• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  A natural loop
12 // has exactly one entry-point, which is called the header. Note that natural
13 // loops may actually be several loops that share the same header node.
14 //
15 // This analysis calculates the nesting structure of loops in a function.  For
16 // each natural loop identified, this analysis identifies natural loops
17 // contained entirely within the loop and the basic blocks the make up the loop.
18 //
19 // It can calculate on the fly various bits of information, for example:
20 //
21 //  * whether there is a preheader for the loop
22 //  * the number of back edges to the header
23 //  * whether or not a particular block branches out of the loop
24 //  * the successor blocks of the loop
25 //  * the loop depth
26 //  * etc...
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #ifndef LLVM_ANALYSIS_LOOPINFO_H
31 #define LLVM_ANALYSIS_LOOPINFO_H
32 
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/GraphTraits.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/Analysis/Dominators.h"
38 #include "llvm/Pass.h"
39 #include <algorithm>
40 
41 namespace llvm {
42 
43 template<typename T>
RemoveFromVector(std::vector<T * > & V,T * N)44 inline void RemoveFromVector(std::vector<T*> &V, T *N) {
45   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
46   assert(I != V.end() && "N is not in this list!");
47   V.erase(I);
48 }
49 
50 class DominatorTree;
51 class LoopInfo;
52 class Loop;
53 class PHINode;
54 class raw_ostream;
55 template<class N, class M> class LoopInfoBase;
56 template<class N, class M> class LoopBase;
57 
58 //===----------------------------------------------------------------------===//
59 /// LoopBase class - Instances of this class are used to represent loops that
60 /// are detected in the flow graph
61 ///
62 template<class BlockT, class LoopT>
63 class LoopBase {
64   LoopT *ParentLoop;
65   // SubLoops - Loops contained entirely within this one.
66   std::vector<LoopT *> SubLoops;
67 
68   // Blocks - The list of blocks in this loop.  First entry is the header node.
69   std::vector<BlockT*> Blocks;
70 
71   LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
72   const LoopBase<BlockT, LoopT>&
73     operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
74 public:
75   /// Loop ctor - This creates an empty loop.
LoopBase()76   LoopBase() : ParentLoop(0) {}
~LoopBase()77   ~LoopBase() {
78     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
79       delete SubLoops[i];
80   }
81 
82   /// getLoopDepth - Return the nesting level of this loop.  An outer-most
83   /// loop has depth 1, for consistency with loop depth values used for basic
84   /// blocks, where depth 0 is used for blocks not inside any loops.
getLoopDepth()85   unsigned getLoopDepth() const {
86     unsigned D = 1;
87     for (const LoopT *CurLoop = ParentLoop; CurLoop;
88          CurLoop = CurLoop->ParentLoop)
89       ++D;
90     return D;
91   }
getHeader()92   BlockT *getHeader() const { return Blocks.front(); }
getParentLoop()93   LoopT *getParentLoop() const { return ParentLoop; }
94 
95   /// setParentLoop is a raw interface for bypassing addChildLoop.
setParentLoop(LoopT * L)96   void setParentLoop(LoopT *L) { ParentLoop = L; }
97 
98   /// contains - Return true if the specified loop is contained within in
99   /// this loop.
100   ///
contains(const LoopT * L)101   bool contains(const LoopT *L) const {
102     if (L == this) return true;
103     if (L == 0)    return false;
104     return contains(L->getParentLoop());
105   }
106 
107   /// contains - Return true if the specified basic block is in this loop.
108   ///
contains(const BlockT * BB)109   bool contains(const BlockT *BB) const {
110     return std::find(block_begin(), block_end(), BB) != block_end();
111   }
112 
113   /// contains - Return true if the specified instruction is in this loop.
114   ///
115   template<class InstT>
contains(const InstT * Inst)116   bool contains(const InstT *Inst) const {
117     return contains(Inst->getParent());
118   }
119 
120   /// iterator/begin/end - Return the loops contained entirely within this loop.
