• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the Type class.  For more "Type"
11 // stuff, look in DerivedTypes.h.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_TYPE_H
16 #define LLVM_IR_TYPE_H
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/Support/Casting.h"
20 #include "llvm/Support/DataTypes.h"
21 #include "llvm/Support/ErrorHandling.h"
22 
23 namespace llvm {
24 
25 class PointerType;
26 class IntegerType;
27 class raw_ostream;
28 class Module;
29 class LLVMContext;
30 class LLVMContextImpl;
31 class StringRef;
32 template<class GraphType> struct GraphTraits;
33 
34 /// The instances of the Type class are immutable: once they are created,
35 /// they are never changed.  Also note that only one instance of a particular
36 /// type is ever created.  Thus seeing if two types are equal is a matter of
37 /// doing a trivial pointer comparison. To enforce that no two equal instances
38 /// are created, Type instances can only be created via static factory methods
39 /// in class Type and in derived classes.  Once allocated, Types are never
40 /// free'd.
41 ///
42 class Type {
43 public:
44   //===--------------------------------------------------------------------===//
45   /// Definitions of all of the base types for the Type system.  Based on this
46   /// value, you can cast to a class defined in DerivedTypes.h.
47   /// Note: If you add an element to this, you need to add an element to the
48   /// Type::getPrimitiveType function, or else things will break!
49   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
50   ///
51   enum TypeID {
52     // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
53     VoidTyID = 0,    ///<  0: type with no size
54     HalfTyID,        ///<  1: 16-bit floating point type
55     FloatTyID,       ///<  2: 32-bit floating point type
56     DoubleTyID,      ///<  3: 64-bit floating point type
57     X86_FP80TyID,    ///<  4: 80-bit floating point type (X87)
58     FP128TyID,       ///<  5: 128-bit floating point type (112-bit mantissa)
59     PPC_FP128TyID,   ///<  6: 128-bit floating point type (two 64-bits, PowerPC)
60     LabelTyID,       ///<  7: Labels
61     MetadataTyID,    ///<  8: Metadata
62     X86_MMXTyID,     ///<  9: MMX vectors (64 bits, X86 specific)
63 
64     // Derived types... see DerivedTypes.h file.
65     // Make sure FirstDerivedTyID stays up to date!
66     IntegerTyID,     ///< 10: Arbitrary bit width integers
67     FunctionTyID,    ///< 11: Functions
68     StructTyID,      ///< 12: Structures
69     ArrayTyID,       ///< 13: Arrays
70     PointerTyID,     ///< 14: Pointers
71     VectorTyID,      ///< 15: SIMD 'packed' format, or other vector type
72 
73     NumTypeIDs,                         // Must remain as last defined ID
74     LastPrimitiveTyID = X86_MMXTyID,
75     FirstDerivedTyID = IntegerTyID
76   };
77 
78 private:
79   /// Context - This refers to the LLVMContext in which this type was uniqued.
80   LLVMContext &Context;
81 
82   // Due to Ubuntu GCC bug 910363:
83   // https://bugs.launchpad.net/ubuntu/+source/gcc-4.5/+bug/910363
84   // Bitpack ID and SubclassData manually.
85   // Note: TypeID : low 8 bit; SubclassData : high 24 bit.
86   uint32_t IDAndSubclassData;
87 
88 protected:
89   friend class LLVMContextImpl;
Type(LLVMContext & C,TypeID tid)90   explicit Type(LLVMContext &C, TypeID tid)
91     : Context(C), IDAndSubclassData(0),
92       NumContainedTys(0), ContainedTys(0) {
93     setTypeID(tid);
94   }
~Type()95   ~Type() {}
96 
setTypeID(TypeID ID)97   void setTypeID(TypeID ID) {
98     IDAndSubclassData = (ID & 0xFF) | (IDAndSubclassData & 0xFFFFFF00);
99     assert(getTypeID() == ID && "TypeID data too large for field");
100   }
101 
getSubclassData()102   unsigned getSubclassData() const { return IDAndSubclassData >> 8; }
103 
setSubclassData(unsigned val)104   void setSubclassData(unsigned val) {
105     IDAndSubclassData = (IDAndSubclassData & 0xFF) | (val << 8);
106     // Ensure we don't have any accidental truncation.
107     assert(getSubclassData() == val && "Subclass data too large for field");
108   }
109 
110   /// NumContainedTys - Keeps track of how many Type*'s there are in the
111   /// ContainedTys list.
112   unsigned NumContainedTys;
113 
114   /// ContainedTys - A pointer to the array of Types contained by this Type.
