, Target))
311          OnFailure = AR_dependent;
312  
313        Queue.push_back(RD);
314      }
315  
316      if (Queue.empty()) break;
317  
318      Derived = Queue.back();
319      Queue.pop_back();
320    }
321  
322    return OnFailure;
323  }
324  
325  
MightInstantiateTo(Sema & S,DeclContext * Context,DeclContext * Friend)326  static bool MightInstantiateTo(Sema &S, DeclContext *Context,
327                                 DeclContext *Friend) {
328    if (Friend == Context)
329      return true;
330  
331    assert(!Friend->isDependentContext() &&
332           "can't handle friends with dependent contexts here");
333  
334    if (!Context->isDependentContext())
335      return false;
336  
337    if (Friend->isFileContext())
338      return false;
339  
340    // TODO: this is very conservative
341    return true;
342  }
343  
344  // Asks whether the type in 'context' can ever instantiate to the type
345  // in 'friend'.
MightInstantiateTo(Sema & S,CanQualType Context,CanQualType Friend)346  static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
347    if (Friend == Context)
348      return true;
349  
350    if (!Friend->isDependentType() && !Context->isDependentType())
351      return false;
352  
353    // TODO: this is very conservative.
354    return true;
355  }
356  
MightInstantiateTo(Sema & S,FunctionDecl * Context,FunctionDecl * Friend)357  static bool MightInstantiateTo(Sema &S,
358                                 FunctionDecl *Context,
359                                 FunctionDecl *Friend) {
360    if (Context->getDeclName() != Friend->getDeclName())
361      return false;
362  
363    if (!MightInstantiateTo(S,
364                            Context->getDeclContext(),
365                            Friend->getDeclContext()))
366      return false;
367  
368    CanQual<FunctionProtoType> FriendTy
369      = S.Context.getCanonicalType(Friend->getType())
370           ->getAs<FunctionProtoType>();
371    CanQual<FunctionProtoType> ContextTy
372      = S.Context.getCanonicalType(Context->getType())
373           ->getAs<FunctionProtoType>();
374  
375    // There isn't any way that I know of to add qualifiers
376    // during instantiation.
377    if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
378      return false;
379  
380    if (FriendTy->getNumArgs() != ContextTy->getNumArgs())
381      return false;
382  
383    if (!MightInstantiateTo(S,
384                            ContextTy->getResultType(),
385                            FriendTy->getResultType()))
386      return false;
387  
388    for (unsigned I = 0, E = FriendTy->getNumArgs(); I != E; ++I)
389      if (!MightInstantiateTo(S,
390                              ContextTy->getArgType(I),
391                              FriendTy->getArgType(I)))
392        return false;
393  
394    return true;
395  }
396  
MightInstantiateTo(Sema & S,FunctionTemplateDecl * Context,FunctionTemplateDecl * Friend)397  static bool MightInstantiateTo(Sema &S,
398                                 FunctionTemplateDecl *Context,
399                                 FunctionTemplateDecl *Friend) {
400    return MightInstantiateTo(S,
401                              Context->getTemplatedDecl(),
402                              Friend->getTemplatedDecl());
403  }
404  
MatchesFriend(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Friend)405  static AccessResult MatchesFriend(Sema &S,
406                                    const EffectiveContext &EC,
407                                    const CXXRecordDecl *Friend) {
408    if (EC.includesClass(Friend))
409      return AR_accessible;
410  
411    if (EC.isDependent()) {
412      CanQualType FriendTy
413        = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
414  
415      for (EffectiveContext::record_iterator
416             I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
417        CanQualType ContextTy
418          = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
419        if (MightInstantiateTo(S, ContextTy, FriendTy))
420          return AR_dependent;
421      }
422    }
423  
424    return AR_inaccessible;
425  }
426  
MatchesFriend(Sema & S,const EffectiveContext & EC,CanQualType Friend)427  static AccessResult MatchesFriend(Sema &S,
428                                    const EffectiveContext &EC,
429                                    CanQualType Friend) {
430    if (const RecordType *RT = Friend->getAs<RecordType>())
431      return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
432  
433    // TODO: we can do better than this
434    if (Friend->isDependentType())
435      return AR_dependent;
436  
437    return AR_inaccessible;
438  }
439  
440  /// Determines whether the given friend class template matches
441  /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,ClassTemplateDecl * Friend)442  static AccessResult MatchesFriend(Sema &S,
443                                    const EffectiveContext &EC,
444                                    ClassTemplateDecl *Friend) {
445    AccessResult OnFailure = AR_inaccessible;
446  
447    // Check whether the friend is the template of a class in the
448    // context chain.
449    for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
450           I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
451      CXXRecordDecl *Record = *I;
452  
453      // Figure out whether the current class has a template:
454      ClassTemplateDecl *CTD;
455  
456      // A specialization of the template...
457      if (isa<ClassTemplateSpecializationDecl>(Record)) {
458        CTD = cast<ClassTemplateSpecializationDecl>(Record)
459          ->getSpecializedTemplate();
460  
461      // ... or the template pattern itself.
462      } else {
463        CTD = Record->getDescribedClassTemplate();
464        if (!CTD) continue;
465      }
466  
467      // It's a match.
468      if (Friend == CTD->getCanonicalDecl())
469        return AR_accessible;
470  
471      // If the context isn't dependent, it can't be a dependent match.
472      if (!EC.isDependent())
473        continue;
474  
475      // If the template names don't match, it can't be a dependent
476      // match.
477      if (CTD->getDeclName() != Friend->getDeclName())
478        continue;
479  
480      // If the class's context can't instantiate to the friend's
481      // context, it can't be a dependent match.
482      if (!MightInstantiateTo(S, CTD->getDeclContext(),
483                              Friend->getDeclContext()))
484        continue;
485  
486      // Otherwise, it's a dependent match.
487      OnFailure = AR_dependent;
488    }
489  
490    return OnFailure;
491  }
492  
493  /// Determines whether the given friend function matches anything in
494  /// the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionDecl * Friend)495  static AccessResult MatchesFriend(Sema &S,
496                                    const EffectiveContext &EC,
497                                    FunctionDecl *Friend) {
498    AccessResult OnFailure = AR_inaccessible;
499  
500    for (SmallVectorImpl<FunctionDecl*>::const_iterator
501           I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
502      if (Friend == *I)
503        return AR_accessible;
504  
505      if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
506        OnFailure = AR_dependent;
507    }
508  
509    return OnFailure;
510  }
511  
512  /// Determines whether the given friend function template matches
513  /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionTemplateDecl * Friend)514  static AccessResult MatchesFriend(Sema &S,
515                                    const EffectiveContext &EC,
516                                    FunctionTemplateDecl *Friend) {
517    if (EC.Functions.empty()) return AR_inaccessible;
518  
519    AccessResult OnFailure = AR_inaccessible;
520  
521    for (SmallVectorImpl<FunctionDecl*>::const_iterator
522           I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
523  
524      FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
525      if (!FTD)
526        FTD = (*I)->getDescribedFunctionTemplate();
527      if (!FTD)
528        continue;
529  
530      FTD = FTD->getCanonicalDecl();
531  
532      if (Friend == FTD)
533        return AR_accessible;
534  
535      if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
536        OnFailure = AR_dependent;
537    }
538  
539    return OnFailure;
540  }
541  
542  /// Determines whether the given friend declaration matches anything
543  /// in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FriendDecl * FriendD)544  static AccessResult MatchesFriend(Sema &S,
545                                    const EffectiveContext &EC,
546                                    FriendDecl *FriendD) {
547    // Whitelist accesses if there's an invalid or unsupported friend
548    // declaration.