121   ///
getSubLoops()122   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
getSubLoopsVector()123   std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
124   typedef typename std::vector<LoopT *>::const_iterator iterator;
125   typedef typename std::vector<LoopT *>::const_reverse_iterator
126     reverse_iterator;
begin()127   iterator begin() const { return SubLoops.begin(); }
end()128   iterator end() const { return SubLoops.end(); }
rbegin()129   reverse_iterator rbegin() const { return SubLoops.rbegin(); }
rend()130   reverse_iterator rend() const { return SubLoops.rend(); }
empty()131   bool empty() const { return SubLoops.empty(); }
132 
133   /// getBlocks - Get a list of the basic blocks which make up this loop.
134   ///
getBlocks()135   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
getBlocksVector()136   std::vector<BlockT*> &getBlocksVector() { return Blocks; }
137   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
block_begin()138   block_iterator block_begin() const { return Blocks.begin(); }
block_end()139   block_iterator block_end() const { return Blocks.end(); }
140 
141   /// getNumBlocks - Get the number of blocks in this loop in constant time.
getNumBlocks()142   unsigned getNumBlocks() const {
143     return Blocks.size();
144   }
145 
146   /// isLoopExiting - True if terminator in the block can branch to another
147   /// block that is outside of the current loop.
148   ///
isLoopExiting(const BlockT * BB)149   bool isLoopExiting(const BlockT *BB) const {
150     typedef GraphTraits<const BlockT*> BlockTraits;
151     for (typename BlockTraits::ChildIteratorType SI =
152          BlockTraits::child_begin(BB),
153          SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
154       if (!contains(*SI))
155         return true;
156     }
157     return false;
158   }
159 
160   /// getNumBackEdges - Calculate the number of back edges to the loop header
161   ///
getNumBackEdges()162   unsigned getNumBackEdges() const {
163     unsigned NumBackEdges = 0;
164     BlockT *H = getHeader();
165 
166     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
167     for (typename InvBlockTraits::ChildIteratorType I =
168          InvBlockTraits::child_begin(H),
169          E = InvBlockTraits::child_end(H); I != E; ++I)
170       if (contains(*I))
171         ++NumBackEdges;
172 
173     return NumBackEdges;
174   }
175 
176   //===--------------------------------------------------------------------===//
177   // APIs for simple analysis of the loop.
178   //
179   // Note that all of these methods can fail on general loops (ie, there may not
180   // be a preheader, etc).  For best success, the loop simplification and
181   // induction variable canonicalization pass should be used to normalize loops
182   // for easy analysis.  These methods assume canonical loops.
183 
184   /// getExitingBlocks - Return all blocks inside the loop that have successors
185   /// outside of the loop.  These are the blocks _inside of the current loop_
186   /// which branch out.  The returned list is always unique.
187   ///
188   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
189 
190   /// getExitingBlock - If getExitingBlocks would return exactly one block,
191   /// return that block. Otherwise return null.
192   BlockT *getExitingBlock() const;
193 
194   /// getExitBlocks - Return all of the successor blocks of this loop.  These
195   /// are the blocks _outside of the current loop_ which are branched to.
196   ///
197   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
198 
199   /// getExitBlock - If getExitBlocks would return exactly one block,
200   /// return that block. Otherwise return null.
201   BlockT *getExitBlock() const;
202 
203   /// Edge type.
204   typedef std::pair<const BlockT*, const BlockT*> Edge;
205 
206   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
207   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
208 
209   /// getLoopPreheader - If there is a preheader for this loop, return it.  A
210   /// loop has a preheader if there is only one edge to the header of the loop
211   /// from outside of the loop.  If this is the case, the block branching to the
212   /// header of the loop is the preheader node.
213   ///
214   /// This method returns null if there is no preheader for the loop.
