• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 */
5 
6 #ifndef lint
7 #ifndef NOID
8 static char elsieid[] = "@(#)localtime.c    8.3";
9 #endif /* !defined NOID */
10 #endif /* !defined lint */
11 
12 /*
13 ** Leap second handling from Bradley White.
14 ** POSIX-style TZ environment variable handling from Guy Harris.
15 */
16 
17 /*LINTLIBRARY*/
18 
19 #include "private.h"
20 #include "tzfile.h"
21 #include "fcntl.h"
22 #include "float.h"  /* for FLT_MAX and DBL_MAX */
23 
24 #include "thread_private.h"
25 #include <sys/system_properties.h>
26 
27 #ifndef TZ_ABBR_MAX_LEN
28 #define TZ_ABBR_MAX_LEN 16
29 #endif /* !defined TZ_ABBR_MAX_LEN */
30 
31 #ifndef TZ_ABBR_CHAR_SET
32 #define TZ_ABBR_CHAR_SET \
33     "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
34 #endif /* !defined TZ_ABBR_CHAR_SET */
35 
36 #ifndef TZ_ABBR_ERR_CHAR
37 #define TZ_ABBR_ERR_CHAR    '_'
38 #endif /* !defined TZ_ABBR_ERR_CHAR */
39 
40 /*
41 ** SunOS 4.1.1 headers lack O_BINARY.
42 */
43 
44 #ifdef O_BINARY
45 #define OPEN_MODE   (O_RDONLY | O_BINARY)
46 #endif /* defined O_BINARY */
47 #ifndef O_BINARY
48 #define OPEN_MODE   O_RDONLY
49 #endif /* !defined O_BINARY */
50 
51 #if 0
52 #  define  XLOG(xx)  printf xx , fflush(stdout)
53 #else
54 #  define  XLOG(x)   do{}while (0)
55 #endif
56 
57 /* Add the following function implementations:
58  *  timelocal()
59  *  timegm()
60  *  time2posix()
61  *  posix2time()
62  */
63 #define STD_INSPIRED 1
64 
65 /* THREAD-SAFETY SUPPORT GOES HERE */
66 static pthread_mutex_t  _tzMutex = PTHREAD_MUTEX_INITIALIZER;
67 
_tzLock(void)68 static __inline__ void _tzLock(void)
69 {
70     if (__isthreaded)
71         pthread_mutex_lock(&_tzMutex);
72 }
73 
_tzUnlock(void)74 static __inline__ void _tzUnlock(void)
75 {
76     if (__isthreaded)
77         pthread_mutex_unlock(&_tzMutex);
78 }
79 
80 /* Complex computations to determine the min/max of time_t depending
81  * on TYPE_BIT / TYPE_SIGNED / TYPE_INTEGRAL.
82  * These macros cannot be used in pre-processor directives, so we
83  * let the C compiler do the work, which makes things a bit funky.
84  */
85 static const time_t TIME_T_MAX =
86     TYPE_INTEGRAL(time_t) ?
87         ( TYPE_SIGNED(time_t) ?
88             ~((time_t)1 << (TYPE_BIT(time_t)-1))
89         :
90             ~(time_t)0
91         )
92     : /* if time_t is a floating point number */
93         ( sizeof(time_t) > sizeof(float) ? (time_t)DBL_MAX : (time_t)FLT_MAX );
94 
95 static const time_t TIME_T_MIN =
96     TYPE_INTEGRAL(time_t) ?
97         ( TYPE_SIGNED(time_t) ?
98             ((time_t)1 << (TYPE_BIT(time_t)-1))
99         :
100             0
101         )
102     :
103         ( sizeof(time_t) > sizeof(float) ? (time_t)DBL_MIN : (time_t)FLT_MIN );
104 
105 #ifndef WILDABBR
106 /*
107 ** Someone might make incorrect use of a time zone abbreviation:
108 **  1.  They might reference tzname[0] before calling tzset (explicitly
109 **      or implicitly).
110 **  2.  They might reference tzname[1] before calling tzset (explicitly
111 **      or implicitly).
112 **  3.  They might reference tzname[1] after setting to a time zone
113 **      in which Daylight Saving Time is never observed.
114 **  4.  They might reference tzname[0] after setting to a time zone
115 **      in which Standard Time is never observed.
116 **  5.  They might reference tm.TM_ZONE after calling offtime.
117 ** What's best to do in the above cases is open to debate;
118 ** for now, we just set things up so that in any of the five cases
119 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
120 ** string "tzname[0] used before set", and similarly for the other cases.
121 ** And another: initialize tzname[0] to "ERA", with an explanation in the
122 ** manual page of what this "time zone abbreviation" means (doing this so
123 ** that tzname[0] has the "normal" length of three characters).
124 */
125 #define WILDABBR    "   "
126 #endif /* !defined WILDABBR */
127 
128 static char     wildabbr[] = WILDABBR;
129 
130 static const char   gmt[] = "GMT";
131 
132 /*
133 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
134 ** We default to US rules as of 1999-08-17.
135 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
136 ** implementation dependent; for historical reasons, US rules are a
137 ** common default.
138 */
139 #ifndef TZDEFRULESTRING
140 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
141 #endif /* !defined TZDEFDST */
142 
143 struct ttinfo {             /* time type information */
144     long    tt_gmtoff;  /* UTC offset in seconds */
145     int     tt_isdst;   /* used to set tm_isdst */
146     int     tt_abbrind; /* abbreviation list index */
147     int     tt_ttisstd; /* TRUE if transition is std time */
148     int     tt_ttisgmt; /* TRUE if transition is UTC */
149 };
150 
151 struct lsinfo {             /* leap second information */
152     time_t      ls_trans;   /* transition time */
153     long        ls_corr;    /* correction to apply */
154 };
155 
156 #define BIGGEST(a, b)   (((a) > (b)) ? (a) : (b))
157 
158 #ifdef TZNAME_MAX
159 #define MY_TZNAME_MAX   TZNAME_MAX
160 #endif /* defined TZNAME_MAX */
161 #ifndef TZNAME_MAX
162 #define MY_TZNAME_MAX   255
163 #endif /* !defined TZNAME_MAX */
164 
165 /* XXX: This code should really use time64_t instead of time_t
166  *      but we can't change it without re-generating the index
167  *      file first with the correct data.