549    if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
550      return AR_accessible;
551  
552    if (TypeSourceInfo *T = FriendD->getFriendType())
553      return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
554  
555    NamedDecl *Friend
556      = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
557  
558    // FIXME: declarations with dependent or templated scope.
559  
560    if (isa<ClassTemplateDecl>(Friend))
561      return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
562  
563    if (isa<FunctionTemplateDecl>(Friend))
564      return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
565  
566    if (isa<CXXRecordDecl>(Friend))
567      return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
568  
569    assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
570    return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
571  }
572  
GetFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Class)573  static AccessResult GetFriendKind(Sema &S,
574                                    const EffectiveContext &EC,
575                                    const CXXRecordDecl *Class) {
576    AccessResult OnFailure = AR_inaccessible;
577  
578    // Okay, check friends.
579    for (CXXRecordDecl::friend_iterator I = Class->friend_begin(),
580           E = Class->friend_end(); I != E; ++I) {
581      FriendDecl *Friend = *I;
582  
583      switch (MatchesFriend(S, EC, Friend)) {
584      case AR_accessible:
585        return AR_accessible;
586  
587      case AR_inaccessible:
588        continue;
589  
590      case AR_dependent:
591        OnFailure = AR_dependent;
592        break;
593      }
594    }
595  
596    // That's it, give up.
597    return OnFailure;
598  }
599  
600  namespace {
601  
602  /// A helper class for checking for a friend which will grant access
603  /// to a protected instance member.
604  struct ProtectedFriendContext {
605    Sema &S;
606    const EffectiveContext &EC;
607    const CXXRecordDecl *NamingClass;
608    bool CheckDependent;
609    bool EverDependent;
610  
611    /// The path down to the current base class.
612    SmallVector<const CXXRecordDecl*, 20> CurPath;
613  
ProtectedFriendContext__anon54dfadaf0211::ProtectedFriendContext614    ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
615                           const CXXRecordDecl *InstanceContext,
616                           const CXXRecordDecl *NamingClass)
617      : S(S), EC(EC), NamingClass(NamingClass),
618        CheckDependent(InstanceContext->isDependentContext() ||
619                       NamingClass->isDependentContext()),
620        EverDependent(false) {}
621  
622    /// Check classes in the current path for friendship, starting at
623    /// the given index.
checkFriendshipAlongPath__anon54dfadaf0211::ProtectedFriendContext624    bool checkFriendshipAlongPath(unsigned I) {
625      assert(I < CurPath.size());
626      for (unsigned E = CurPath.size(); I != E; ++I) {
627        switch (GetFriendKind(S, EC, CurPath[I])) {
628        case AR_accessible:   return true;
629        case AR_inaccessible: continue;
630        case AR_dependent:    EverDependent = true; continue;
631        }
632      }
633      return false;
634    }
635  
636    /// Perform a search starting at the given class.
637    ///
638    /// PrivateDepth is the index of the last (least derived) class
639    /// along the current path such that a notional public member of
640    /// the final class in the path would have access in that class.
findFriendship__anon54dfadaf0211::ProtectedFriendContext641    bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
642      // If we ever reach the naming class, check the current path for
643      // friendship.  We can also stop recursing because we obviously
644      // won't find the naming class there again.
645      if (Cur == NamingClass)
646        return checkFriendshipAlongPath(PrivateDepth);
647  
648      if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
649        EverDependent = true;
650  
651      // Recurse into the base classes.
652      for (CXXRecordDecl::base_class_const_iterator
653             I = Cur->bases_begin(), E = Cur->bases_end(); I != E; ++I) {
654  
655        // If this is private inheritance, then a public member of the
656        // base will not have any access in classes derived from Cur.
657        unsigned BasePrivateDepth = PrivateDepth;
658        if (I->getAccessSpecifier() == AS_private)
659          BasePrivateDepth = CurPath.size() - 1;
660  
661        const CXXRecordDecl *RD;
662  
663        QualType T = I->getType();
664        if (const RecordType *RT = T->getAs<RecordType>()) {
665          RD = cast<CXXRecordDecl>(RT->getDecl());
666        } else if (const InjectedClassNameType *IT
667                     = T->getAs<InjectedClassNameType>()) {
668          RD = IT->getDecl();
669        } else {
670          assert(T->isDependentType() && "non-dependent base wasn't a record?");
671          EverDependent = true;
672          continue;
673        }
674  
675        // Recurse.  We don't need to clean up if this returns true.
676        CurPath.push_back(RD);
677        if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
678          return true;
679        CurPath.pop_back();
680      }
681  
682      return false;
683    }
684  
findFriendship__anon54dfadaf0211::ProtectedFriendContext685    bool findFriendship(const CXXRecordDecl *Cur) {
686      assert(CurPath.empty());
687      CurPath.push_back(Cur);
688      return findFriendship(Cur, 0);
689    }
690  };
691  }
692  
693  /// Search for a class P that EC is a friend of, under the constraint
694  ///   InstanceContext <= P
695  /// if InstanceContext exists, or else
696  ///   NamingClass <= P
697  /// and with the additional restriction that a protected member of
698  /// NamingClass would have some natural access in P, which implicitly
699  /// imposes the constraint that P <= NamingClass.
700  ///
701  /// This isn't quite the condition laid out in the standard.
702  /// Instead of saying that a notional protected member of NamingClass
703  /// would have to have some natural access in P, it says the actual
704  /// target has to have some natural access in P, which opens up the
705  /// possibility that the target (which is not necessarily a member
706  /// of NamingClass) might be more accessible along some path not
707  /// passing through it.  That's really a bad idea, though, because it
708  /// introduces two problems:
709  ///   - Most importantly, it breaks encapsulation because you can
710  ///     access a forbidden base class's members by directly subclassing
711  ///     it elsewhere.
712  ///   - It also makes access substantially harder to compute because it
713  ///     breaks the hill-climbing algorithm: knowing that the target is
714  ///     accessible in some base class would no longer let you change
715  ///     the question solely to whether the base class is accessible,
716  ///     because the original target might have been more accessible
717  ///     because of crazy subclassing.
718  /// So we don't implement that.
GetProtectedFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * InstanceContext,const CXXRecordDecl * NamingClass)719  static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
720                                             const CXXRecordDecl *InstanceContext,
721                                             const CXXRecordDecl *NamingClass) {
722    assert(InstanceContext == 0 ||
723           InstanceContext->getCanonicalDecl() == InstanceContext);
724    assert(NamingClass->getCanonicalDecl() == NamingClass);
725  
726    // If we don't have an instance context, our constraints give us
727    // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
728    // This is just the usual friendship check.