215   ///
216   BlockT *getLoopPreheader() const;
217 
218   /// getLoopPredecessor - If the given loop's header has exactly one unique
219   /// predecessor outside the loop, return it. Otherwise return null.
220   /// This is less strict that the loop "preheader" concept, which requires
221   /// the predecessor to have exactly one successor.
222   ///
223   BlockT *getLoopPredecessor() const;
224 
225   /// getLoopLatch - If there is a single latch block for this loop, return it.
226   /// A latch block is a block that contains a branch back to the header.
227   BlockT *getLoopLatch() const;
228 
229   //===--------------------------------------------------------------------===//
230   // APIs for updating loop information after changing the CFG
231   //
232 
233   /// addBasicBlockToLoop - This method is used by other analyses to update loop
234   /// information.  NewBB is set to be a new member of the current loop.
235   /// Because of this, it is added as a member of all parent loops, and is added
236   /// to the specified LoopInfo object as being in the current basic block.  It
237   /// is not valid to replace the loop header with this method.
238   ///
239   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
240 
241   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
242   /// the OldChild entry in our children list with NewChild, and updates the
243   /// parent pointer of OldChild to be null and the NewChild to be this loop.
244   /// This updates the loop depth of the new child.
245   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
246 
247   /// addChildLoop - Add the specified loop to be a child of this loop.  This
248   /// updates the loop depth of the new child.
249   ///
addChildLoop(LoopT * NewChild)250   void addChildLoop(LoopT *NewChild) {
251     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
252     NewChild->ParentLoop = static_cast<LoopT *>(this);
253     SubLoops.push_back(NewChild);
254   }
255 
256   /// removeChildLoop - This removes the specified child from being a subloop of
257   /// this loop.  The loop is not deleted, as it will presumably be inserted
258   /// into another loop.
removeChildLoop(iterator I)259   LoopT *removeChildLoop(iterator I) {
260     assert(I != SubLoops.end() && "Cannot remove end iterator!");
261     LoopT *Child = *I;
262     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
263     SubLoops.erase(SubLoops.begin()+(I-begin()));
264     Child->ParentLoop = 0;
265     return Child;
266   }
267 
268   /// addBlockEntry - This adds a basic block directly to the basic block list.
269   /// This should only be used by transformations that create new loops.  Other
270   /// transformations should use addBasicBlockToLoop.
addBlockEntry(BlockT * BB)271   void addBlockEntry(BlockT *BB) {
272     Blocks.push_back(BB);
273   }
274 
275   /// moveToHeader - This method is used to move BB (which must be part of this
276   /// loop) to be the loop header of the loop (the block that dominates all
277   /// others).
moveToHeader(BlockT * BB)278   void moveToHeader(BlockT *BB) {
279     if (Blocks[0] == BB) return;
280     for (unsigned i = 0; ; ++i) {
281       assert(i != Blocks.size() && "Loop does not contain BB!");
282       if (Blocks[i] == BB) {
283         Blocks[i] = Blocks[0];
284         Blocks[0] = BB;
285         return;
286       }
287     }
288   }
289 
290   /// removeBlockFromLoop - This removes the specified basic block from the
291   /// current loop, updating the Blocks as appropriate.  This does not update
292   /// the mapping in the LoopInfo class.
removeBlockFromLoop(BlockT * BB)293   void removeBlockFromLoop(BlockT *BB) {
294     RemoveFromVector(Blocks, BB);
295   }
296 
297   /// verifyLoop - Verify loop structure
298   void verifyLoop() const;
299 
300   /// verifyLoop - Verify loop structure of this loop and all nested loops.