168  */
169 struct state {
170     int     leapcnt;
171     int     timecnt;
172     int     typecnt;
173     int     charcnt;
174     int     goback;
175     int     goahead;
176     time_t      ats[TZ_MAX_TIMES];
177     unsigned char   types[TZ_MAX_TIMES];
178     struct ttinfo   ttis[TZ_MAX_TYPES];
179     char        chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
180                 (2 * (MY_TZNAME_MAX + 1)))];
181     struct lsinfo   lsis[TZ_MAX_LEAPS];
182 };
183 
184 struct rule {
185     int     r_type;     /* type of rule--see below */
186     int     r_day;      /* day number of rule */
187     int     r_week;     /* week number of rule */
188     int     r_mon;      /* month number of rule */
189     long        r_time;     /* transition time of rule */
190 };
191 
192 #define JULIAN_DAY      0   /* Jn - Julian day */
193 #define DAY_OF_YEAR     1   /* n - day of year */
194 #define MONTH_NTH_DAY_OF_WEEK   2   /* Mm.n.d - month, week, day of week */
195 
196 /*
197 ** Prototypes for static functions.
198 */
199 
200 /* NOTE: all internal functions assume that _tzLock() was already called */
201 
202 static int __bionic_open_tzdata(const char*, int*);
203 static long     detzcode P((const char * codep));
204 static time_t   detzcode64 P((const char * codep));
205 static int      differ_by_repeat P((time_t t1, time_t t0));
206 static const char * getzname P((const char * strp));
207 static const char * getqzname P((const char * strp, const int delim));
208 static const char * getnum P((const char * strp, int * nump, int min,
209                 int max));
210 static const char * getsecs P((const char * strp, long * secsp));
211 static const char * getoffset P((const char * strp, long * offsetp));
212 static const char * getrule P((const char * strp, struct rule * rulep));
213 static void     gmtload P((struct state * sp));
214 static struct tm *  gmtsub P((const time_t * timep, long offset,
215                 struct tm * tmp, const struct state * sp)); // android-changed: added sp.
216 static struct tm *  localsub P((const time_t * timep, long offset,
217                 struct tm * tmp, const struct state * sp)); // android-changed: added sp.
218 static int      increment_overflow P((int * number, int delta));
219 static int      leaps_thru_end_of P((int y));
220 static int      long_increment_overflow P((long * number, int delta));
221 static int      long_normalize_overflow P((long * tensptr,
222                 int * unitsptr, int base));
223 static int      normalize_overflow P((int * tensptr, int * unitsptr,
224                 int base));
225 static void     settzname P((void));
226 static time_t       time1 P((struct tm * tmp,
227                 struct tm * (*funcp) P((const time_t *,
228                 long, struct tm *, const struct state *)), // android-changed: added state*.
229                 long offset, const struct state * sp)); // android-changed: added sp.
230 static time_t       time2 P((struct tm *tmp,
231                 struct tm * (*funcp) P((const time_t *,
232                 long, struct tm*, const struct state *)), // android-changed: added state*.
233                 long offset, int * okayp, const struct state * sp)); // android-changed: added sp.
234 static time_t       time2sub P((struct tm *tmp,
235                 struct tm * (*funcp) P((const time_t *,
236                 long, struct tm*, const struct state *)), // android-changed: added state*.
237                 long offset, int * okayp, int do_norm_secs, const struct state * sp)); // android-change: added sp.
238 static struct tm *  timesub P((const time_t * timep, long offset,
239                 const struct state * sp, struct tm * tmp));
240 static int      tmcomp P((const struct tm * atmp,
241                 const struct tm * btmp));
242 static time_t       transtime P((time_t janfirst, int year,
243                 const struct rule * rulep, long offset));
244 static int      tzload P((const char * name, struct state * sp,
245                 int doextend));
246 static int      tzparse P((const char * name, struct state * sp,
247                 int lastditch));
248 
249 #ifdef ALL_STATE
250 static struct state *   lclptr;
251 static struct state *   gmtptr;
252 #endif /* defined ALL_STATE */
253 
254 #ifndef ALL_STATE
255 static struct state lclmem;
256 static struct state gmtmem;
257 #define lclptr      (&lclmem)
258 #define gmtptr      (&gmtmem)
259 #endif /* State Farm */
260 
261 #ifndef TZ_STRLEN_MAX
262 #define TZ_STRLEN_MAX 255
263 #endif /* !defined TZ_STRLEN_MAX */
264 
265 static char     lcl_TZname[TZ_STRLEN_MAX + 1];
266 static int      lcl_is_set;
267 static int      gmt_is_set;
268 
269 char *          tzname[2] = {
270     wildabbr,
271     wildabbr
272 };
273 
274 /*
275 ** Section 4.12.3 of X3.159-1989 requires that
276 **  Except for the strftime function, these functions [asctime,
277 **  ctime, gmtime, localtime] return values in one of two static
278 **  objects: a broken-down time structure and an array of char.
279 ** Thanks to Paul Eggert for noting this.
280 */
281 
282 static struct tm    tmGlobal;
283 
284 #ifdef USG_COMPAT
285 time_t          timezone = 0;
286 int         daylight = 0;
287 #endif /* defined USG_COMPAT */
288 
289 #ifdef ALTZONE
290 time_t          altzone = 0;
291 #endif /* defined ALTZONE */
292 
293 static long
detzcode(codep)294 detzcode(codep)
295 const char * const  codep;
296 {
297     register long   result;
298     register int    i;
299 
300     result = (codep[0] & 0x80) ? ~0L : 0;
301     for (i = 0; i < 4; ++i)
302         result = (result << 8) | (codep[i] & 0xff);
303     return result;
304 }
305 
306 static time_t
detzcode64(codep)307 detzcode64(codep)
308 const char * const  codep;
309 {
310     register time_t result;
311     register int    i;
312 
313     result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
314     for (i = 0; i < 8; ++i)
315         result = result * 256 + (codep[i] & 0xff);
316     return result;
317 }
318 
319 static void
settzname(void)320 settzname P((void))
321 {
322     register struct state * const   sp = lclptr;
323     register int            i;
324 
325     tzname[0] = wildabbr;
326     tzname[1] = wildabbr;
327 #ifdef USG_COMPAT
328     daylight = 0;
329     timezone = 0;
330 #endif /* defined USG_COMPAT */
331 #ifdef ALTZONE
332     altzone = 0;
333 #endif /* defined ALTZONE */
334 #ifdef ALL_STATE
335     if (sp == NULL) {
336         tzname[0] = tzname[1] = gmt;
337         return;
338     }
339 #endif /* defined ALL_STATE */
340     for (i = 0; i < sp->typecnt; ++i) {
341         register const struct ttinfo * const    ttisp = &sp->ttis[i];
342 
343         tzname[ttisp->tt_isdst] =
344             &sp->chars[ttisp->tt_abbrind];
345 #ifdef USG_COMPAT
346         if (ttisp->tt_isdst)
347             daylight = 1;
348         if (i == 0 || !ttisp->tt_isdst)
349             timezone = -(ttisp->tt_gmtoff);
350 #endif /* defined USG_COMPAT */
351 #ifdef ALTZONE
352         if (i == 0 || ttisp->tt_isdst)
353             altzone = -(ttisp->tt_gmtoff);
354 #endif /* defined ALTZONE */
355     }
356     /*
357     ** And to get the latest zone names into tzname. . .