729    if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
730  
731    ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
732    if (PRC.findFriendship(InstanceContext)) return AR_accessible;
733    if (PRC.EverDependent) return AR_dependent;
734    return AR_inaccessible;
735  }
736  
HasAccess(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * NamingClass,AccessSpecifier Access,const AccessTarget & Target)737  static AccessResult HasAccess(Sema &S,
738                                const EffectiveContext &EC,
739                                const CXXRecordDecl *NamingClass,
740                                AccessSpecifier Access,
741                                const AccessTarget &Target) {
742    assert(NamingClass->getCanonicalDecl() == NamingClass &&
743           "declaration should be canonicalized before being passed here");
744  
745    if (Access == AS_public) return AR_accessible;
746    assert(Access == AS_private || Access == AS_protected);
747  
748    AccessResult OnFailure = AR_inaccessible;
749  
750    for (EffectiveContext::record_iterator
751           I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
752      // All the declarations in EC have been canonicalized, so pointer
753      // equality from this point on will work fine.
754      const CXXRecordDecl *ECRecord = *I;
755  
756      // [B2] and [M2]
757      if (Access == AS_private) {
758        if (ECRecord == NamingClass)
759          return AR_accessible;
760  
761        if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
762          OnFailure = AR_dependent;
763  
764      // [B3] and [M3]
765      } else {
766        assert(Access == AS_protected);
767        switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
768        case AR_accessible: break;
769        case AR_inaccessible: continue;
770        case AR_dependent: OnFailure = AR_dependent; continue;
771        }
772  
773        // C++ [class.protected]p1:
774        //   An additional access check beyond those described earlier in
775        //   [class.access] is applied when a non-static data member or
776        //   non-static member function is a protected member of its naming
777        //   class.  As described earlier, access to a protected member is
778        //   granted because the reference occurs in a friend or member of
779        //   some class C.  If the access is to form a pointer to member,
780        //   the nested-name-specifier shall name C or a class derived from
781        //   C. All other accesses involve a (possibly implicit) object
782        //   expression. In this case, the class of the object expression
783        //   shall be C or a class derived from C.
784        //
785        // We interpret this as a restriction on [M3].
786  
787        // In this part of the code, 'C' is just our context class ECRecord.
788  
789        // These rules are different if we don't have an instance context.
790        if (!Target.hasInstanceContext()) {
791          // If it's not an instance member, these restrictions don't apply.
792          if (!Target.isInstanceMember()) return AR_accessible;
793  
794          // If it's an instance member, use the pointer-to-member rule
795          // that the naming class has to be derived from the effective
796          // context.
797  
798          // Emulate a MSVC bug where the creation of pointer-to-member
799          // to protected member of base class is allowed but only from
800          // static member functions.
801          if (S.getLangOpts().MicrosoftMode && !EC.Functions.empty())
802            if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
803              if (MD->isStatic()) return AR_accessible;
804  
805          // Despite the standard's confident wording, there is a case
806          // where you can have an instance member that's neither in a
807          // pointer-to-member expression nor in a member access:  when
808          // it names a field in an unevaluated context that can't be an
809          // implicit member.  Pending clarification, we just apply the
810          // same naming-class restriction here.
811          //   FIXME: we're probably not correctly adding the
812          //   protected-member restriction when we retroactively convert
813          //   an expression to being evaluated.
814  
815          // We know that ECRecord derives from NamingClass.  The
816          // restriction says to check whether NamingClass derives from
817          // ECRecord, but that's not really necessary: two distinct
818          // classes can't be recursively derived from each other.  So
819          // along this path, we just need to check whether the classes
820          // are equal.
821          if (NamingClass == ECRecord) return AR_accessible;
822  
823          // Otherwise, this context class tells us nothing;  on to the next.
824          continue;
825        }
826  
827        assert(Target.isInstanceMember());
828  
829        const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
830        if (!InstanceContext) {
831          OnFailure = AR_dependent;
832          continue;
833        }
834  
835        switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
836        case AR_accessible: return AR_accessible;
837        case AR_inaccessible: continue;
838        case AR_dependent: OnFailure = AR_dependent; continue;
839        }
840      }
841    }
842  
843    // [M3] and [B3] say that, if the target is protected in N, we grant
844    // access if the access occurs in a friend or member of some class P
845    // that's a subclass of N and where the target has some natural
846    // access in P.  The 'member' aspect is easy to handle because P
847    // would necessarily be one of the effective-context records, and we
848    // address that above.  The 'friend' aspect is completely ridiculous
849    // to implement because there are no restrictions at all on P
850    // *unless* the [class.protected] restriction applies.  If it does,
851    // however, we should ignore whether the naming class is a friend,
852    // and instead rely on whether any potential P is a friend.
853    if (Access == AS_protected && Target.isInstanceMember()) {
854      // Compute the instance context if possible.
855      const CXXRecordDecl *InstanceContext = 0;
856      if (Target.hasInstanceContext()) {
857        InstanceContext = Target.resolveInstanceContext(S);
858        if (!InstanceContext) return AR_dependent;
859      }
860  
861      switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
862      case AR_accessible: return AR_accessible;
863      case AR_inaccessible: return OnFailure;
864      case AR_dependent: return AR_dependent;
865      }
866      llvm_unreachable("impossible friendship kind");
867    }
868  
869    switch (GetFriendKind(S, EC, NamingClass)) {
870    case AR_accessible: return AR_accessible;
871    case AR_inaccessible: return OnFailure;
872    case AR_dependent: return AR_dependent;
873    }
874  
875    // Silence bogus warnings
876    llvm_unreachable("impossible friendship kind");
877  }
878  
879  /// Finds the best path from the naming class to the declaring class,
880  /// taking friend declarations into account.
881  ///
882  /// C++0x [class.access.base]p5:
883  ///   A member m is accessible at the point R when named in class N if
884  ///   [M1] m as a member of N is public, or
885  ///   [M2] m as a member of N is private, and R occurs in a member or
886  ///        friend of class N, or
887  ///   [M3] m as a member of N is protected, and R occurs in a member or
888  ///        friend of class N, or in a member or friend of a class P
889  ///        derived from N, where m as a member of P is public, private,
890  ///        or protected, or
891  ///   [M4] there exists a base class B of N that is accessible at R, and
892  ///        m is accessible at R when named in class B.
893  ///
894  /// C++0x [class.access.base]p4:
895  ///   A base class B of N is accessible at R, if
896  ///   [B1] an invented public member of B would be a public member of N, or
897  ///   [B2] R occurs in a member or friend of class N, and an invented public
898  ///        member of B would be a private or protected member of N, or
899  ///   [B3] R occurs in a member or friend of a class P derived from N, and an
900  ///        invented public member of B would be a private or protected member
901  ///        of P, or
902  ///   [B4] there exists a class S such that B is a base class of S accessible
903  ///        at R and S is a base class of N accessible at R.
904  ///
905  /// Along a single inheritance path we can restate both of these
906  /// iteratively:
907  ///
908  /// First, we note that M1-4 are equivalent to B1-4 if the member is
909  /// treated as a notional base of its declaring class with inheritance
910  /// access equivalent to the member's access.  Therefore we need only
911  /// ask whether a class B is accessible from a class N in context R.
912  ///
913  /// Let B_1 .. B_n be the inheritance path in question (i.e. where
914  /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
915  /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
916  /// closest accessible base in the path:
917  ///   Access(a, b) = (* access on the base specifier from a to b *)
918  ///   Merge(a, forbidden) = forbidden
919  ///   Merge(a, private) = forbidden
920  ///   Merge(a, b) = min(a,b)
921  ///   Accessible(c, forbidden) = false
922  ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
923  ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
924  ///   Accessible(c, public) = true
925  ///   ACAB(n) = public
926  ///   ACAB(i) =
927  ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
928  ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
929  ///
930  /// B is an accessible base of N at R iff ACAB(1) = public.