301   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
302 
303   void print(raw_ostream &OS, unsigned Depth = 0) const;
304 
305 protected:
306   friend class LoopInfoBase<BlockT, LoopT>;
LoopBase(BlockT * BB)307   explicit LoopBase(BlockT *BB) : ParentLoop(0) {
308     Blocks.push_back(BB);
309   }
310 };
311 
312 template<class BlockT, class LoopT>
313 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
314   Loop.print(OS);
315   return OS;
316 }
317 
318 // Implementation in LoopInfoImpl.h
319 #ifdef __GNUC__
320 __extension__ extern template class LoopBase<BasicBlock, Loop>;
321 #endif
322 
323 class Loop : public LoopBase<BasicBlock, Loop> {
324 public:
Loop()325   Loop() {}
326 
327   /// isLoopInvariant - Return true if the specified value is loop invariant
328   ///
329   bool isLoopInvariant(Value *V) const;
330 
331   /// hasLoopInvariantOperands - Return true if all the operands of the
332   /// specified instruction are loop invariant.
333   bool hasLoopInvariantOperands(Instruction *I) const;
334 
335   /// makeLoopInvariant - If the given value is an instruction inside of the
336   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
337   /// Return true if the value after any hoisting is loop invariant. This
338   /// function can be used as a slightly more aggressive replacement for
339   /// isLoopInvariant.
340   ///
341   /// If InsertPt is specified, it is the point to hoist instructions to.
342   /// If null, the terminator of the loop preheader is used.
343   ///
344   bool makeLoopInvariant(Value *V, bool &Changed,
345                          Instruction *InsertPt = 0) const;
346 
347   /// makeLoopInvariant - If the given instruction is inside of the
348   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
349   /// Return true if the instruction after any hoisting is loop invariant. This
350   /// function can be used as a slightly more aggressive replacement for
351   /// isLoopInvariant.
352   ///
353   /// If InsertPt is specified, it is the point to hoist instructions to.
354   /// If null, the terminator of the loop preheader is used.
355   ///
356   bool makeLoopInvariant(Instruction *I, bool &Changed,
357                          Instruction *InsertPt = 0) const;
358 
359   /// getCanonicalInductionVariable - Check to see if the loop has a canonical
360   /// induction variable: an integer recurrence that starts at 0 and increments
361   /// by one each time through the loop.  If so, return the phi node that
362   /// corresponds to it.
363   ///
364   /// The IndVarSimplify pass transforms loops to have a canonical induction
365   /// variable.
366   ///
367   PHINode *getCanonicalInductionVariable() const;
368 
369   /// isLCSSAForm - Return true if the Loop is in LCSSA form
370   bool isLCSSAForm(DominatorTree &DT) const;
371 
372   /// isLoopSimplifyForm - Return true if the Loop is in the form that
373   /// the LoopSimplify form transforms loops to, which is sometimes called
374   /// normal form.
375   bool isLoopSimplifyForm() const;
376 
377   /// isSafeToClone - Return true if the loop body is safe to clone in practice.
378   bool isSafeToClone() const;
379 
380   /// Returns true if the loop is annotated parallel.
381   ///
382   /// A parallel loop can be assumed to not contain any dependencies between
383   /// iterations by the compiler. That is, any loop-carried dependency checking
384   /// can be skipped completely when parallelizing the loop on the target
385   /// machine. Thus, if the parallel loop information originates from the
386   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
387   /// programmer's responsibility to ensure there are no loop-carried
388   /// dependencies. The final execution order of the instructions across
389   /// iterations is not guaranteed, thus, the end result might or might not
390   /// implement actual concurrent execution of instructions across multiple
391   /// iterations.
392   bool isAnnotatedParallel() const;
393 
394   /// hasDedicatedExits - Return true if no exit block for the loop
395   /// has a predecessor that is outside the loop.
396   bool hasDedicatedExits() const;
397 
398   /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
399   /// These are the blocks _outside of the current loop_ which are branched to.
400   /// This assumes that loop exits are in canonical form.
401   ///
402   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
403 
404   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
405   /// block, return that block. Otherwise return null.