358     */
359     for (i = 0; i < sp->timecnt; ++i) {
360         register const struct ttinfo * const    ttisp =
361                             &sp->ttis[
362                                 sp->types[i]];
363 
364         tzname[ttisp->tt_isdst] =
365             &sp->chars[ttisp->tt_abbrind];
366     }
367     /*
368     ** Finally, scrub the abbreviations.
369     ** First, replace bogus characters.
370     */
371     for (i = 0; i < sp->charcnt; ++i)
372         if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
373             sp->chars[i] = TZ_ABBR_ERR_CHAR;
374     /*
375     ** Second, truncate long abbreviations.
376     */
377     for (i = 0; i < sp->typecnt; ++i) {
378         register const struct ttinfo * const    ttisp = &sp->ttis[i];
379         register char *             cp = &sp->chars[ttisp->tt_abbrind];
380 
381         if (strlen(cp) > TZ_ABBR_MAX_LEN &&
382             strcmp(cp, GRANDPARENTED) != 0)
383                 *(cp + TZ_ABBR_MAX_LEN) = '\0';
384     }
385 }
386 
387 static int
differ_by_repeat(t1,t0)388 differ_by_repeat(t1, t0)
389 const time_t    t1;
390 const time_t    t0;
391 {
392     if (TYPE_INTEGRAL(time_t) &&
393         TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
394             return 0;
395 #if SECSPERREPEAT_BITS <= 32  /* to avoid compiler warning (condition is always false) */
396         return (t1 - t0) == SECSPERREPEAT;
397 #else
398         return 0;
399 #endif
400 }
401 
toint(unsigned char * s)402 static int toint(unsigned char *s) {
403     return (s[0] << 24) | (s[1] << 16) | (s[2] << 8) | s[3];
404 }
405 
406 static int
tzload(const char * name,struct state * const sp,const int doextend)407 tzload(const char* name, struct state* const sp, const int doextend)
408 {
409     register const char *       p;
410     register int            i;
411     register int            fid;
412     register int            stored;
413     register int            nread;
414     union {
415         struct tzhead   tzhead;
416         char        buf[2 * sizeof(struct tzhead) +
417                     2 * sizeof *sp +
418                     4 * TZ_MAX_TIMES];
419     } u;
420     int                     toread = sizeof u.buf;
421 
422         if (name == NULL && (name = TZDEFAULT) == NULL) {
423                 XLOG(("tzload: null 'name' parameter\n" ));
424                 return -1;
425         }
426     {
427         register int    doaccess;
428         /*
429         ** Section 4.9.1 of the C standard says that
430         ** "FILENAME_MAX expands to an integral constant expression
431         ** that is the size needed for an array of char large enough
432         ** to hold the longest file name string that the implementation
433         ** guarantees can be opened."
434         */
435         char        fullname[FILENAME_MAX + 1];
436         char        *origname = (char*) name;
437 
438         if (name[0] == ':')
439             ++name;
440         doaccess = name[0] == '/';
441         if (!doaccess) {
442             if ((p = TZDIR) == NULL) {
443                 XLOG(("tzload: null TZDIR macro ?\n" ));
444                 return -1;
445             }
446             if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) {
447                 XLOG(( "tzload: path too long: %s/%s\n", p, name ));
448                 return -1;
449             }
450             (void) strcpy(fullname, p);
451             (void) strcat(fullname, "/");
452             (void) strcat(fullname, name);
453             /*
454             ** Set doaccess if '.' (as in "../") shows up in name.
455             */
456             if (strchr(name, '.') != NULL)
457                 doaccess = TRUE;
458             name = fullname;
459         }
460         if (doaccess && access(name, R_OK) != 0) {
461             XLOG(( "tzload: could not find '%s'\n", name ));
462             return -1;
463         }
464         if ((fid = open(name, OPEN_MODE)) == -1) {
465             fid = __bionic_open_tzdata(origname, &toread);
466             if (fid < 0) {
467                 return -1;
468             }
469         }
470     }
471     nread = read(fid, u.buf, toread);
472         if (close(fid) < 0 || nread <= 0) {
473             XLOG(( "tzload: could not read content of '%s'\n", DATAFILE ));
474             return -1;
475         }
476     for (stored = 4; stored <= 8; stored *= 2) {
477         int     ttisstdcnt;
478         int     ttisgmtcnt;
479 
480         ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
481         ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
482         sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
483         sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
484         sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
485         sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
486         p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
487         if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
488             sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
489             sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
490             sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
491             (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
492             (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
493                 return -1;
494         if (nread - (p - u.buf) <
495             sp->timecnt * stored +      /* ats */
496             sp->timecnt +           /* types */
497             sp->typecnt * 6 +       /* ttinfos */
498             sp->charcnt +           /* chars */
499             sp->leapcnt * (stored + 4) +    /* lsinfos */
500             ttisstdcnt +            /* ttisstds */
501             ttisgmtcnt)         /* ttisgmts */
502                 return -1;
503         for (i = 0; i < sp->timecnt; ++i) {
504             sp->ats[i] = (stored == 4) ?
505                 detzcode(p) : detzcode64(p);
506             p += stored;
507         }
508         for (i = 0; i < sp->timecnt; ++i) {
509             sp->types[i] = (unsigned char) *p++;
510             if (sp->types[i] >= sp->typecnt)
511                 return -1;
512         }
513         for (i = 0; i < sp->typecnt; ++i) {
514             register struct ttinfo *    ttisp;
515 
516             ttisp = &sp->ttis[i];
517             ttisp->tt_gmtoff = detzcode(p);
518             p += 4;
519             ttisp->tt_isdst = (unsigned char) *p++;
520             if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
521                 return -1;
522             ttisp->tt_abbrind = (unsigned char) *p++;
523             if (ttisp->tt_abbrind < 0 ||
524                 ttisp->tt_abbrind > sp->charcnt)
525                     return -1;
526         }
527         for (i = 0; i < sp->charcnt; ++i)
528             sp->chars[i] = *p++;
529         sp->chars[i] = '\0';    /* ensure '\0' at end */
530         for (i = 0; i < sp->leapcnt; ++i) {
531             register struct lsinfo *    lsisp;
532 
533             lsisp = &sp->lsis[i];
534             lsisp->ls_trans = (stored == 4) ?