931  ///
932  /// \param FinalAccess the access of the "final step", or AS_public if
933  ///   there is no final step.
934  /// \return null if friendship is dependent
FindBestPath(Sema & S,const EffectiveContext & EC,AccessTarget & Target,AccessSpecifier FinalAccess,CXXBasePaths & Paths)935  static CXXBasePath *FindBestPath(Sema &S,
936                                   const EffectiveContext &EC,
937                                   AccessTarget &Target,
938                                   AccessSpecifier FinalAccess,
939                                   CXXBasePaths &Paths) {
940    // Derive the paths to the desired base.
941    const CXXRecordDecl *Derived = Target.getNamingClass();
942    const CXXRecordDecl *Base = Target.getDeclaringClass();
943  
944    // FIXME: fail correctly when there are dependent paths.
945    bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
946                                            Paths);
947    assert(isDerived && "derived class not actually derived from base");
948    (void) isDerived;
949  
950    CXXBasePath *BestPath = 0;
951  
952    assert(FinalAccess != AS_none && "forbidden access after declaring class");
953  
954    bool AnyDependent = false;
955  
956    // Derive the friend-modified access along each path.
957    for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
958           PI != PE; ++PI) {
959      AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
960  
961      // Walk through the path backwards.
962      AccessSpecifier PathAccess = FinalAccess;
963      CXXBasePath::iterator I = PI->end(), E = PI->begin();
964      while (I != E) {
965        --I;
966  
967        assert(PathAccess != AS_none);
968  
969        // If the declaration is a private member of a base class, there
970        // is no level of friendship in derived classes that can make it
971        // accessible.
972        if (PathAccess == AS_private) {
973          PathAccess = AS_none;
974          break;
975        }
976  
977        const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
978  
979        AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
980        PathAccess = std::max(PathAccess, BaseAccess);
981  
982        switch (HasAccess(S, EC, NC, PathAccess, Target)) {
983        case AR_inaccessible: break;
984        case AR_accessible:
985          PathAccess = AS_public;
986  
987          // Future tests are not against members and so do not have
988          // instance context.
989          Target.suppressInstanceContext();
990          break;
991        case AR_dependent:
992          AnyDependent = true;
993          goto Next;
994        }
995      }
996  
997      // Note that we modify the path's Access field to the
998      // friend-modified access.
999      if (BestPath == 0 || PathAccess < BestPath->Access) {
1000        BestPath = &*PI;
1001        BestPath->Access = PathAccess;
1002  
1003        // Short-circuit if we found a public path.
1004        if (BestPath->Access == AS_public)
1005          return BestPath;
1006      }
1007  
1008    Next: ;
1009    }
1010  
1011    assert((!BestPath || BestPath->Access != AS_public) &&
1012           "fell out of loop with public path");
1013  
1014    // We didn't find a public path, but at least one path was subject
1015    // to dependent friendship, so delay the check.
1016    if (AnyDependent)
1017      return 0;
1018  
1019    return BestPath;
1020  }
1021  
1022  /// Given that an entity has protected natural access, check whether
1023  /// access might be denied because of the protected member access
1024  /// restriction.
1025  ///
1026  /// \return true if a note was emitted
TryDiagnoseProtectedAccess(Sema & S,const EffectiveContext & EC,AccessTarget & Target)1027  static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1028                                         AccessTarget &Target) {
1029    // Only applies to instance accesses.
1030    if (!Target.isInstanceMember())
1031      return false;
1032  
1033    assert(Target.isMemberAccess());
1034  
1035    const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1036  
1037    for (EffectiveContext::record_iterator
1038           I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1039      const CXXRecordDecl *ECRecord = *I;
1040      switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1041      case AR_accessible: break;
1042      case AR_inaccessible: continue;
1043      case AR_dependent: continue;
1044      }
1045  
1046      // The effective context is a subclass of the declaring class.
1047      // Check whether the [class.protected] restriction is limiting
1048      // access.
1049  
1050      // To get this exactly right, this might need to be checked more
1051      // holistically;  it's not necessarily the case that gaining
1052      // access here would grant us access overall.
1053  
1054      NamedDecl *D = Target.getTargetDecl();
1055  
1056      // If we don't have an instance context, [class.protected] says the
1057      // naming class has to equal the context class.
1058      if (!Target.hasInstanceContext()) {
1059        // If it does, the restriction doesn't apply.
1060        if (NamingClass == ECRecord) continue;
1061  
1062        // TODO: it would be great to have a fixit here, since this is
1063        // such an obvious error.
1064        S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1065          << S.Context.getTypeDeclType(ECRecord);
1066        return true;
1067      }
1068  
1069      const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1070      assert(InstanceContext && "diagnosing dependent access");
1071  
1072      switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1073      case AR_accessible: continue;
1074      case AR_dependent: continue;
1075      case AR_inaccessible:
1076        break;
1077      }
1078  
1079      // Okay, the restriction seems to be what's limiting us.
1080  
1081      // Use a special diagnostic for constructors and destructors.
1082      if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1083          (isa<FunctionTemplateDecl>(D) &&
1084           isa<CXXConstructorDecl>(
1085                  cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1086        S.Diag(D->getLocation(), diag::note_access_protected_restricted_ctordtor)
1087          << isa<CXXDestructorDecl>(D);
1088        return true;
1089      }
1090  
1091      // Otherwise, use the generic diagnostic.
1092      S.Diag(D->getLocation(), diag::note_access_protected_restricted_object)
1093        << S.Context.getTypeDeclType(ECRecord);
1094      return true;
1095    }
1096  
1097    return false;
1098  }
1099  
1100  /// We are unable to access a given declaration due to its direct
1101  /// access control;  diagnose that.
diagnoseBadDirectAccess(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1102  static void diagnoseBadDirectAccess(Sema &S,
1103                                      const EffectiveContext &EC,
1104                                      AccessTarget &entity) {
1105    assert(entity.isMemberAccess());
1106    NamedDecl *D = entity.getTargetDecl();
1107  
1108    if (D->getAccess() == AS_protected &&
1109        TryDiagnoseProtectedAccess(S, EC, entity))
1110      return;
1111  
1112    // Find an original declaration.
1113    while (D->isOutOfLine()) {
1114      NamedDecl *PrevDecl = 0;
1115      if (VarDecl *VD = dyn_cast<VarDecl>(D))
1116        PrevDecl = VD->getPreviousDecl();
1117      else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1118        PrevDecl = FD->getPreviousDecl();
1119      else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1120        PrevDecl = TND->getPreviousDecl();
1121      else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1122        if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1123          break;
1124        PrevDecl = TD->getPreviousDecl();
1125      }
1126      if (!PrevDecl) break;
1127      D = PrevDecl;
1128    }
1129  
1130    CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1131    Decl *ImmediateChild;
1132    if (D->getDeclContext() == DeclaringClass)
1133      ImmediateChild = D;
1134    else {
1135      DeclContext *DC = D->getDeclContext();
1136      while (DC->getParent() != DeclaringClass)
1137        DC = DC->getParent();
1138      ImmediateChild = cast<Decl>(DC);
1139    }
1140  
1141    // Check whether there's an AccessSpecDecl preceding this in the
1142    // chain of the DeclContext.