115   /// For example, this includes the arguments of a function type, the elements
116   /// of a structure, the pointee of a pointer, the element type of an array,
117   /// etc.  This pointer may be 0 for types that don't contain other types
118   /// (Integer, Double, Float).
119   Type * const *ContainedTys;
120 
121 public:
122   void print(raw_ostream &O) const;
123   void dump() const;
124 
125   /// getContext - Return the LLVMContext in which this type was uniqued.
getContext()126   LLVMContext &getContext() const { return Context; }
127 
128   //===--------------------------------------------------------------------===//
129   // Accessors for working with types.
130   //
131 
132   /// getTypeID - Return the type id for the type.  This will return one
133   /// of the TypeID enum elements defined above.
134   ///
getTypeID()135   TypeID getTypeID() const { return (TypeID)(IDAndSubclassData & 0xFF); }
136 
137   /// isVoidTy - Return true if this is 'void'.
isVoidTy()138   bool isVoidTy() const { return getTypeID() == VoidTyID; }
139 
140   /// isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
isHalfTy()141   bool isHalfTy() const { return getTypeID() == HalfTyID; }
142 
143   /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
isFloatTy()144   bool isFloatTy() const { return getTypeID() == FloatTyID; }
145 
146   /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
isDoubleTy()147   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
148 
149   /// isX86_FP80Ty - Return true if this is x86 long double.
isX86_FP80Ty()150   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
151 
152   /// isFP128Ty - Return true if this is 'fp128'.
isFP128Ty()153   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
154 
155   /// isPPC_FP128Ty - Return true if this is powerpc long double.
isPPC_FP128Ty()156   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
157 
158   /// isFloatingPointTy - Return true if this is one of the six floating point
159   /// types
isFloatingPointTy()160   bool isFloatingPointTy() const {
161     return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
162            getTypeID() == DoubleTyID ||
163            getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
164            getTypeID() == PPC_FP128TyID;
165   }
166 
getFltSemantics()167   const fltSemantics &getFltSemantics() const {
168     switch (getTypeID()) {
169     case HalfTyID: return APFloat::IEEEhalf;
170     case FloatTyID: return APFloat::IEEEsingle;
171     case DoubleTyID: return APFloat::IEEEdouble;
172     case X86_FP80TyID: return APFloat::x87DoubleExtended;
173     case FP128TyID: return APFloat::IEEEquad;
174     case PPC_FP128TyID: return APFloat::PPCDoubleDouble;
175     default: llvm_unreachable("Invalid floating type");
176     }
177   }
178 
179   /// isX86_MMXTy - Return true if this is X86 MMX.
isX86_MMXTy()180   bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
181 
182   /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
183   ///
isFPOrFPVectorTy()184   bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
185 
186   /// isLabelTy - Return true if this is 'label'.
isLabelTy()187   bool isLabelTy() const { return getTypeID() == LabelTyID; }
188 
189   /// isMetadataTy - Return true if this is 'metadata'.
isMetadataTy()190   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
191 
192   /// isIntegerTy - True if this is an instance of IntegerType.
193   ///
isIntegerTy()194   bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
195 
196   /// isIntegerTy - Return true if this is an IntegerType of the given width.
197   bool isIntegerTy(unsigned Bitwidth) const;
198 
199   /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
200   /// integer types.
201   ///
isIntOrIntVectorTy()202   bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
203 
204   /// isFunctionTy - True if this is an instance of FunctionType.
205   ///
isFunctionTy()206   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
207 
208   /// isStructTy - True if this is an instance of StructType.
209   ///
isStructTy()210   bool isStructTy() const { return getTypeID() == StructTyID; }
211 
212   /// isArrayTy - True if this is an instance of ArrayType.
213   ///
isArrayTy()214   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
215 
216   /// isPointerTy - True if this is an instance of PointerType.
217   ///
isPointerTy()218   bool isPointerTy() const { return getTypeID() == PointerTyID; }
219 
220   /// isPtrOrPtrVectorTy - Return true if this is a pointer type or a vector of
221   /// pointer types.
222   ///
isPtrOrPtrVectorTy()223   bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
224 
225   /// isVectorTy - True if this is an instance of VectorType.
226   ///
isVectorTy()227   bool isVectorTy() const { return getTypeID() == VectorTyID; }
228 
229   /// canLosslesslyBitCastTo - Return true if this type could be converted
230   /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
231   /// are valid for types of the same size only where no re-interpretation of
232   /// the bits is done.