406   BasicBlock *getUniqueExitBlock() const;
407 
408   void dump() const;
409 
410 private:
411   friend class LoopInfoBase<BasicBlock, Loop>;
Loop(BasicBlock * BB)412   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
413 };
414 
415 //===----------------------------------------------------------------------===//
416 /// LoopInfo - This class builds and contains all of the top level loop
417 /// structures in the specified function.
418 ///
419 
420 template<class BlockT, class LoopT>
421 class LoopInfoBase {
422   // BBMap - Mapping of basic blocks to the inner most loop they occur in
423   DenseMap<BlockT *, LoopT *> BBMap;
424   std::vector<LoopT *> TopLevelLoops;
425   friend class LoopBase<BlockT, LoopT>;
426   friend class LoopInfo;
427 
428   void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION;
429   LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION;
430 public:
LoopInfoBase()431   LoopInfoBase() { }
~LoopInfoBase()432   ~LoopInfoBase() { releaseMemory(); }
433 
releaseMemory()434   void releaseMemory() {
435     for (typename std::vector<LoopT *>::iterator I =
436          TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
437       delete *I;   // Delete all of the loops...
438 
439     BBMap.clear();                           // Reset internal state of analysis
440     TopLevelLoops.clear();
441   }
442 
443   /// iterator/begin/end - The interface to the top-level loops in the current
444   /// function.
445   ///
446   typedef typename std::vector<LoopT *>::const_iterator iterator;
447   typedef typename std::vector<LoopT *>::const_reverse_iterator
448     reverse_iterator;
begin()449   iterator begin() const { return TopLevelLoops.begin(); }
end()450   iterator end() const { return TopLevelLoops.end(); }
rbegin()451   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
rend()452   reverse_iterator rend() const { return TopLevelLoops.rend(); }
empty()453   bool empty() const { return TopLevelLoops.empty(); }
454 
455   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
456   /// block is in no loop (for example the entry node), null is returned.
457   ///
getLoopFor(const BlockT * BB)458   LoopT *getLoopFor(const BlockT *BB) const {
459     return BBMap.lookup(const_cast<BlockT*>(BB));
460   }
461 
462   /// operator[] - same as getLoopFor...
463   ///
464   const LoopT *operator[](const BlockT *BB) const {
465     return getLoopFor(BB);
466   }
467 
468   /// getLoopDepth - Return the loop nesting level of the specified block.  A
469   /// depth of 0 means the block is not inside any loop.
470   ///
getLoopDepth(const BlockT * BB)471   unsigned getLoopDepth(const BlockT *BB) const {
472     const LoopT *L = getLoopFor(BB);
473     return L ? L->getLoopDepth() : 0;
474   }
475 
476   // isLoopHeader - True if the block is a loop header node
isLoopHeader(BlockT * BB)477   bool isLoopHeader(BlockT *BB) const {
478     const LoopT *L = getLoopFor(BB);
479     return L && L->getHeader() == BB;
480   }
481 
482   /// removeLoop - This removes the specified top-level loop from this loop info
483   /// object.  The loop is not deleted, as it will presumably be inserted into
484   /// another loop.
removeLoop(iterator I)485   LoopT *removeLoop(iterator I) {
486     assert(I != end() && "Cannot remove end iterator!");
487     LoopT *L = *I;
488     assert(L->getParentLoop() == 0 && "Not a top-level loop!");
489     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
490     return L;
491   }
492 
493   /// changeLoopFor - Change the top-level loop that contains BB to the
494   /// specified loop.  This should be used by transformations that restructure
495   /// the loop hierarchy tree.
changeLoopFor(BlockT * BB,LoopT * L)496   void changeLoopFor(BlockT *BB, LoopT *L) {
497     if (!L) {
498       BBMap.erase(BB);
499       return;
500     }
501     BBMap[BB] = L;
502   }
503 
504   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
505   /// list with the indicated loop.
changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)506   void changeTopLevelLoop(LoopT *OldLoop,
507                           LoopT *NewLoop) {
508     typename std::vector<LoopT *>::iterator I =
509                  std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
510     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
511     *I = NewLoop;
512     assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
513            "Loops already embedded into a subloop!");
514   }
515 
516   /// addTopLevelLoop - This adds the specified loop to the collection of
517   /// top-level loops.
addTopLevelLoop(LoopT * New)518   void addTopLevelLoop(LoopT *New) {
519     assert(New->getParentLoop() == 0 && "Loop already in subloop!");
520     TopLevelLoops.push_back(New);
521   }
522 
523   /// removeBlock - This method completely removes BB from all data structures,
524   /// including all of the Loop objects it is nested in and our mapping from
525   /// BasicBlocks to loops.
removeBlock(BlockT * BB)526   void removeBlock(BlockT *BB) {
527     typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
528     if (I != BBMap.end()) {
529       for (LoopT *L = I->second; L; L = L->getParentLoop())
530         L->removeBlockFromLoop(BB);
531 
532       BBMap.erase(I);
533     }
534   }
535 
536   // Internals
537 
isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)538   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
539                                       const LoopT *ParentLoop) {
540     if (SubLoop == 0) return true;
541     if (SubLoop == ParentLoop) return false;
542     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
543   }
544 
545   /// Create the loop forest using a stable algorithm.
546   void Analyze(DominatorTreeBase<BlockT> &DomTree);
547 
548   // Debugging
549 
550   void print(raw_ostream &OS) const;
551 };
552 
553 // Implementation in LoopInfoImpl.h
554 #ifdef __GNUC__
555 __extension__ extern template class LoopInfoBase<BasicBlock, Loop>;
556 #endif
557 
558 class LoopInfo : public FunctionPass {
559   LoopInfoBase<BasicBlock, Loop> LI;
560   friend class LoopBase<BasicBlock, Loop>;
561 
562   void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION;
563   LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION;
564 public:
565   static char ID; // Pass identification, replacement for typeid
566 
LoopInfo()567   LoopInfo() : FunctionPass(ID) {
568     initializeLoopInfoPass(*PassRegistry::getPassRegistry());
569   }
570 
getBase()571   LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
572 
573   /// iterator/begin/end - The interface to the top-level loops in the current
574   /// function.
575   ///
576   typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
577   typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator;
begin()578   inline iterator begin() const { return LI.begin(); }
end()579   inline iterator end() const { return LI.end(); }
rbegin()580   inline reverse_iterator rbegin() const { return LI.rbegin(); }
rend()581   inline reverse_iterator rend() const { return LI.rend(); }
empty()582   bool empty() const { return LI.empty(); }
583 
584   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
585   /// block is in no loop (for example the entry node), null is returned.
586   ///
getLoopFor(const BasicBlock * BB)587   inline Loop *getLoopFor(const BasicBlock *BB) const {
588     return LI.getLoopFor(BB);
589   }
590 
591   /// operator[] - same as getLoopFor...
592   ///
593   inline const Loop *operator[](const BasicBlock *BB) const {
594     return LI.getLoopFor(BB);
595   }
596 
597   /// getLoopDepth - Return the loop nesting level of the specified block.  A
598   /// depth of 0 means the block is not inside any loop.
599   ///
getLoopDepth(const BasicBlock * BB)600   inline unsigned getLoopDepth(const BasicBlock *BB) const {
601     return LI.getLoopDepth(BB);
602   }
603 
604   // isLoopHeader - True if the block is a loop header node
isLoopHeader(BasicBlock * BB)605   inline bool isLoopHeader(BasicBlock *BB) const {
606     return LI.isLoopHeader(BB);
607   }
608 
609   /// runOnFunction - Calculate the natural loop information.