535                 detzcode(p) : detzcode64(p);
536             p += stored;
537             lsisp->ls_corr = detzcode(p);
538             p += 4;
539         }
540         for (i = 0; i < sp->typecnt; ++i) {
541             register struct ttinfo *    ttisp;
542 
543             ttisp = &sp->ttis[i];
544             if (ttisstdcnt == 0)
545                 ttisp->tt_ttisstd = FALSE;
546             else {
547                 ttisp->tt_ttisstd = *p++;
548                 if (ttisp->tt_ttisstd != TRUE &&
549                     ttisp->tt_ttisstd != FALSE)
550                         return -1;
551             }
552         }
553         for (i = 0; i < sp->typecnt; ++i) {
554             register struct ttinfo *    ttisp;
555 
556             ttisp = &sp->ttis[i];
557             if (ttisgmtcnt == 0)
558                 ttisp->tt_ttisgmt = FALSE;
559             else {
560                 ttisp->tt_ttisgmt = *p++;
561                 if (ttisp->tt_ttisgmt != TRUE &&
562                     ttisp->tt_ttisgmt != FALSE)
563                         return -1;
564             }
565         }
566         /*
567         ** Out-of-sort ats should mean we're running on a
568         ** signed time_t system but using a data file with
569         ** unsigned values (or vice versa).
570         */
571         for (i = 0; i < sp->timecnt - 2; ++i)
572             if (sp->ats[i] > sp->ats[i + 1]) {
573                 ++i;
574                 if (TYPE_SIGNED(time_t)) {
575                     /*
576                     ** Ignore the end (easy).
577                     */
578                     sp->timecnt = i;
579                 } else {
580                     /*
581                     ** Ignore the beginning (harder).
582                     */
583                     register int    j;
584 
585                     for (j = 0; j + i < sp->timecnt; ++j) {
586                         sp->ats[j] = sp->ats[j + i];
587                         sp->types[j] = sp->types[j + i];
588                     }
589                     sp->timecnt = j;
590                 }
591                 break;
592             }
593         /*
594         ** If this is an old file, we're done.
595         */
596         if (u.tzhead.tzh_version[0] == '\0')
597             break;
598         nread -= p - u.buf;
599         for (i = 0; i < nread; ++i)
600             u.buf[i] = p[i];
601         /*
602         ** If this is a narrow integer time_t system, we're done.
603         */
604         if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
605             break;
606     }
607     if (doextend && nread > 2 &&
608         u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
609         sp->typecnt + 2 <= TZ_MAX_TYPES) {
610             struct state    ts;
611             register int    result;
612 
613             u.buf[nread - 1] = '\0';
614             result = tzparse(&u.buf[1], &ts, FALSE);
615             if (result == 0 && ts.typecnt == 2 &&
616                 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
617                     for (i = 0; i < 2; ++i)
618                         ts.ttis[i].tt_abbrind +=
619                             sp->charcnt;
620                     for (i = 0; i < ts.charcnt; ++i)
621                         sp->chars[sp->charcnt++] =
622                             ts.chars[i];
623                     i = 0;
624                     while (i < ts.timecnt &&
625                         ts.ats[i] <=
626                         sp->ats[sp->timecnt - 1])
627                             ++i;
628                     while (i < ts.timecnt &&
629                         sp->timecnt < TZ_MAX_TIMES) {
630                         sp->ats[sp->timecnt] =
631                             ts.ats[i];
632                         sp->types[sp->timecnt] =
633                             sp->typecnt +
634                             ts.types[i];
635                         ++sp->timecnt;
636                         ++i;
637                     }
638                     sp->ttis[sp->typecnt++] = ts.ttis[0];
639                     sp->ttis[sp->typecnt++] = ts.ttis[1];
640             }
641     }
642     i = 2 * YEARSPERREPEAT;
643     sp->goback = sp->goahead = sp->timecnt > i;
644     sp->goback &= sp->types[i] == sp->types[0] &&
645         differ_by_repeat(sp->ats[i], sp->ats[0]);
646     sp->goahead &=
647         sp->types[sp->timecnt - 1] == sp->types[sp->timecnt - 1 - i] &&
648         differ_by_repeat(sp->ats[sp->timecnt - 1],
649              sp->ats[sp->timecnt - 1 - i]);
650         XLOG(( "tzload: load ok !!\n" ));
651     return 0;
652 }
653 
654 static const int    mon_lengths[2][MONSPERYEAR] = {
655     { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
656     { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
657 };
658 
659 static const int    year_lengths[2] = {
660     DAYSPERNYEAR, DAYSPERLYEAR
661 };
662 
663 /*
664 ** Given a pointer into a time zone string, scan until a character that is not
665 ** a valid character in a zone name is found. Return a pointer to that
666 ** character.
667 */
668 
669 static const char *
getzname(strp)670 getzname(strp)
671 register const char *   strp;
672 {
673     register char   c;
674 
675     while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
676         c != '+')
677             ++strp;
678     return strp;
679 }
680 
681 /*
682 ** Given a pointer into an extended time zone string, scan until the ending
683 ** delimiter of the zone name is located. Return a pointer to the delimiter.
684 **
685 ** As with getzname above, the legal character set is actually quite
686 ** restricted, with other characters producing undefined results.
687 ** We don't do any checking here; checking is done later in common-case code.
688 */
689 
690 static const char *
getqzname(register const char * strp,const int delim)691 getqzname(register const char *strp, const int delim)
692 {
693     register int    c;
694 
695     while ((c = *strp) != '\0' && c != delim)
696         ++strp;
697     return strp;
698 }
699 
700 /*
701 ** Given a pointer into a time zone string, extract a number from that string.
702 ** Check that the number is within a specified range; if it is not, return
703 ** NULL.
704 ** Otherwise, return a pointer to the first character not part of the number.