233   /// @brief Determine if this type could be losslessly bitcast to Ty
234   bool canLosslesslyBitCastTo(Type *Ty) const;
235 
236   /// isEmptyTy - Return true if this type is empty, that is, it has no
237   /// elements or all its elements are empty.
238   bool isEmptyTy() const;
239 
240   /// Here are some useful little methods to query what type derived types are
241   /// Note that all other types can just compare to see if this == Type::xxxTy;
242   ///
isPrimitiveType()243   bool isPrimitiveType() const { return getTypeID() <= LastPrimitiveTyID; }
isDerivedType()244   bool isDerivedType()   const { return getTypeID() >= FirstDerivedTyID; }
245 
246   /// isFirstClassType - Return true if the type is "first class", meaning it
247   /// is a valid type for a Value.
248   ///
isFirstClassType()249   bool isFirstClassType() const {
250     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
251   }
252 
253   /// isSingleValueType - Return true if the type is a valid type for a
254   /// register in codegen.  This includes all first-class types except struct
255   /// and array types.
256   ///
isSingleValueType()257   bool isSingleValueType() const {
258     return (getTypeID() != VoidTyID && isPrimitiveType()) ||
259             getTypeID() == IntegerTyID || getTypeID() == PointerTyID ||
260             getTypeID() == VectorTyID;
261   }
262 
263   /// isAggregateType - Return true if the type is an aggregate type. This
264   /// means it is valid as the first operand of an insertvalue or
265   /// extractvalue instruction. This includes struct and array types, but
266   /// does not include vector types.
267   ///
isAggregateType()268   bool isAggregateType() const {
269     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
270   }
271 
272   /// isSized - Return true if it makes sense to take the size of this type.  To
273   /// get the actual size for a particular target, it is reasonable to use the
274   /// DataLayout subsystem to do this.
275   ///
isSized()276   bool isSized() const {
277     // If it's a primitive, it is always sized.
278     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
279         getTypeID() == PointerTyID ||
280         getTypeID() == X86_MMXTyID)
281       return true;
282     // If it is not something that can have a size (e.g. a function or label),
283     // it doesn't have a size.
284     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
285         getTypeID() != VectorTyID)
286       return false;
287     // Otherwise we have to try harder to decide.
288     return isSizedDerivedType();
289   }
290 
291   /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
292   /// primitive type.  These are fixed by LLVM and are not target dependent.
293   /// This will return zero if the type does not have a size or is not a
294   /// primitive type.
295   ///
296   /// Note that this may not reflect the size of memory allocated for an
297   /// instance of the type or the number of bytes that are written when an
298   /// instance of the type is stored to memory. The DataLayout class provides
299   /// additional query functions to provide this information.
300   ///
301   unsigned getPrimitiveSizeInBits() const;
302 
303   /// getScalarSizeInBits - If this is a vector type, return the
304   /// getPrimitiveSizeInBits value for the element type. Otherwise return the
305   /// getPrimitiveSizeInBits value for this type.
306   unsigned getScalarSizeInBits();
307 
308   /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
309   /// is only valid on floating point types.  If the FP type does not
310   /// have a stable mantissa (e.g. ppc long double), this method returns -1.
311   int getFPMantissaWidth() const;
312 
313   /// getScalarType - If this is a vector type, return the element type,
314   /// otherwise return 'this'.
315   const Type *getScalarType() const;
316   Type *getScalarType();
317 
318   //===--------------------------------------------------------------------===//
319   // Type Iteration support.
320   //
321   typedef Type * const *subtype_iterator;
subtype_begin()322   subtype_iterator subtype_begin() const { return ContainedTys; }
subtype_end()323   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
324 
325   /// getContainedType - This method is used to implement the type iterator
326   /// (defined a the end of the file).  For derived types, this returns the
327   /// types 'contained' in the derived type.
328   ///
getContainedType(unsigned i)329   Type *getContainedType(unsigned i) const {
330     assert(i < NumContainedTys && "Index out of range!");
331     return ContainedTys[i];
332   }
333 
334   /// getNumContainedTypes - Return the number of types in the derived type.
335   ///
getNumContainedTypes()336   unsigned getNumContainedTypes() const { return NumContainedTys; }
337 
338   //===--------------------------------------------------------------------===//
339   // Helper methods corresponding to subclass methods.  This forces a cast to
340   // the specified subclass and calls its accessor.  "getVectorNumElements" (for
341   // example) is shorthand for cast<VectorType>(Ty)->getNumElements().  This is
342   // only intended to cover the core methods that are frequently used, helper
343   // methods should not be added here.