1143    bool isImplicit = true;
1144    for (CXXRecordDecl::decl_iterator
1145           I = DeclaringClass->decls_begin(), E = DeclaringClass->decls_end();
1146         I != E; ++I) {
1147      if (*I == ImmediateChild) break;
1148      if (isa<AccessSpecDecl>(*I)) {
1149        isImplicit = false;
1150        break;
1151      }
1152    }
1153  
1154    S.Diag(D->getLocation(), diag::note_access_natural)
1155      << (unsigned) (D->getAccess() == AS_protected)
1156      << isImplicit;
1157  }
1158  
1159  /// Diagnose the path which caused the given declaration or base class
1160  /// to become inaccessible.
DiagnoseAccessPath(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1161  static void DiagnoseAccessPath(Sema &S,
1162                                 const EffectiveContext &EC,
1163                                 AccessTarget &entity) {
1164    // Save the instance context to preserve invariants.
1165    AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1166  
1167    // This basically repeats the main algorithm but keeps some more
1168    // information.
1169  
1170    // The natural access so far.
1171    AccessSpecifier accessSoFar = AS_public;
1172  
1173    // Check whether we have special rights to the declaring class.
1174    if (entity.isMemberAccess()) {
1175      NamedDecl *D = entity.getTargetDecl();
1176      accessSoFar = D->getAccess();
1177      const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1178  
1179      switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
1180      // If the declaration is accessible when named in its declaring
1181      // class, then we must be constrained by the path.
1182      case AR_accessible:
1183        accessSoFar = AS_public;
1184        entity.suppressInstanceContext();
1185        break;
1186  
1187      case AR_inaccessible:
1188        if (accessSoFar == AS_private ||
1189            declaringClass == entity.getEffectiveNamingClass())
1190          return diagnoseBadDirectAccess(S, EC, entity);
1191        break;
1192  
1193      case AR_dependent:
1194        llvm_unreachable("cannot diagnose dependent access");
1195      }
1196    }
1197  
1198    CXXBasePaths paths;
1199    CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
1200    assert(path.Access != AS_public);
1201  
1202    CXXBasePath::iterator i = path.end(), e = path.begin();
1203    CXXBasePath::iterator constrainingBase = i;
1204    while (i != e) {
1205      --i;
1206  
1207      assert(accessSoFar != AS_none && accessSoFar != AS_private);
1208  
1209      // Is the entity accessible when named in the deriving class, as
1210      // modified by the base specifier?
1211      const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1212      const CXXBaseSpecifier *base = i->Base;
1213  
1214      // If the access to this base is worse than the access we have to
1215      // the declaration, remember it.
1216      AccessSpecifier baseAccess = base->getAccessSpecifier();
1217      if (baseAccess > accessSoFar) {
1218        constrainingBase = i;
1219        accessSoFar = baseAccess;
1220      }
1221  
1222      switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
1223      case AR_inaccessible: break;
1224      case AR_accessible:
1225        accessSoFar = AS_public;
1226        entity.suppressInstanceContext();
1227        constrainingBase = 0;
1228        break;
1229      case AR_dependent:
1230        llvm_unreachable("cannot diagnose dependent access");
1231      }
1232  
1233      // If this was private inheritance, but we don't have access to
1234      // the deriving class, we're done.
1235      if (accessSoFar == AS_private) {
1236        assert(baseAccess == AS_private);
1237        assert(constrainingBase == i);
1238        break;
1239      }
1240    }
1241  
1242    // If we don't have a constraining base, the access failure must be
1243    // due to the original declaration.
1244    if (constrainingBase == path.end())
1245      return diagnoseBadDirectAccess(S, EC, entity);
1246  
1247    // We're constrained by inheritance, but we want to say
1248    // "declared private here" if we're diagnosing a hierarchy
1249    // conversion and this is the final step.
1250    unsigned diagnostic;
1251    if (entity.isMemberAccess() ||
1252        constrainingBase + 1 != path.end()) {
1253      diagnostic = diag::note_access_constrained_by_path;
1254    } else {
1255      diagnostic = diag::note_access_natural;
1256    }
1257  
1258    const CXXBaseSpecifier *base = constrainingBase->Base;
1259  
1260    S.Diag(base->getSourceRange().getBegin(), diagnostic)
1261      << base->getSourceRange()
1262      << (base->getAccessSpecifier() == AS_protected)
1263      << (base->getAccessSpecifierAsWritten() == AS_none);
1264  
1265    if (entity.isMemberAccess())
1266      S.Diag(entity.getTargetDecl()->getLocation(), diag::note_field_decl);
1267  }
1268  
DiagnoseBadAccess(Sema & S,SourceLocation Loc,const EffectiveContext & EC,AccessTarget & Entity)1269  static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1270                                const EffectiveContext &EC,
1271                                AccessTarget &Entity) {
1272    const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1273    const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1274    NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1275  
1276    S.Diag(Loc, Entity.getDiag())
1277      << (Entity.getAccess() == AS_protected)
1278      << (D ? D->getDeclName() : DeclarationName())
1279      << S.Context.getTypeDeclType(NamingClass)
1280      << S.Context.getTypeDeclType(DeclaringClass);
1281    DiagnoseAccessPath(S, EC, Entity);
1282  }
1283  
1284  /// MSVC has a bug where if during an using declaration name lookup,
1285  /// the declaration found is unaccessible (private) and that declaration
1286  /// was bring into scope via another using declaration whose target
1287  /// declaration is accessible (public) then no error is generated.
1288  /// Example:
1289  ///   class A {
1290  ///   public:
1291  ///     int f();
1292  ///   };
1293  ///   class B : public A {
1294  ///   private:
1295  ///     using A::f;
1296  ///   };
1297  ///   class C : public B {
1298  ///   private:
1299  ///     using B::f;
1300  ///   };
1301  ///
1302  /// Here, B::f is private so this should fail in Standard C++, but
1303  /// because B::f refers to A::f which is public MSVC accepts it.
IsMicrosoftUsingDeclarationAccessBug(Sema & S,SourceLocation AccessLoc,AccessTarget & Entity)1304  static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1305                                                   SourceLocation AccessLoc,
1306                                                   AccessTarget &Entity) {
1307    if (UsingShadowDecl *Shadow =
1308                           dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1309      const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1310      if (Entity.getTargetDecl()->getAccess() == AS_private &&
1311          (OrigDecl->getAccess() == AS_public ||
1312           OrigDecl->getAccess() == AS_protected)) {
1313        S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1314          << Shadow->getUsingDecl()->getQualifiedNameAsString()
1315          << OrigDecl->getQualifiedNameAsString();
1316        return true;
1317      }
1318    }
1319    return false;
1320  }
1321  
1322  /// Determines whether the accessed entity is accessible.  Public members
1323  /// have been weeded out by this point.
IsAccessible(Sema & S,const EffectiveContext & EC,AccessTarget & Entity)1324  static AccessResult IsAccessible(Sema &S,
1325                                   const EffectiveContext &EC,
1326                                   AccessTarget &Entity) {
1327    // Determine the actual naming class.
1328    const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1329  
1330    AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1331    assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1332  
1333    // Before we try to recalculate access paths, try to white-list
1334    // accesses which just trade in on the final step, i.e. accesses
1335    // which don't require [M4] or [B4]. These are by far the most
1336    // common forms of privileged access.