705 */
706 
707 static const char *
getnum(strp,nump,min,max)708 getnum(strp, nump, min, max)
709 register const char *   strp;
710 int * const     nump;
711 const int       min;
712 const int       max;
713 {
714     register char   c;
715     register int    num;
716 
717     if (strp == NULL || !is_digit(c = *strp))
718         return NULL;
719     num = 0;
720     do {
721         num = num * 10 + (c - '0');
722         if (num > max)
723             return NULL;    /* illegal value */
724         c = *++strp;
725     } while (is_digit(c));
726     if (num < min)
727         return NULL;        /* illegal value */
728     *nump = num;
729     return strp;
730 }
731 
732 /*
733 ** Given a pointer into a time zone string, extract a number of seconds,
734 ** in hh[:mm[:ss]] form, from the string.
735 ** If any error occurs, return NULL.
736 ** Otherwise, return a pointer to the first character not part of the number
737 ** of seconds.
738 */
739 
740 static const char *
getsecs(strp,secsp)741 getsecs(strp, secsp)
742 register const char *   strp;
743 long * const        secsp;
744 {
745     int num;
746 
747     /*
748     ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
749     ** "M10.4.6/26", which does not conform to Posix,
750     ** but which specifies the equivalent of
751     ** ``02:00 on the first Sunday on or after 23 Oct''.
752     */
753     strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
754     if (strp == NULL)
755         return NULL;
756     *secsp = num * (long) SECSPERHOUR;
757     if (*strp == ':') {
758         ++strp;
759         strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
760         if (strp == NULL)
761             return NULL;
762         *secsp += num * SECSPERMIN;
763         if (*strp == ':') {
764             ++strp;
765             /* `SECSPERMIN' allows for leap seconds. */
766             strp = getnum(strp, &num, 0, SECSPERMIN);
767             if (strp == NULL)
768                 return NULL;
769             *secsp += num;
770         }
771     }
772     return strp;
773 }
774 
775 /*
776 ** Given a pointer into a time zone string, extract an offset, in
777 ** [+-]hh[:mm[:ss]] form, from the string.
778 ** If any error occurs, return NULL.
779 ** Otherwise, return a pointer to the first character not part of the time.
780 */
781 
782 static const char *
getoffset(strp,offsetp)783 getoffset(strp, offsetp)
784 register const char *   strp;
785 long * const        offsetp;
786 {
787     register int    neg = 0;
788 
789     if (*strp == '-') {
790         neg = 1;
791         ++strp;
792     } else if (*strp == '+')
793         ++strp;
794     strp = getsecs(strp, offsetp);
795     if (strp == NULL)
796         return NULL;        /* illegal time */
797     if (neg)
798         *offsetp = -*offsetp;
799     return strp;
800 }
801 
802 /*
803 ** Given a pointer into a time zone string, extract a rule in the form
804 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
805 ** If a valid rule is not found, return NULL.
806 ** Otherwise, return a pointer to the first character not part of the rule.
807 */
808 
809 static const char *
getrule(strp,rulep)810 getrule(strp, rulep)
811 const char *            strp;
812 register struct rule * const    rulep;
813 {
814     if (*strp == 'J') {
815         /*
816         ** Julian day.
817         */
818         rulep->r_type = JULIAN_DAY;
819         ++strp;
820         strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
821     } else if (*strp == 'M') {
822         /*
823         ** Month, week, day.
824         */
825         rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
826         ++strp;
827         strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
828         if (strp == NULL)
829             return NULL;
830         if (*strp++ != '.')
831             return NULL;
832         strp = getnum(strp, &rulep->r_week, 1, 5);
833         if (strp == NULL)
834             return NULL;
835         if (*strp++ != '.')
836             return NULL;
837         strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
838     } else if (is_digit(*strp)) {
839         /*
840         ** Day of year.
841         */
842         rulep->r_type = DAY_OF_YEAR;
843         strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
844     } else  return NULL;        /* invalid format */
845     if (strp == NULL)
846         return NULL;
847     if (*strp == '/') {
848         /*
849         ** Time specified.
850         */
851         ++strp;
852         strp = getsecs(strp, &rulep->r_time);
853     } else  rulep->r_time = 2 * SECSPERHOUR;    /* default = 2:00:00 */
854     return strp;
855 }
856 
857 /*
858 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
859 ** year, a rule, and the offset from UTC at the time that rule takes effect,
860 ** calculate the Epoch-relative time that rule takes effect.
861 */
862 
863 static time_t
transtime(janfirst,year,rulep,offset)864 transtime(janfirst, year, rulep, offset)
865 const time_t                janfirst;
866 const int               year;
867 register const struct rule * const  rulep;
868 const long              offset;
869 {
870     register int    leapyear;
871     register time_t value;
872     register int    i;
873     int     d, m1, yy0, yy1, yy2, dow;
874 
875     INITIALIZE(value);
876     leapyear = isleap(year);
877     switch (rulep->r_type) {
878 
879     case JULIAN_DAY:
880         /*
881         ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
882         ** years.
883         ** In non-leap years, or if the day number is 59 or less, just
884         ** add SECSPERDAY times the day number-1 to the time of
885         ** January 1, midnight, to get the day.
886         */
887         value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
888         if (leapyear && rulep->r_day >= 60)
889             value += SECSPERDAY;
890         break;
891 
892     case DAY_OF_YEAR:
893         /*
894         ** n - day of year.
895         ** Just add SECSPERDAY times the day number to the time of
896         ** January 1, midnight, to get the day.
897         */
898         value = janfirst + rulep->r_day * SECSPERDAY;
899         break;
900 
901     case MONTH_NTH_DAY_OF_WEEK:
902         /*
903         ** Mm.n.d - nth "dth day" of month m.
904         */
905         value = janfirst;
906         for (i = 0; i < rulep->r_mon - 1; ++i)
907             value += mon_lengths[leapyear][i] * SECSPERDAY;
908 
909         /*
910         ** Use Zeller's Congruence to get day-of-week of first day of
911         ** month.
912         */
913         m1 = (rulep->r_mon + 9) % 12 + 1;
914         yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
915         yy1 = yy0 / 100;
916         yy2 = yy0 % 100;
917         dow = ((26 * m1 - 2) / 10 +
918             1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
919         if (dow < 0)
920             dow += DAYSPERWEEK;
921 
922         /*
923         ** "dow" is the day-of-week of the first day of the month. Get
924         ** the day-of-month (zero-origin) of the first "dow" day of the
925         ** month.
926         */
927         d = rulep->r_day - dow;
928         if (d < 0)
929             d += DAYSPERWEEK;
930         for (i = 1; i < rulep->r_week; ++i) {
931             if (d + DAYSPERWEEK >=
932                 mon_lengths[leapyear][rulep->r_mon - 1])
933                     break;
934             d += DAYSPERWEEK;
935         }
936 
937         /*
938         ** "d" is the day-of-month (zero-origin) of the day we want.
