• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1page.title=OpenGL
2page.tags="games"
3@jd:body
4
5<div id="qv-wrapper">
6  <div id="qv">
7    <h2>In this document</h2>
8
9    <ol>
10      <li><a href="#basics">The Basics</a>
11        <ol>
12           <li><a href="#packages">OpenGL packages</a></li>
13        </ol>
14      <li><a href="#manifest">Declaring OpenGL Requirements</a></li>
15      </li>
16      <li><a href="#coordinate-mapping">Mapping Coordinates for Drawn Objects</a>
17        <ol>
18          <li><a href="#proj-es1">Projection and camera in ES 1.0</a></li>
19          <li><a href="#proj-es1">Projection and camera in ES 2.0</a></li>
20        </ol>
21      </li>
22      <li><a href="#faces-winding">Shape Faces and Winding</li>
23      <li><a href="#compatibility">OpenGL Versions and Device Compatibility</a>
24        <ol>
25          <li><a href="#textures">Texture compression support</a></li>
26          <li><a href="#gl-extension-query">Determining OpenGL Extensions</a></li>
27        </ol>
28      </li>
29      <li><a href="#choosing-version">Choosing an OpenGL API Version</a></li>
30    </ol>
31    <h2>Key classes</h2>
32    <ol>
33      <li>{@link android.opengl.GLSurfaceView}</li>
34      <li>{@link android.opengl.GLSurfaceView.Renderer}</li>
35    </ol>
36    <h2>Related samples</h2>
37    <ol>
38      <li><a href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/GLSurfaceViewActivity.html">GLSurfaceViewActivity</a></li>
39      <li><a href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/GLES20Activity.html">GLES20Activity</a></li>
40      <li><a href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/TouchRotateActivity.html">TouchRotateActivity</a></li>
41      <li><a
42href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/CompressedTextureActivity.html">Compressed Textures</a></li>
43    </ol>
44    <h2>See also</h2>
45    <ol>
46      <li><a href="{@docRoot}training/graphics/opengl/index.html">
47          Displaying Graphics with OpenGL ES</a></li>
48      <li><a href="http://www.khronos.org/opengles/">OpenGL ES</a></li>
49      <li><a href="http://www.khronos.org/opengles/1_X/">OpenGL ES 1.x Specification</a></li>
50      <li><a href="http://www.khronos.org/opengles/2_X/">OpenGL ES 2.x specification</a></li>
51    </ol>
52  </div>
53</div>
54
55<p>Android includes support for high performance 2D and 3D graphics with the Open Graphics Library
56(OpenGL), specifically, the OpenGL ES API. OpenGL is a cross-platform graphics API that specifies a
57standard software interface for 3D graphics processing hardware. OpenGL ES is a flavor of the OpenGL
58specification intended for embedded devices. The OpenGL ES 1.0 and 1.1 API specifications have been
59supported since Android 1.0. Beginning with Android 2.2 (API Level 8), the framework supports the
60OpenGL ES 2.0 API specification.</p>
61
62<p class="note"><b>Note:</b> The specific API provided by the Android framework is similar to the
63  J2ME JSR239 OpenGL ES  API, but is not identical. If you are familiar with J2ME JSR239
64  specification, be alert for variations.</p>
65
66
67<h2 id="basics">The Basics</h2>
68
69<p>Android supports OpenGL both through its framework API and the Native Development
70Kit (NDK). This topic focuses on the Android framework interfaces. For more information about the
71NDK, see the <a href="{@docRoot}tools/sdk/ndk/index.html">Android NDK</a>.
72
73<p>There are two foundational classes in the Android framework that let you create and manipulate
74graphics with the OpenGL ES API: {@link android.opengl.GLSurfaceView} and {@link
75android.opengl.GLSurfaceView.Renderer}. If your goal is to use OpenGL in your Android application,
76understanding how to implement these classes in an activity should be your first objective.