1337    if (UnprivilegedAccess != AS_none) {
1338      switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1339      case AR_dependent:
1340        // This is actually an interesting policy decision.  We don't
1341        // *have* to delay immediately here: we can do the full access
1342        // calculation in the hope that friendship on some intermediate
1343        // class will make the declaration accessible non-dependently.
1344        // But that's not cheap, and odds are very good (note: assertion
1345        // made without data) that the friend declaration will determine
1346        // access.
1347        return AR_dependent;
1348  
1349      case AR_accessible: return AR_accessible;
1350      case AR_inaccessible: break;
1351      }
1352    }
1353  
1354    AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1355  
1356    // We lower member accesses to base accesses by pretending that the
1357    // member is a base class of its declaring class.
1358    AccessSpecifier FinalAccess;
1359  
1360    if (Entity.isMemberAccess()) {
1361      // Determine if the declaration is accessible from EC when named
1362      // in its declaring class.
1363      NamedDecl *Target = Entity.getTargetDecl();
1364      const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1365  
1366      FinalAccess = Target->getAccess();
1367      switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1368      case AR_accessible:
1369        // Target is accessible at EC when named in its declaring class.
1370        // We can now hill-climb and simply check whether the declaring
1371        // class is accessible as a base of the naming class.  This is
1372        // equivalent to checking the access of a notional public
1373        // member with no instance context.
1374        FinalAccess = AS_public;
1375        Entity.suppressInstanceContext();
1376        break;
1377      case AR_inaccessible: break;
1378      case AR_dependent: return AR_dependent; // see above
1379      }
1380  
1381      if (DeclaringClass == NamingClass)
1382        return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1383    } else {
1384      FinalAccess = AS_public;
1385    }
1386  
1387    assert(Entity.getDeclaringClass() != NamingClass);
1388  
1389    // Append the declaration's access if applicable.
1390    CXXBasePaths Paths;
1391    CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1392    if (!Path)
1393      return AR_dependent;
1394  
1395    assert(Path->Access <= UnprivilegedAccess &&
1396           "access along best path worse than direct?");
1397    if (Path->Access == AS_public)
1398      return AR_accessible;
1399    return AR_inaccessible;
1400  }
1401  
DelayDependentAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,const AccessTarget & Entity)1402  static void DelayDependentAccess(Sema &S,
1403                                   const EffectiveContext &EC,
1404                                   SourceLocation Loc,
1405                                   const AccessTarget &Entity) {
1406    assert(EC.isDependent() && "delaying non-dependent access");
1407    DeclContext *DC = EC.getInnerContext();
1408    assert(DC->isDependentContext() && "delaying non-dependent access");
1409    DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1410                                Loc,
1411                                Entity.isMemberAccess(),
1412                                Entity.getAccess(),
1413                                Entity.getTargetDecl(),
1414                                Entity.getNamingClass(),
1415                                Entity.getBaseObjectType(),
1416                                Entity.getDiag());
1417  }
1418  
1419  /// Checks access to an entity from the given effective context.
CheckEffectiveAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,AccessTarget & Entity)1420  static AccessResult CheckEffectiveAccess(Sema &S,
1421                                           const EffectiveContext &EC,
1422                                           SourceLocation Loc,
1423                                           AccessTarget &Entity) {
1424    assert(Entity.getAccess() != AS_public && "called for public access!");
1425  
1426    if (S.getLangOpts().MicrosoftMode &&
1427        IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1428      return AR_accessible;
1429  
1430    switch (IsAccessible(S, EC, Entity)) {
1431    case AR_dependent:
1432      DelayDependentAccess(S, EC, Loc, Entity);
1433      return AR_dependent;
1434  
1435    case AR_inaccessible:
1436      if (!Entity.isQuiet())
1437        DiagnoseBadAccess(S, Loc, EC, Entity);
1438      return AR_inaccessible;
1439  
1440    case AR_accessible:
1441      return AR_accessible;
1442    }
1443  
1444    // silence unnecessary warning
1445    llvm_unreachable("invalid access result");
1446  }
1447  
CheckAccess(Sema & S,SourceLocation Loc,AccessTarget & Entity)1448  static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1449                                        AccessTarget &Entity) {
1450    // If the access path is public, it's accessible everywhere.
1451    if (Entity.getAccess() == AS_public)
1452      return Sema::AR_accessible;
1453  
1454    // If we're currently parsing a declaration, we may need to delay
1455    // access control checking, because our effective context might be
1456    // different based on what the declaration comes out as.
1457    //
1458    // For example, we might be parsing a declaration with a scope
1459    // specifier, like this:
1460    //   A::private_type A::foo() { ... }
1461    //
1462    // Or we might be parsing something that will turn out to be a friend:
1463    //   void foo(A::private_type);
1464    //   void B::foo(A::private_type);
1465    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1466      S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1467      return Sema::AR_delayed;
1468    }
1469  
1470    EffectiveContext EC(S.CurContext);
1471    switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1472    case AR_accessible: return Sema::AR_accessible;
1473    case AR_inaccessible: return Sema::AR_inaccessible;
1474    case AR_dependent: return Sema::AR_dependent;
1475    }
1476    llvm_unreachable("falling off end");
1477  }
1478  
HandleDelayedAccessCheck(DelayedDiagnostic & DD,Decl * decl)1479  void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *decl) {
1480    // Access control for names used in the declarations of functions
1481    // and function templates should normally be evaluated in the context
1482    // of the declaration, just in case it's a friend of something.
1483    // However, this does not apply to local extern declarations.
1484  
1485    DeclContext *DC = decl->getDeclContext();
1486    if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
1487      if (!DC->isFunctionOrMethod()) DC = fn;
1488    } else if (FunctionTemplateDecl *fnt = dyn_cast<FunctionTemplateDecl>(decl)) {
1489      // Never a local declaration.
1490      DC = fnt->getTemplatedDecl();
1491    }
1492  
1493    EffectiveContext EC(DC);
1494  
1495    AccessTarget Target(DD.getAccessData());
1496  
1497    if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1498      DD.Triggered = true;
1499  }
1500  
HandleDependentAccessCheck(const DependentDiagnostic & DD,const MultiLevelTemplateArgumentList & TemplateArgs)1501  void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1502                          const MultiLevelTemplateArgumentList &TemplateArgs) {
1503    SourceLocation Loc = DD.getAccessLoc();
1504    AccessSpecifier Access = DD.getAccess();
1505  
1506    Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1507                                         TemplateArgs);
1508    if (!NamingD) return;
1509    Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1510                                         TemplateArgs);
1511    if (!TargetD) return;
1512  
1513    if (DD.isAccessToMember()) {
1514      CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1515      NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1516      QualType BaseObjectType = DD.getAccessBaseObjectType();
1517      if (!BaseObjectType.isNull()) {
1518        BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1519                                   DeclarationName());
1520        if (BaseObjectType.isNull()) return;
1521      }
1522  
1523      AccessTarget Entity(Context,
1524                          AccessTarget::Member,
1525                          NamingClass,
1526                          DeclAccessPair::make(TargetDecl, Access),
1527                          BaseObjectType);
1528      Entity.setDiag(DD.getDiagnostic());
1529      CheckAccess(*this, Loc, Entity);
1530    } else {
1531      AccessTarget Entity(Context,
1532                          AccessTarget::Base,
1533                          cast<CXXRecordDecl>(TargetD),
1534                          cast<CXXRecordDecl>(NamingD),
1535                          Access);
1536      Entity.setDiag(DD.getDiagnostic());
1537      CheckAccess(*this, Loc, Entity);
1538    }
1539  }
1540  
CheckUnresolvedLookupAccess(UnresolvedLookupExpr * E,DeclAccessPair Found)1541  Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1542                                                       DeclAccessPair Found) {
1543    if (!getLangOpts().AccessControl ||
1544        !E->getNamingClass() ||
1545        Found.getAccess() == AS_public)
1546      return AR_accessible;
1547  
1548    AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1549                        Found, QualType());
1550    Entity.setDiag(diag::err_access) << E->getSourceRange();
1551  
1552    return CheckAccess(*this, E->getNameLoc(), Entity);
1553  }
1554  
1555  /// Perform access-control checking on a previously-unresolved member
1556  /// access which has now been resolved to a member.