939         */
940         value += d * SECSPERDAY;
941         break;
942     }
943 
944     /*
945     ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
946     ** question. To get the Epoch-relative time of the specified local
947     ** time on that day, add the transition time and the current offset
948     ** from UTC.
949     */
950     return value + rulep->r_time + offset;
951 }
952 
953 /*
954 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
955 ** appropriate.
956 */
957 
958 static int
tzparse(name,sp,lastditch)959 tzparse(name, sp, lastditch)
960 const char *            name;
961 register struct state * const   sp;
962 const int           lastditch;
963 {
964     const char *            stdname;
965     const char *            dstname;
966     size_t              stdlen;
967     size_t              dstlen;
968     long                stdoffset;
969     long                dstoffset;
970     register time_t *       atp;
971     register unsigned char *    typep;
972     register char *         cp;
973     register int            load_result;
974 
975     INITIALIZE(dstname);
976     stdname = name;
977     if (lastditch) {
978         stdlen = strlen(name);  /* length of standard zone name */
979         name += stdlen;
980         if (stdlen >= sizeof sp->chars)
981             stdlen = (sizeof sp->chars) - 1;
982         stdoffset = 0;
983     } else {
984         if (*name == '<') {
985             name++;
986             stdname = name;
987             name = getqzname(name, '>');
988             if (*name != '>')
989                 return (-1);
990             stdlen = name - stdname;
991             name++;
992         } else {
993             name = getzname(name);
994             stdlen = name - stdname;
995         }
996         if (*name == '\0')
997             return -1;
998         name = getoffset(name, &stdoffset);
999         if (name == NULL)
1000             return -1;
1001     }
1002     load_result = tzload(TZDEFRULES, sp, FALSE);
1003     if (load_result != 0)
1004         sp->leapcnt = 0;        /* so, we're off a little */
1005     sp->timecnt = 0;
1006     if (*name != '\0') {
1007         if (*name == '<') {
1008             dstname = ++name;
1009             name = getqzname(name, '>');
1010             if (*name != '>')
1011                 return -1;
1012             dstlen = name - dstname;
1013             name++;
1014         } else {
1015             dstname = name;
1016             name = getzname(name);
1017             dstlen = name - dstname; /* length of DST zone name */
1018         }
1019         if (*name != '\0' && *name != ',' && *name != ';') {
1020             name = getoffset(name, &dstoffset);
1021             if (name == NULL)
1022                 return -1;
1023         } else  dstoffset = stdoffset - SECSPERHOUR;
1024         if (*name == '\0' && load_result != 0)
1025             name = TZDEFRULESTRING;
1026         if (*name == ',' || *name == ';') {
1027             struct rule start;
1028             struct rule end;
1029             register int    year;
1030             register time_t janfirst;
1031             time_t      starttime;
1032             time_t      endtime;
1033 
1034             ++name;
1035             if ((name = getrule(name, &start)) == NULL)
1036                 return -1;
1037             if (*name++ != ',')
1038                 return -1;
1039             if ((name = getrule(name, &end)) == NULL)
1040                 return -1;
1041             if (*name != '\0')
1042                 return -1;
1043             sp->typecnt = 2;    /* standard time and DST */
1044             /*
1045             ** Two transitions per year, from EPOCH_YEAR forward.
1046             */
1047             sp->ttis[0].tt_gmtoff = -dstoffset;
1048             sp->ttis[0].tt_isdst = 1;
1049             sp->ttis[0].tt_abbrind = stdlen + 1;
1050             sp->ttis[1].tt_gmtoff = -stdoffset;
1051             sp->ttis[1].tt_isdst = 0;
1052             sp->ttis[1].tt_abbrind = 0;
1053             atp = sp->ats;
1054             typep = sp->types;
1055             janfirst = 0;
1056             for (year = EPOCH_YEAR;
1057                 sp->timecnt + 2 <= TZ_MAX_TIMES;
1058                 ++year) {
1059                     time_t  newfirst;
1060 
1061                 starttime = transtime(janfirst, year, &start,
1062                     stdoffset);
1063                 endtime = transtime(janfirst, year, &end,
1064                     dstoffset);
1065                 if (starttime > endtime) {
1066                     *atp++ = endtime;
1067                     *typep++ = 1;   /* DST ends */
1068                     *atp++ = starttime;
1069                     *typep++ = 0;   /* DST begins */
1070                 } else {
1071                     *atp++ = starttime;
1072                     *typep++ = 0;   /* DST begins */
1073                     *atp++ = endtime;
1074                     *typep++ = 1;   /* DST ends */
1075                 }
1076                 sp->timecnt += 2;
1077                 newfirst = janfirst;
1078                 newfirst += year_lengths[isleap(year)] *
1079                     SECSPERDAY;
1080                 if (newfirst <= janfirst)
1081                     break;
1082                 janfirst = newfirst;
1083             }
1084         } else {
1085             register long   theirstdoffset;
1086             register long   theirdstoffset;
1087             register long   theiroffset;
1088             register int    isdst;
1089             register int    i;
1090             register int    j;
1091 
1092             if (*name != '\0')
1093                 return -1;
1094             /*
1095             ** Initial values of theirstdoffset and theirdstoffset.
1096             */
1097             theirstdoffset = 0;
1098             for (i = 0; i < sp->timecnt; ++i) {
1099                 j = sp->types[i];
1100                 if (!sp->ttis[j].tt_isdst) {
1101                     theirstdoffset =
1102                         -sp->ttis[j].tt_gmtoff;
1103                     break;
1104                 }
1105             }
1106             theirdstoffset = 0;
1107             for (i = 0; i < sp->timecnt; ++i) {
1108                 j = sp->types[i];
1109                 if (sp->ttis[j].tt_isdst) {
1110                     theirdstoffset =
1111                         -sp->ttis[j].tt_gmtoff;
1112                     break;
1113                 }
1114             }
1115             /*
1116             ** Initially we're assumed to be in standard time.
1117             */
1118             isdst = FALSE;
1119             theiroffset = theirstdoffset;
1120             /*
1121             ** Now juggle transition times and types
1122             ** tracking offsets as you do.
1123             */
1124             for (i = 0; i < sp->timecnt; ++i) {
1125                 j = sp->types[i];
1126                 sp->types[i] = sp->ttis[j].tt_isdst;
1127                 if (sp->ttis[j].tt_ttisgmt) {
1128                     /* No adjustment to transition time */
1129                 } else {
1130                     /*
1131                     ** If summer time is in effect, and the
1132                     ** transition time was not specified as
1133                     ** standard time, add the summer time
1134                     ** offset to the transition time;
1135                     ** otherwise, add the standard time
1136                     ** offset to the transition time.