344 
345   unsigned getIntegerBitWidth() const;
346 
347   Type *getFunctionParamType(unsigned i) const;
348   unsigned getFunctionNumParams() const;
349   bool isFunctionVarArg() const;
350 
351   StringRef getStructName() const;
352   unsigned getStructNumElements() const;
353   Type *getStructElementType(unsigned N) const;
354 
355   Type *getSequentialElementType() const;
356 
357   uint64_t getArrayNumElements() const;
getArrayElementType()358   Type *getArrayElementType() const { return getSequentialElementType(); }
359 
360   unsigned getVectorNumElements() const;
getVectorElementType()361   Type *getVectorElementType() const { return getSequentialElementType(); }
362 
getPointerElementType()363   Type *getPointerElementType() const { return getSequentialElementType(); }
364 
365   /// \brief Get the address space of this pointer or pointer vector type.
366   unsigned getPointerAddressSpace() const;
367 
368   //===--------------------------------------------------------------------===//
369   // Static members exported by the Type class itself.  Useful for getting
370   // instances of Type.
371   //
372 
373   /// getPrimitiveType - Return a type based on an identifier.
374   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
375 
376   //===--------------------------------------------------------------------===//
377   // These are the builtin types that are always available.
378   //
379   static Type *getVoidTy(LLVMContext &C);
380   static Type *getLabelTy(LLVMContext &C);
381   static Type *getHalfTy(LLVMContext &C);
382   static Type *getFloatTy(LLVMContext &C);
383   static Type *getDoubleTy(LLVMContext &C);
384   static Type *getMetadataTy(LLVMContext &C);
385   static Type *getX86_FP80Ty(LLVMContext &C);
386   static Type *getFP128Ty(LLVMContext &C);
387   static Type *getPPC_FP128Ty(LLVMContext &C);
388   static Type *getX86_MMXTy(LLVMContext &C);
389   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
390   static IntegerType *getInt1Ty(LLVMContext &C);
391   static IntegerType *getInt8Ty(LLVMContext &C);
392   static IntegerType *getInt16Ty(LLVMContext &C);
393   static IntegerType *getInt32Ty(LLVMContext &C);
394   static IntegerType *getInt64Ty(LLVMContext &C);
395 
396   //===--------------------------------------------------------------------===//
397   // Convenience methods for getting pointer types with one of the above builtin
398   // types as pointee.
399   //
400   static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
401   static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
402   static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
403   static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
404   static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
405   static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
406   static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
407   static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
408   static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
409   static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
410   static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
411   static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
412   static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
413 
414   /// getPointerTo - Return a pointer to the current type.  This is equivalent
415   /// to PointerType::get(Foo, AddrSpace).
416   PointerType *getPointerTo(unsigned AddrSpace = 0);
417 
418 private:
419   /// isSizedDerivedType - Derived types like structures and arrays are sized
420   /// iff all of the members of the type are sized as well.  Since asking for
421   /// their size is relatively uncommon, move this operation out of line.
422   bool isSizedDerivedType() const;
423 };
424 
425 // Printing of types.
426 static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) {
427   T.print(OS);
428   return OS;
429 }
430 
431 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
432 template <> struct isa_impl<PointerType, Type> {
433   static inline bool doit(const Type &Ty) {
434     return Ty.getTypeID() == Type::PointerTyID;
435   }
436 };
437 
438 
439 //===----------------------------------------------------------------------===//
440 // Provide specializations of GraphTraits to be able to treat a type as a
441 // graph of sub types.
442 
443 
444 template <> struct GraphTraits<Type*> {
445   typedef Type NodeType;
446   typedef Type::subtype_iterator ChildIteratorType;
447 
448   static inline NodeType *getEntryNode(Type *T) { return T; }
449   static inline ChildIteratorType child_begin(NodeType *N) {
450     return N->subtype_begin();
451   }
452   static inline ChildIteratorType child_end(NodeType *N) {
453     return N->subtype_end();
454   }
455 };
456 
457 template <> struct GraphTraits<const Type*> {
458   typedef const Type NodeType;
459   typedef Type::subtype_iterator ChildIteratorType;
460 
461   static inline NodeType *getEntryNode(NodeType *T) { return T; }
462   static inline ChildIteratorType child_begin(NodeType *N) {
463     return N->subtype_begin();
464   }
465   static inline ChildIteratorType child_end(NodeType *N) {
466     return N->subtype_end();
467   }
468 };
469 
470 } // End llvm namespace
471 
472 #endif
473