CheckUnresolvedMemberAccess(UnresolvedMemberExpr * E,DeclAccessPair Found)1557  Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1558                                                       DeclAccessPair Found) {
1559    if (!getLangOpts().AccessControl ||
1560        Found.getAccess() == AS_public)
1561      return AR_accessible;
1562  
1563    QualType BaseType = E->getBaseType();
1564    if (E->isArrow())
1565      BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1566  
1567    AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1568                        Found, BaseType);
1569    Entity.setDiag(diag::err_access) << E->getSourceRange();
1570  
1571    return CheckAccess(*this, E->getMemberLoc(), Entity);
1572  }
1573  
1574  /// Is the given special member function accessible for the purposes of
1575  /// deciding whether to define a special member function as deleted?
isSpecialMemberAccessibleForDeletion(CXXMethodDecl * decl,AccessSpecifier access,QualType objectType)1576  bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1577                                                  AccessSpecifier access,
1578                                                  QualType objectType) {
1579    // Fast path.
1580    if (access == AS_public || !getLangOpts().AccessControl) return true;
1581  
1582    AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1583                        DeclAccessPair::make(decl, access), objectType);
1584  
1585    // Suppress diagnostics.
1586    entity.setDiag(PDiag());
1587  
1588    switch (CheckAccess(*this, SourceLocation(), entity)) {
1589    case AR_accessible: return true;
1590    case AR_inaccessible: return false;
1591    case AR_dependent: llvm_unreachable("dependent for =delete computation");
1592    case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1593    }
1594    llvm_unreachable("bad access result");
1595  }
1596  
CheckDestructorAccess(SourceLocation Loc,CXXDestructorDecl * Dtor,const PartialDiagnostic & PDiag,QualType ObjectTy)1597  Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1598                                                 CXXDestructorDecl *Dtor,
1599                                                 const PartialDiagnostic &PDiag,
1600                                                 QualType ObjectTy) {
1601    if (!getLangOpts().AccessControl)
1602      return AR_accessible;
1603  
1604    // There's never a path involved when checking implicit destructor access.
1605    AccessSpecifier Access = Dtor->getAccess();
1606    if (Access == AS_public)
1607      return AR_accessible;
1608  
1609    CXXRecordDecl *NamingClass = Dtor->getParent();
1610    if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1611  
1612    AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1613                        DeclAccessPair::make(Dtor, Access),
1614                        ObjectTy);
1615    Entity.setDiag(PDiag); // TODO: avoid copy
1616  
1617    return CheckAccess(*this, Loc, Entity);
1618  }
1619  
1620  /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,bool IsCopyBindingRefToTemp)1621  Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1622                                                  CXXConstructorDecl *Constructor,
1623                                                  const InitializedEntity &Entity,
1624                                                  AccessSpecifier Access,
1625                                                  bool IsCopyBindingRefToTemp) {
1626    if (!getLangOpts().AccessControl || Access == AS_public)
1627      return AR_accessible;
1628  
1629    PartialDiagnostic PD(PDiag());
1630    switch (Entity.getKind()) {
1631    default:
1632      PD = PDiag(IsCopyBindingRefToTemp
1633                   ? diag::ext_rvalue_to_reference_access_ctor
1634                   : diag::err_access_ctor);
1635  
1636      break;
1637  
1638    case InitializedEntity::EK_Base:
1639      PD = PDiag(diag::err_access_base_ctor);
1640      PD << Entity.isInheritedVirtualBase()
1641         << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1642      break;
1643  
1644    case InitializedEntity::EK_Member: {
1645      const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1646      PD = PDiag(diag::err_access_field_ctor);
1647      PD << Field->getType() << getSpecialMember(Constructor);
1648      break;
1649    }
1650  
1651    case InitializedEntity::EK_LambdaCapture: {
1652      const VarDecl *Var = Entity.getCapturedVar();
1653      PD = PDiag(diag::err_access_lambda_capture);
1654      PD << Var->getName() << Entity.getType() << getSpecialMember(Constructor);
1655      break;
1656    }
1657  
1658    }
1659  
1660    return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
1661  }
1662  
1663  /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,const PartialDiagnostic & PD)1664  Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1665                                                  CXXConstructorDecl *Constructor,
1666                                                  const InitializedEntity &Entity,
1667                                                  AccessSpecifier Access,
1668                                                  const PartialDiagnostic &PD) {
1669    if (!getLangOpts().AccessControl ||
1670        Access == AS_public)
1671      return AR_accessible;
1672  
1673    CXXRecordDecl *NamingClass = Constructor->getParent();
1674  
1675    // Initializing a base sub-object is an instance method call on an
1676    // object of the derived class.  Otherwise, we have an instance method
1677    // call on an object of the constructed type.
1678    CXXRecordDecl *ObjectClass;
1679    if (Entity.getKind() == InitializedEntity::EK_Base) {
1680      ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1681    } else {
1682      ObjectClass = NamingClass;
1683    }
1684  
1685    AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1686                              DeclAccessPair::make(Constructor, Access),
1687                              Context.getTypeDeclType(ObjectClass));
1688    AccessEntity.setDiag(PD);
1689  
1690    return CheckAccess(*this, UseLoc, AccessEntity);
1691  }
1692  
1693  /// Checks access to an overloaded operator new or delete.
CheckAllocationAccess(SourceLocation OpLoc,SourceRange PlacementRange,CXXRecordDecl * NamingClass,DeclAccessPair Found,bool Diagnose)1694  Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1695                                                 SourceRange PlacementRange,
1696                                                 CXXRecordDecl *NamingClass,
1697                                                 DeclAccessPair Found,
1698                                                 bool Diagnose) {
1699    if (!getLangOpts().AccessControl ||
1700        !NamingClass ||
1701        Found.getAccess() == AS_public)
1702      return AR_accessible;
1703  
1704    AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1705                        QualType());
1706    if (Diagnose)
1707      Entity.setDiag(diag::err_access)
1708        << PlacementRange;
1709  
1710    return CheckAccess(*this, OpLoc, Entity);
1711  }
1712  
1713  /// Checks access to an overloaded member operator, including
1714  /// conversion operators.