77</p>
78
79<dl>
80  <dt><strong>{@link android.opengl.GLSurfaceView}</strong></dt>
81  <dd>This class is a {@link android.view.View} where you can draw and manipulate objects using
82    OpenGL API calls and is similar in function to a {@link android.view.SurfaceView}. You can use
83    this class by creating an instance of {@link android.opengl.GLSurfaceView} and adding your
84    {@link android.opengl.GLSurfaceView.Renderer Renderer} to it. However, if you want to capture
85    touch screen events, you should extend the {@link android.opengl.GLSurfaceView} class to
86    implement the touch listeners, as shown in OpenGL training lesson,
87    <a href="{@docRoot}training/graphics/opengl/touch.html">Responding to Touch Events</a>.</dd>
88
89  <dt><strong>{@link android.opengl.GLSurfaceView.Renderer}</strong></dt>
90  <dd>This interface defines the methods required for drawing graphics in an OpenGL {@link
91    android.opengl.GLSurfaceView}. You must provide an implementation of this interface as a
92    separate class and attach it to your {@link android.opengl.GLSurfaceView} instance using
93    {@link android.opengl.GLSurfaceView#setRenderer(android.opengl.GLSurfaceView.Renderer)
94    GLSurfaceView.setRenderer()}.
95
96    <p>The {@link android.opengl.GLSurfaceView.Renderer} interface requires that you implement the
97      following methods:</p>
98    <ul>
99      <li>
100        {@link
101    android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10,
102    javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()}: The system calls this
103    method once, when creating the {@link android.opengl.GLSurfaceView}. Use this method to perform
104    actions that need to happen only once, such as setting OpenGL environment parameters or
105    initializing OpenGL graphic objects.
106      </li>
107      <li>
108        {@link
109        android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
110        onDrawFrame()}: The system calls this method on each redraw of the {@link
111        android.opengl.GLSurfaceView}. Use this method as the primary execution point for
112        drawing (and re-drawing) graphic objects.</li>
113      <li>
114        {@link
115    android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10,
116    int, int) onSurfaceChanged()}: The system calls this method when the {@link
117    android.opengl.GLSurfaceView} geometry changes, including changes in size of the {@link
118    android.opengl.GLSurfaceView} or orientation of the device screen. For example, the system calls
119    this method when the device changes from portrait to landscape orientation. Use this method to
120    respond to changes in the {@link android.opengl.GLSurfaceView} container.
121      </li>
122    </ul>
123    </dd>
124</dl>
125
126<h3 id="packages">OpenGL packages</h3>
127<p>Once you have established a container view for OpenGL using {@link
128android.opengl.GLSurfaceView} and {@link android.opengl.GLSurfaceView.Renderer}, you can begin
129calling OpenGL APIs using the following classes:</p>
130
131<ul>
132  <li>OpenGL ES 1.0/1.1 API Packages
133    <ul>
134        <li>{@link android.opengl} - This package provides a static interface to the OpenGL ES
1351.0/1.1 classes and better performance than the javax.microedition.khronos package interfaces.
136          <ul>
137            <li>{@link android.opengl.GLES10}</li>
138            <li>{@link android.opengl.GLES10Ext}</li>
139            <li>{@link android.opengl.GLES11}</li>
140            <li>{@link android.opengl.GLES11Ext}</li>
141          </ul>
142        </li>
143      <li>{@link javax.microedition.khronos.opengles} - This package provides the standard
144implementation of OpenGL ES 1.0/1.1.