610   ///
611   virtual bool runOnFunction(Function &F);
612 
613   virtual void verifyAnalysis() const;
614 
releaseMemory()615   virtual void releaseMemory() { LI.releaseMemory(); }
616 
617   virtual void print(raw_ostream &O, const Module* M = 0) const;
618 
619   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
620 
621   /// removeLoop - This removes the specified top-level loop from this loop info
622   /// object.  The loop is not deleted, as it will presumably be inserted into
623   /// another loop.
removeLoop(iterator I)624   inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
625 
626   /// changeLoopFor - Change the top-level loop that contains BB to the
627   /// specified loop.  This should be used by transformations that restructure
628   /// the loop hierarchy tree.
changeLoopFor(BasicBlock * BB,Loop * L)629   inline void changeLoopFor(BasicBlock *BB, Loop *L) {
630     LI.changeLoopFor(BB, L);
631   }
632 
633   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
634   /// list with the indicated loop.
changeTopLevelLoop(Loop * OldLoop,Loop * NewLoop)635   inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
636     LI.changeTopLevelLoop(OldLoop, NewLoop);
637   }
638 
639   /// addTopLevelLoop - This adds the specified loop to the collection of
640   /// top-level loops.
addTopLevelLoop(Loop * New)641   inline void addTopLevelLoop(Loop *New) {
642     LI.addTopLevelLoop(New);
643   }
644 
645   /// removeBlock - This method completely removes BB from all data structures,
646   /// including all of the Loop objects it is nested in and our mapping from
647   /// BasicBlocks to loops.
removeBlock(BasicBlock * BB)648   void removeBlock(BasicBlock *BB) {
649     LI.removeBlock(BB);
650   }
651 
652   /// updateUnloop - Update LoopInfo after removing the last backedge from a
653   /// loop--now the "unloop". This updates the loop forest and parent loops for
654   /// each block so that Unloop is no longer referenced, but the caller must
655   /// actually delete the Unloop object.
656   void updateUnloop(Loop *Unloop);
657 
658   /// replacementPreservesLCSSAForm - Returns true if replacing From with To
659   /// everywhere is guaranteed to preserve LCSSA form.
replacementPreservesLCSSAForm(Instruction * From,Value * To)660   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
661     // Preserving LCSSA form is only problematic if the replacing value is an
662     // instruction.
663     Instruction *I = dyn_cast<Instruction>(To);
664     if (!I) return true;
665     // If both instructions are defined in the same basic block then replacement
666     // cannot break LCSSA form.
667     if (I->getParent() == From->getParent())
668       return true;
669     // If the instruction is not defined in a loop then it can safely replace
670     // anything.
671     Loop *ToLoop = getLoopFor(I->getParent());
672     if (!ToLoop) return true;
673     // If the replacing instruction is defined in the same loop as the original
674     // instruction, or in a loop that contains it as an inner loop, then using
675     // it as a replacement will not break LCSSA form.
676     return ToLoop->contains(getLoopFor(From->getParent()));
677   }
678 };
679 
680 
681 // Allow clients to walk the list of nested loops...
682 template <> struct GraphTraits<const Loop*> {
683   typedef const Loop NodeType;
684   typedef LoopInfo::iterator ChildIteratorType;
685 
686   static NodeType *getEntryNode(const Loop *L) { return L; }
687   static inline ChildIteratorType child_begin(NodeType *N) {
688     return N->begin();
689   }
690   static inline ChildIteratorType child_end(NodeType *N) {
691     return N->end();
692   }
693 };
694 
695 template <> struct GraphTraits<Loop*> {
696   typedef Loop NodeType;
697   typedef LoopInfo::iterator ChildIteratorType;
698 
699   static NodeType *getEntryNode(Loop *L) { return L; }
700   static inline ChildIteratorType child_begin(NodeType *N) {
701     return N->begin();
702   }
703   static inline ChildIteratorType child_end(NodeType *N) {
704     return N->end();
705   }
706 };
707 
708 } // End llvm namespace
709 
710 #endif
711