1137                     */
1138                     /*
1139                     ** Transitions from DST to DDST
1140                     ** will effectively disappear since
1141                     ** POSIX provides for only one DST
1142                     ** offset.
1143                     */
1144                     if (isdst && !sp->ttis[j].tt_ttisstd) {
1145                         sp->ats[i] += dstoffset -
1146                             theirdstoffset;
1147                     } else {
1148                         sp->ats[i] += stdoffset -
1149                             theirstdoffset;
1150                     }
1151                 }
1152                 theiroffset = -sp->ttis[j].tt_gmtoff;
1153                 if (sp->ttis[j].tt_isdst)
1154                     theirdstoffset = theiroffset;
1155                 else    theirstdoffset = theiroffset;
1156             }
1157             /*
1158             ** Finally, fill in ttis.
1159             ** ttisstd and ttisgmt need not be handled.
1160             */
1161             sp->ttis[0].tt_gmtoff = -stdoffset;
1162             sp->ttis[0].tt_isdst = FALSE;
1163             sp->ttis[0].tt_abbrind = 0;
1164             sp->ttis[1].tt_gmtoff = -dstoffset;
1165             sp->ttis[1].tt_isdst = TRUE;
1166             sp->ttis[1].tt_abbrind = stdlen + 1;
1167             sp->typecnt = 2;
1168         }
1169     } else {
1170         dstlen = 0;
1171         sp->typecnt = 1;        /* only standard time */
1172         sp->timecnt = 0;
1173         sp->ttis[0].tt_gmtoff = -stdoffset;
1174         sp->ttis[0].tt_isdst = 0;
1175         sp->ttis[0].tt_abbrind = 0;
1176     }
1177     sp->charcnt = stdlen + 1;
1178     if (dstlen != 0)
1179         sp->charcnt += dstlen + 1;
1180     if ((size_t) sp->charcnt > sizeof sp->chars)
1181         return -1;
1182     cp = sp->chars;
1183     (void) strncpy(cp, stdname, stdlen);
1184     cp += stdlen;
1185     *cp++ = '\0';
1186     if (dstlen != 0) {
1187         (void) strncpy(cp, dstname, dstlen);
1188         *(cp + dstlen) = '\0';
1189     }
1190     return 0;
1191 }
1192 
1193 static void
gmtload(sp)1194 gmtload(sp)
1195 struct state * const    sp;
1196 {
1197     if (tzload(gmt, sp, TRUE) != 0)
1198         (void) tzparse(gmt, sp, TRUE);
1199 }
1200 
1201 static void
tzsetwall(void)1202 tzsetwall P((void))
1203 {
1204     if (lcl_is_set < 0)
1205         return;
1206     lcl_is_set = -1;
1207 
1208 #ifdef ALL_STATE
1209     if (lclptr == NULL) {
1210         lclptr = (struct state *) malloc(sizeof *lclptr);
1211         if (lclptr == NULL) {
1212             settzname();    /* all we can do */
1213             return;
1214         }
1215     }
1216 #endif /* defined ALL_STATE */
1217     if (tzload((char *) NULL, lclptr, TRUE) != 0)
1218         gmtload(lclptr);
1219     settzname();
1220 }
1221 
1222 static void
tzset_locked(void)1223 tzset_locked P((void))
1224 {
1225     register const char *   name = NULL;
1226     static char buf[PROP_VALUE_MAX];
1227 
1228     name = getenv("TZ");
1229 
1230     // try the "persist.sys.timezone" system property first
1231     if (name == NULL && __system_property_get("persist.sys.timezone", buf) > 0)
1232         name = buf;
1233 
1234     if (name == NULL) {
1235         tzsetwall();
1236         return;
1237     }
1238 
1239     if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1240         return;
1241     lcl_is_set = strlen(name) < sizeof lcl_TZname;
1242     if (lcl_is_set)
1243         (void) strcpy(lcl_TZname, name);
1244 
1245 #ifdef ALL_STATE
1246     if (lclptr == NULL) {
1247         lclptr = (struct state *) malloc(sizeof *lclptr);
1248         if (lclptr == NULL) {
1249             settzname();    /* all we can do */
1250             return;
1251         }
1252     }
1253 #endif /* defined ALL_STATE */
1254     if (*name == '\0') {
1255         /*
1256         ** User wants it fast rather than right.
1257         */
1258         lclptr->leapcnt = 0;        /* so, we're off a little */
1259         lclptr->timecnt = 0;
1260         lclptr->typecnt = 0;
1261         lclptr->ttis[0].tt_isdst = 0;
1262         lclptr->ttis[0].tt_gmtoff = 0;
1263         lclptr->ttis[0].tt_abbrind = 0;
1264         (void) strcpy(lclptr->chars, gmt);
1265     } else if (tzload(name, lclptr, TRUE) != 0)
1266         if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1267             (void) gmtload(lclptr);
1268     settzname();
1269 }
1270 
1271 void
tzset(void)1272 tzset P((void))
1273 {
1274     _tzLock();
1275     tzset_locked();
1276     _tzUnlock();
1277 }
1278 
1279 /*
1280 ** The easy way to behave "as if no library function calls" localtime
1281 ** is to not call it--so we drop its guts into "localsub", which can be
1282 ** freely called. (And no, the PANS doesn't require the above behavior--
1283 ** but it *is* desirable.)
1284 **
1285 ** The unused offset argument is for the benefit of mktime variants.
1286 */
1287 
1288 /*ARGSUSED*/
1289 static struct tm *
localsub(timep,offset,tmp,sp)1290 localsub(timep, offset, tmp, sp) // android-changed: added sp.
1291 const time_t * const    timep;
1292 const long      offset;
1293 struct tm * const   tmp;
1294 const struct state * sp; // android-added: added sp.
1295 {
1296     register const struct ttinfo *  ttisp;
1297     register int            i;
1298     register struct tm *        result;
1299     const time_t            t = *timep;
1300 
1301     // BEGIN android-changed: support user-supplied sp.
1302     if (sp == NULL) {
1303         sp = lclptr;
1304     }
1305     // END android-changed
1306 #ifdef ALL_STATE
1307     if (sp == NULL)
1308         return gmtsub(timep, offset, tmp, sp); // android-changed: added sp.