145          <ul>
146            <li>{@link javax.microedition.khronos.opengles.GL10}</li>
147            <li>{@link javax.microedition.khronos.opengles.GL10Ext}</li>
148            <li>{@link javax.microedition.khronos.opengles.GL11}</li>
149            <li>{@link javax.microedition.khronos.opengles.GL11Ext}</li>
150            <li>{@link javax.microedition.khronos.opengles.GL11ExtensionPack}</li>
151          </ul>
152        </li>
153      </ul>
154  </li>
155  <li>OpenGL ES 2.0 API Class
156    <ul>
157      <li>{@link android.opengl.GLES20 android.opengl.GLES20} - This package provides the
158interface to OpenGL ES 2.0 and is available starting with Android 2.2 (API Level 8).</li>
159    </ul>
160  </li>
161</ul>
162
163<p>If you'd like to start building an app with OpenGL right away, follow the
164<a href="{@docRoot}training/graphics/opengl/index.html">Displaying Graphics with OpenGL ES</a> class.
165</p>
166
167<h2 id="manifest">Declaring OpenGL Requirements</h2>
168<p>If your application uses OpenGL features that are not available on all devices, you must include
169these requirements in your <a
170href="{@docRoot}guide/topics/manifest/manifest-intro.html">AndroidManifest.xml</a></code> file.
171Here are the most common OpenGL manifest declarations:</p>
172
173<ul>
174  <li><strong>OpenGL ES version requirements</strong> - If your application only supports OpenGL ES
1752.0, you must declare that requirement by adding the following settings to your manifest as
176shown below.
177
178<pre>
179    &lt;!-- Tell the system this app requires OpenGL ES 2.0. --&gt;
180    &lt;uses-feature android:glEsVersion="0x00020000" android:required="true" /&gt;
181</pre>
182
183  <p>Adding this declaration causes Google Play to restrict your application from being
184  installed on devices that do not support OpenGL ES 2.0.</p>
185  </li>
186  <li><strong>Texture compression requirements</strong> - If your application uses texture
187compression formats, you must declare the formats your application supports in your manifest file
188using <a href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html">{@code
189&lt;supports-gl-texture&gt;}</a>. For more information about available texture compression
190formats, see <a href="#textures">Texture compression support</a>.
191
192<p>Declaring texture compression requirements in your manifest hides your application from users
193with devices that do not support at least one of your declared compression types. For more
194information on how Google Play filtering works for texture compressions, see the <a
195href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html#market-texture-filtering">
196Google Play and texture compression filtering</a> section of the {@code
197&lt;supports-gl-texture&gt;} documentation.</p>
198  </li>
199</ul>
200
201
202<h2 id="coordinate-mapping">Mapping Coordinates for Drawn Objects</h2>
203
204<p>One of the basic problems in displaying graphics on Android devices is that their screens can
205vary in size and shape. OpenGL assumes a square, uniform coordinate system and, by default, happily
206draws those coordinates onto your typically non-square screen as if it is perfectly square.</p>
207
208<img src="{@docRoot}images/opengl/coordinates.png">
209<p class="img-caption">
210  <strong>Figure 1.</strong> Default OpenGL coordinate system (left) mapped to a typical Android
211device screen (right).
212</p>
213
214<p>The illustration above shows the uniform coordinate system assumed for an OpenGL frame on the
215left, and how these coordinates actually map to a typical device screen in landscape orientation
216on the right. To solve this problem, you can apply OpenGL projection modes and camera views to
217transform coordinates so your graphic objects have the correct proportions on any display.</p>
218
219<p>In order to apply projection and camera views, you create a projection matrix and a camera view
220matrix and apply them to the OpenGL rendering pipeline. The projection matrix recalculates the
221coordinates of your graphics so that they map correctly to Android device screens. The camera view
222matrix creates a transformation that renders objects from a specific eye position.</p>
223
224<h3 id="proj-es1">Projection and camera view in OpenGL ES 1.0</h3>
225<p>In the ES 1.0 API, you apply projection and camera view by creating each matrix and then
226adding them to the OpenGL environment.</p>
227
228<ol>
229<li><strong>Projection matrix</strong> - Create a projection matrix using the geometry of the
230device screen in order to recalculate object coordinates so they are drawn with correct proportions.