CheckMemberOperatorAccess(SourceLocation OpLoc,Expr * ObjectExpr,Expr * ArgExpr,DeclAccessPair Found)1715  Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1716                                                     Expr *ObjectExpr,
1717                                                     Expr *ArgExpr,
1718                                                     DeclAccessPair Found) {
1719    if (!getLangOpts().AccessControl ||
1720        Found.getAccess() == AS_public)
1721      return AR_accessible;
1722  
1723    const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1724    CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1725  
1726    AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1727                        ObjectExpr->getType());
1728    Entity.setDiag(diag::err_access)
1729      << ObjectExpr->getSourceRange()
1730      << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1731  
1732    return CheckAccess(*this, OpLoc, Entity);
1733  }
1734  
1735  /// Checks access to the target of a friend declaration.
CheckFriendAccess(NamedDecl * target)1736  Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1737    assert(isa<CXXMethodDecl>(target) ||
1738           (isa<FunctionTemplateDecl>(target) &&
1739            isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(target)
1740                                 ->getTemplatedDecl())));
1741  
1742    // Friendship lookup is a redeclaration lookup, so there's never an
1743    // inheritance path modifying access.
1744    AccessSpecifier access = target->getAccess();
1745  
1746    if (!getLangOpts().AccessControl || access == AS_public)
1747      return AR_accessible;
1748  
1749    CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(target);
1750    if (!method)
1751      method = cast<CXXMethodDecl>(
1752                       cast<FunctionTemplateDecl>(target)->getTemplatedDecl());
1753    assert(method->getQualifier());
1754  
1755    AccessTarget entity(Context, AccessTarget::Member,
1756                        cast<CXXRecordDecl>(target->getDeclContext()),
1757                        DeclAccessPair::make(target, access),
1758                        /*no instance context*/ QualType());
1759    entity.setDiag(diag::err_access_friend_function)
1760      << method->getQualifierLoc().getSourceRange();
1761  
1762    // We need to bypass delayed-diagnostics because we might be called
1763    // while the ParsingDeclarator is active.
1764    EffectiveContext EC(CurContext);
1765    switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1766    case AR_accessible: return Sema::AR_accessible;
1767    case AR_inaccessible: return Sema::AR_inaccessible;
1768    case AR_dependent: return Sema::AR_dependent;
1769    }
1770    llvm_unreachable("falling off end");
1771  }
1772  
CheckAddressOfMemberAccess(Expr * OvlExpr,DeclAccessPair Found)1773  Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1774                                                      DeclAccessPair Found) {
1775    if (!getLangOpts().AccessControl ||
1776        Found.getAccess() == AS_none ||
1777        Found.getAccess() == AS_public)
1778      return AR_accessible;
1779  
1780    OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1781    CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1782  
1783    AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1784                        /*no instance context*/ QualType());
1785    Entity.setDiag(diag::err_access)
1786      << Ovl->getSourceRange();
1787  
1788    return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1789  }
1790  
1791  /// Checks access for a hierarchy conversion.
1792  ///
1793  /// \param ForceCheck true if this check should be performed even if access
1794  ///     control is disabled;  some things rely on this for semantics
1795  /// \param ForceUnprivileged true if this check should proceed as if the
1796  ///     context had no special privileges
CheckBaseClassAccess(SourceLocation AccessLoc,QualType Base,QualType Derived,const CXXBasePath & Path,unsigned DiagID,bool ForceCheck,bool ForceUnprivileged)1797  Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1798                                                QualType Base,
1799                                                QualType Derived,
1800                                                const CXXBasePath &Path,
1801                                                unsigned DiagID,
1802                                                bool ForceCheck,
1803                                                bool ForceUnprivileged) {
1804    if (!ForceCheck && !getLangOpts().AccessControl)
1805      return AR_accessible;
1806  
1807    if (Path.Access == AS_public)
1808      return AR_accessible;
1809  
1810    CXXRecordDecl *BaseD, *DerivedD;
1811    BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1812    DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1813  
1814    AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1815                        Path.Access);
1816    if (DiagID)
1817      Entity.setDiag(DiagID) << Derived << Base;
1818  
1819    if (ForceUnprivileged) {
1820      switch (CheckEffectiveAccess(*this, EffectiveContext(),
1821                                   AccessLoc, Entity)) {
1822      case ::AR_accessible: return Sema::AR_accessible;
1823      case ::AR_inaccessible: return Sema::AR_inaccessible;
1824      case ::AR_dependent: return Sema::AR_dependent;
1825      }
1826      llvm_unreachable("unexpected result from CheckEffectiveAccess");
1827    }
1828    return CheckAccess(*this, AccessLoc, Entity);
1829  }
1830  
1831  /// Checks access to all the declarations in the given result set.
CheckLookupAccess(const LookupResult & R)1832  void Sema::CheckLookupAccess(const LookupResult &R) {
1833    assert(getLangOpts().AccessControl
1834           && "performing access check without access control");
1835    assert(R.getNamingClass() && "performing access check without naming class");
1836  
1837    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1838      if (I.getAccess() != AS_public) {
1839        AccessTarget Entity(Context, AccessedEntity::Member,
1840                            R.getNamingClass(), I.getPair(),
1841                            R.getBaseObjectType());
1842        Entity.setDiag(diag::err_access);
1843        CheckAccess(*this, R.getNameLoc(), Entity);
1844      }
1845    }
1846  }
1847  
1848  /// Checks access to Decl from the given class. The check will take access
1849  /// specifiers into account, but no member access expressions and such.
1850  ///
1851  /// \param Decl the declaration to check if it can be accessed
1852  /// \param Ctx the class/context from which to start the search
1853  /// \return true if the Decl is accessible from the Class, false otherwise.
IsSimplyAccessible(NamedDecl * Decl,DeclContext * Ctx)1854  bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1855    if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1856      if (!Decl->isCXXClassMember())
1857        return true;
1858  
1859      QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1860      AccessTarget Entity(Context, AccessedEntity::Member, Class,
1861                          DeclAccessPair::make(Decl, Decl->getAccess()),
1862                          qType);
1863      if (Entity.getAccess() == AS_public)
1864        return true;
1865  
1866      EffectiveContext EC(CurContext);
1867      return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1868    }
1869  
1870    if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1871      // @public and @package ivars are always accessible.
1872      if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1873          Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1874        return true;
1875  
1876  
1877  
1878      // If we are inside a class or category implementation, determine the
1879      // interface we're in.
1880      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1881      if (ObjCMethodDecl *MD = getCurMethodDecl())
1882        ClassOfMethodDecl =  MD->getClassInterface();
1883      else if (FunctionDecl *FD = getCurFunctionDecl()) {
1884        if (ObjCImplDecl *Impl
1885              = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1886          if (ObjCImplementationDecl *IMPD
1887                = dyn_cast<ObjCImplementationDecl>(Impl))
1888            ClassOfMethodDecl = IMPD->getClassInterface();
1889          else if (ObjCCategoryImplDecl* CatImplClass
1890                     = dyn_cast<ObjCCategoryImplDecl>(Impl))
1891            ClassOfMethodDecl = CatImplClass->getClassInterface();
1892        }
1893      }
1894  
1895      // If we're not in an interface, this ivar is inaccessible.
1896      if (!ClassOfMethodDecl)
1897        return false;
1898  
1899      // If we're inside the same interface that owns the ivar, we're fine.
1900      if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1901        return true;
1902  
1903      // If the ivar is private, it's inaccessible.
1904      if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1905        return false;
1906  
1907      return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1908    }
1909  
1910    return true;
1911  }
1912