231The following example code demonstrates how to modify the {@link
232android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10,
233int, int) onSurfaceChanged()} method of a {@link android.opengl.GLSurfaceView.Renderer}
234implementation to create a projection matrix based on the screen's aspect ratio and apply it to the
235OpenGL rendering environment.
236
237<pre>
238  public void onSurfaceChanged(GL10 gl, int width, int height) {
239      gl.glViewport(0, 0, width, height);
240
241      // make adjustments for screen ratio
242      float ratio = (float) width / height;
243      gl.glMatrixMode(GL10.GL_PROJECTION);        // set matrix to projection mode
244      gl.glLoadIdentity();                        // reset the matrix to its default state
245      gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);  // apply the projection matrix
246  }
247</pre>
248</li>
249
250<li><strong>Camera transformation matrix</strong> - Once you have adjusted the coordinate system
251using a projection matrix, you must also apply a camera view. The following example code shows how
252to modify the {@link
253android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
254onDrawFrame()} method of a {@link android.opengl.GLSurfaceView.Renderer}
255implementation to apply a model view and use the
256{@link android.opengl.GLU#gluLookAt(javax.microedition.khronos.opengles.GL10, float, float, float,
257float, float, float, float, float, float) GLU.gluLookAt()} utility to create a viewing tranformation
258which simulates a camera position.
259
260<pre>
261    public void onDrawFrame(GL10 gl) {
262        ...
263        // Set GL_MODELVIEW transformation mode
264        gl.glMatrixMode(GL10.GL_MODELVIEW);
265        gl.glLoadIdentity();                      // reset the matrix to its default state
266
267        // When using GL_MODELVIEW, you must set the camera view
268        GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
269        ...
270    }
271</pre>
272</li>
273</ol>
274
275
276<h3 id="proj-es2">Projection and camera view in OpenGL ES 2.0</h3>
277<p>In the ES 2.0 API, you apply projection and camera view by first adding a matrix member to
278the vertex shaders of your graphics objects. With this matrix member added, you can then
279generate and apply projection and camera viewing matrices to your objects.</p>
280
281<ol>
282<li><strong>Add matrix to vertex shaders</strong> - Create a variable for the view projection matrix
283and include it as a multiplier of the shader's position. In the following example vertex shader
284code, the included {@code uMVPMatrix} member allows you to apply projection and camera viewing
285matrices to the coordinates of objects that use this shader.
286
287<pre>
288    private final String vertexShaderCode =
289
290        // This matrix member variable provides a hook to manipulate
291        // the coordinates of objects that use this vertex shader.
292        "uniform mat4 uMVPMatrix;   \n" +
293
294        "attribute vec4 vPosition;  \n" +
295        "void main(){               \n" +
296        // The matrix must be included as part of gl_Position
297        // Note that the uMVPMatrix factor *must be first* in order
298        // for the matrix multiplication product to be correct.
299        " gl_Position = uMVPMatrix * vPosition; \n" +
300
301        "}  \n";
302</pre>
303  <p class="note"><strong>Note:</strong> The example above defines a single transformation matrix
304member in the vertex shader into which you apply a combined projection matrix and camera view
305matrix. Depending on your application requirements, you may want to define separate projection
306matrix and camera viewing matrix members in your vertex shaders so you can change them
307independently.</p>
308</li>
309<li><strong>Access the shader matrix</strong> - After creating a hook in your vertex shaders to
310apply projection and camera view, you can then access that variable to apply projection and
311camera viewing matrices. The following code shows how to modify the {@link
312android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10,
313javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()} method of a {@link
314android.opengl.GLSurfaceView.Renderer} implementation to access the matrix
315variable defined in the vertex shader above.
316
317<pre>
318    public void onSurfaceCreated(GL10 unused, EGLConfig config) {
319        ...
320        muMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");
321        ...
322    }
323</pre>
324</li>
325<li><strong>Create projection and camera viewing matrices</strong> - Generate the projection and
326viewing matrices to be applied the graphic objects. The following example code shows how to modify
327the {@link
328android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10,
329javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()} and {@link
330android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10,
331int, int) onSurfaceChanged()} methods of a {@link android.opengl.GLSurfaceView.Renderer}
332implementation to create camera view matrix and a projection matrix based on the screen aspect ratio
333of the device.
334
335<pre>
336    public void onSurfaceCreated(GL10 unused, EGLConfig config) {
337        ...
338        // Create a camera view matrix
339        Matrix.setLookAtM(mVMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
340    }
341
342    public void onSurfaceChanged(GL10 unused, int width, int height) {
343        GLES20.glViewport(0, 0, width, height);
344
345        float ratio = (float) width / height;
346
347        // create a projection matrix from device screen geometry
348        Matrix.frustumM(mProjMatrix, 0, -ratio, ratio, -1, 1, 3, 7);
349    }
350</pre>
351</li>
352
353<li><strong>Apply projection and camera viewing matrices</strong> - To apply the projection and
354camera view transformations, multiply the matrices together and then set them into the vertex
355shader. The following example code shows how modify the {@link
356android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
357onDrawFrame()} method of a {@link android.opengl.GLSurfaceView.Renderer} implementation to combine
358the projection matrix and camera view created in the code above and then apply it to the graphic
359objects to be rendered by OpenGL.
360
361<pre>
362    public void onDrawFrame(GL10 unused) {
363        ...
364        // Combine the projection and camera view matrices
365        Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mVMatrix, 0);
366
367        // Apply the combined projection and camera view transformations
368        GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0);
369
370        // Draw objects
371        ...
372    }
373</pre>
374</li>
375</ol>
376<p>For a complete example of how to apply projection and camera view with OpenGL ES 2.0, see the <a
377href="{@docRoot}training/graphics/opengl/index.html">Displaying Graphics with OpenGL ES</a> class.</p>
378
379<h2 id="faces-winding">Shape Faces and Winding</h2>
380
381<p>In OpenGL, the face of a shape is a surface defined by three or more points in three-dimensional
382space. A set of three or more three-dimensional points (called vertices in OpenGL) have a front face
383and a back face. How do you know which face is front and which is the back? Good question. The
384answer has to do with winding, or, the direction in which you define the points of a shape.</p>
385
386<img src="{@docRoot}images/opengl/ccw-winding.png">
387<p class="img-caption">
388  <strong>Figure 1.</strong> Illustration of a coordinate list which translates into a
389counterclockwise drawing order.</p>
390
391<p>In this example, the points of the triangle are defined in an order such that they are drawn in a
392counterclockwise direction. The order in which these coordinates are drawn defines the winding
393direction for the shape. By default, in OpenGL, the face which is drawn counterclockwise is the
394front face. The triangle shown in Figure 1 is defined so that you are looking at the front face of
395the shape (as interpreted by OpenGL) and the other side is the back face.</p>
396
397<p>Why is it important to know which face of a shape is the front face? The answer has to do with a
398commonly used feature of OpenGL, called face culling. Face culling is an option for the OpenGL
399environment which allows the rendering pipeline to ignore (not calculate or draw) the back face of a
400shape, saving time, memory and processing cycles:</p>
401
402<pre>
403// enable face culling feature
404gl.glEnable(GL10.GL_CULL_FACE);
405// specify which faces to not draw
406gl.glCullFace(GL10.GL_BACK);
407</pre>
408
409<p>If you try to use the face culling feature without knowing which sides of your shapes are the
410front and back, your OpenGL graphics are going to look a bit thin, or possibly not show up at all.
411So, always define the coordinates of your OpenGL shapes in a counterclockwise drawing order.</p>
412
413<p class="note"><strong>Note:</strong> It is possible to set an OpenGL environment to treat the
414clockwise face as the front face, but doing so requires more code and is likely to confuse
415experienced OpenGL developers when you ask them for help. So don’t do that.</p>
416
417<h2 id="compatibility">OpenGL Versions and Device Compatibility</h2>
418
419<p>The OpenGL ES 1.0 and 1.1 API specifications have been supported since Android 1.0.
420Beginning with Android 2.2 (API Level 8), the framework supports the OpenGL ES 2.0 API
421specification. OpenGL ES 2.0 is supported by most Android devices and is recommended for new
422applications being developed with OpenGL. For information about the relative number of
423Android-powered devices that support a given version of OpenGL ES, see the <a
424href="{@docRoot}resources/dashboard/opengl.html">OpenGL ES Versions Dashboard</a>.</p>
425
426
427<h3 id="textures">Texture compression support</h3>
428<p>Texture compression can significantly increase the performance of your OpenGL application by
429reducing memory requirements and making more efficient use of memory bandwidth. The Android
430framework provides support for the ETC1 compression format as a standard feature, including a {@link
431android.opengl.ETC1Util} utility class and the {@code etc1tool} compression tool (located in the
432Android SDK at {@code &lt;sdk&gt;/tools/}). For an example of an Android application that uses
433texture compression, see the <a
434href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/CompressedTextureActivity.html"
435>CompressedTextureActivity</a> code sample.</p>
436
437<p>The ETC format is supported by most Android devices, but it not guarranteed to be available. To
438check if the ETC1 format is supported on a device, call the {@link
439android.opengl.ETC1Util#isETC1Supported() ETC1Util.isETC1Supported()} method.</p>
440
441<p class="note"><b>Note:</b> The ETC1 texture compression format does not support textures with an
442alpha channel. If your application requires textures with an alpha channel, you should
443investigate other texture compression formats available on your target devices.</p>
444
445<p>Beyond the ETC1 format, Android devices have varied support for texture compression based on
446their GPU chipsets and OpenGL implementations. You should investigate texture compression support on
447the devices you are are targeting to determine what compression types your application should
448support. In order to determine what texture formats are supported on a given device, you must <a
449href="#gl-extension-query">query the device</a> and review the <em>OpenGL extension names</em>,
450which identify what texture compression formats (and other OpenGL features) are supported by the
451device. Some commonly supported texture compression formats are as follows:</p>
452
453<ul>
454  <li><strong>ATITC (ATC)</strong> - ATI texture compression (ATITC or ATC) is available on a
455wide variety of devices and supports fixed rate compression for RGB textures with and without
456an alpha channel. This format may be represented by several OpenGL extension names, for example:
457    <ul>
458      <li>{@code GL_AMD_compressed_ATC_texture}</li>
459      <li>{@code GL_ATI_texture_compression_atitc}</li>
460    </ul>
461  </li>
462  <li><strong>PVRTC</strong> - PowerVR texture compression (PVRTC) is available on a wide
463variety of devices and supports 2-bit and 4-bit per pixel textures with or without an alpha channel.
464This format is represented by the following OpenGL extension name:
465    <ul>
466      <li>{@code GL_IMG_texture_compression_pvrtc}</li>
467    </ul>
468  </li>
469  <li><strong>S3TC (DXT<em>n</em>/DXTC)</strong> - S3 texture compression (S3TC) has several
470format variations (DXT1 to DXT5) and is less widely available. The format supports RGB textures with
4714-bit alpha or 8-bit alpha channels. This format may be represented by several OpenGL extension
472names, for example:
473    <ul>
474      <li>{@code GL_OES_texture_compression_S3TC}</li>
475      <li>{@code GL_EXT_texture_compression_s3tc}</li>
476      <li>{@code GL_EXT_texture_compression_dxt1}</li>
477      <li>{@code GL_EXT_texture_compression_dxt3}</li>
478      <li>{@code GL_EXT_texture_compression_dxt5}</li>
479    </ul>
480  </li>
481  <li><strong>3DC</strong> - 3DC texture compression (3DC) is a less widely available format that
482supports RGB textures with an an alpha channel. This format is represented by the following OpenGL
483extension name:</li>
484    <ul>
485      <li>{@code GL_AMD_compressed_3DC_texture}</li>
486    </ul>
487</ul>
488
489<p class="warning"><strong>Warning:</strong> These texture compression formats are <em>not
490supported</em> on all devices. Support for these formats can vary by manufacturer and device. For
491information on how to determine what texture compression formats are on a particular device, see
492the next section.
493</p>
494
495<p class="note"><strong>Note:</strong> Once you decide which texture compression formats your
496application will support, make sure you declare them in your manifest using <a
497href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html">&lt;supports-gl-texture&gt;
498</a>. Using this declaration enables filtering by external services such as Google Play, so that
499your app is installed only on devices that support the formats your app requires. For details, see
500<a
501href="{@docRoot}guide/topics/graphics/opengl.html#manifest">OpenGL manifest declarations</a>.</p>
502
503<h3 id="gl-extension-query">Determining OpenGL extensions</h3>
504<p>Implementations of OpenGL vary by Android device in terms of the extensions to the OpenGL ES API
505that are supported. These extensions include texture compressions, but typically also include other
506extensions to the OpenGL feature set.</p>
507
508<p>To determine what texture compression formats, and other OpenGL extensions, are supported on a
509particular device:</p>
510<ol>
511  <li>Run the following code on your target devices to determine what texture compression
512formats are supported:
513<pre>
514  String extensions = javax.microedition.khronos.opengles.GL10.glGetString(GL10.GL_EXTENSIONS);
515</pre>
516  <p class="warning"><b>Warning:</b> The results of this call <em>vary by device!</em> You
517must run this call on several target devices to determine what compression types are commonly
518supported.</p>
519  </li>
520  <li>Review the output of this method to determine what OpenGL extensions are supported on the
521device.</li>
522</ol>
523
524
525<h2 id="choosing-version">Choosing an OpenGL API Version</h2>
526
527<p>OpenGL ES API version 1.0 (and the 1.1 extensions) and version 2.0 both provide high
528performance graphics interfaces for creating 3D games, visualizations and user interfaces. Graphics
529programming for the OpenGL ES 1.0/1.1 API versus ES 2.0 differs significantly, and so developers
530should carefully consider the following factors before starting development with either API:</p>
531
532<ul>
533  <li><strong>Performance</strong> - In general, OpenGL ES 2.0 provides faster graphics performance
534than the ES 1.0/1.1 APIs. However, the performance difference can vary depending on the Android
535device your OpenGL application is running on, due to differences in the implementation of the OpenGL
536graphics pipeline.</li>
537  <li><strong>Device Compatibility</strong> - Developers should consider the types of devices,
538Android versions and the OpenGL ES versions available to their customers. For more information
539on OpenGL compatibility across devices, see the <a href="#compatibility">OpenGL Versions and Device
540Compatibility</a> section.</li>
541  <li><strong>Coding Convenience</strong> - The OpenGL ES 1.0/1.1 API provides a fixed function
542pipeline and convenience functions which are not available in the ES 2.0 API. Developers who are new
543to OpenGL may find coding for OpenGL ES 1.0/1.1 faster and more convenient.</li>
544  <li><strong>Graphics Control</strong> - The OpenGL ES 2.0 API provides a higher degree
545of control by providing a fully programmable pipeline through the use of shaders. With more
546direct control of the graphics processing pipeline, developers can create effects that would be
547very difficult to generate using the 1.0/1.1 API.</li>
548</ul>
549
550<p>While performance, compatibility, convenience, control and other factors may influence your
551decision, you should pick an OpenGL API version based on what you think provides the best experience
552for your users.</p>
553