1309 #endif /* defined ALL_STATE */
1310     if ((sp->goback && t < sp->ats[0]) ||
1311         (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1312             time_t          newt = t;
1313             register time_t     seconds;
1314             register time_t     tcycles;
1315             register int_fast64_t   icycles;
1316 
1317             if (t < sp->ats[0])
1318                 seconds = sp->ats[0] - t;
1319             else    seconds = t - sp->ats[sp->timecnt - 1];
1320             --seconds;
1321             tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1322             ++tcycles;
1323             icycles = tcycles;
1324             if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1325                 return NULL;
1326             seconds = icycles;
1327             seconds *= YEARSPERREPEAT;
1328             seconds *= AVGSECSPERYEAR;
1329             if (t < sp->ats[0])
1330                 newt += seconds;
1331             else    newt -= seconds;
1332             if (newt < sp->ats[0] ||
1333                 newt > sp->ats[sp->timecnt - 1])
1334                     return NULL;    /* "cannot happen" */
1335             result = localsub(&newt, offset, tmp, sp); // android-changed: added sp.
1336             if (result == tmp) {
1337                 register time_t newy;
1338 
1339                 newy = tmp->tm_year;
1340                 if (t < sp->ats[0])
1341                     newy -= icycles * YEARSPERREPEAT;
1342                 else    newy += icycles * YEARSPERREPEAT;
1343                 tmp->tm_year = newy;
1344                 if (tmp->tm_year != newy)
1345                     return NULL;
1346             }
1347             return result;
1348     }
1349     if (sp->timecnt == 0 || t < sp->ats[0]) {
1350         i = 0;
1351         while (sp->ttis[i].tt_isdst)
1352             if (++i >= sp->typecnt) {
1353                 i = 0;
1354                 break;
1355             }
1356     } else {
1357         register int    lo = 1;
1358         register int    hi = sp->timecnt;
1359 
1360         while (lo < hi) {
1361             register int    mid = (lo + hi) >> 1;
1362 
1363             if (t < sp->ats[mid])
1364                 hi = mid;
1365             else    lo = mid + 1;
1366         }
1367         i = (int) sp->types[lo - 1];
1368     }
1369     ttisp = &sp->ttis[i];
1370     /*
1371     ** To get (wrong) behavior that's compatible with System V Release 2.0
1372     ** you'd replace the statement below with
1373     **  t += ttisp->tt_gmtoff;
1374     **  timesub(&t, 0L, sp, tmp);
1375     */
1376     result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1377     tmp->tm_isdst = ttisp->tt_isdst;
1378     tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1379 #ifdef TM_ZONE
1380     tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1381 #endif /* defined TM_ZONE */
1382     return result;
1383 }
1384 
1385 struct tm *
localtime(timep)1386 localtime(timep)
1387 const time_t * const    timep;
1388 {
1389     return localtime_r(timep, &tmGlobal);
1390 }
1391 
1392 /*
1393 ** Re-entrant version of localtime.
1394 */
1395 
1396 struct tm *
localtime_r(timep,tmp)1397 localtime_r(timep, tmp)
1398 const time_t * const    timep;
1399 struct tm *     tmp;
1400 {
1401     struct tm*  result;
1402 
1403     _tzLock();
1404     tzset_locked();
1405     result = localsub(timep, 0L, tmp, NULL); // android-changed: extra parameter.
1406     _tzUnlock();
1407 
1408     return result;
1409 }
1410 
1411 /*
1412 ** gmtsub is to gmtime as localsub is to localtime.
1413 */
1414 
1415 static struct tm *
gmtsub(timep,offset,tmp,sp)1416 gmtsub(timep, offset, tmp, sp) // android-changed: added sp.
1417 const time_t * const    timep;
1418 const long      offset;
1419 struct tm * const   tmp;
1420 const struct state * sp; // android-changed: added sp.
1421 {
1422     register struct tm *    result;
1423 
1424     (void) sp; // android-added: unused.
1425 
1426     if (!gmt_is_set) {
1427         gmt_is_set = TRUE;
1428 #ifdef ALL_STATE
1429         gmtptr = (struct state *) malloc(sizeof *gmtptr);
1430         if (gmtptr != NULL)
1431 #endif /* defined ALL_STATE */
1432             gmtload(gmtptr);
1433     }
1434     result = timesub(timep, offset, gmtptr, tmp);
1435 #ifdef TM_ZONE
1436     /*
1437     ** Could get fancy here and deliver something such as
1438     ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1439     ** but this is no time for a treasure hunt.
1440     */
1441     if (offset != 0)
1442         tmp->TM_ZONE = wildabbr;
1443     else {
1444 #ifdef ALL_STATE
1445         if (gmtptr == NULL)
1446             tmp->TM_ZONE = gmt;
1447         else    tmp->TM_ZONE = gmtptr->chars;
1448 #endif /* defined ALL_STATE */
1449 #ifndef ALL_STATE
1450         tmp->TM_ZONE = gmtptr->chars;
1451 #endif /* State Farm */
1452     }
1453 #endif /* defined TM_ZONE */
1454     return result;
1455 }
1456 
1457 struct tm *
gmtime(timep)1458 gmtime(timep)
1459 const time_t * const    timep;
1460 {
1461     return gmtime_r(timep, &tmGlobal);
1462 }
1463 
1464 /*
1465 * Re-entrant version of gmtime.
1466 */
1467 
1468 struct tm *
gmtime_r(timep,tmp)1469 gmtime_r(timep, tmp)
1470 const time_t * const    timep;
1471 struct tm *     tmp;
1472 {
1473     struct tm*  result;
1474 
1475     _tzLock();
1476     result = gmtsub(timep, 0L, tmp, NULL); // android-changed: extra parameter.
1477     _tzUnlock();
1478 
1479     return result;
1480 }
1481 
1482 #ifdef STD_INSPIRED
1483 #if 0 /* disabled because there is no good documentation for this function */
1484 struct tm *
1485 offtime(timep, offset)
1486 const time_t * const    timep;
1487 const long      offset;
1488 {
1489     return gmtsub(timep, offset, &tmGlobal, NULL); // android-changed: extra parameter.
1490 }
1491 #endif /* 0 */
1492 #endif /* defined STD_INSPIRED */
1493 
1494 /*
1495 ** Return the number of leap years through the end of the given year
1496 ** where, to make the math easy, the answer for year zero is defined as zero.
1497 */
1498 
1499 static int
leaps_thru_end_of(y)1500 leaps_thru_end_of(y)
1501 register const int  y;
1502 {
1503     return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1504         -(leaps_thru_end_of(-(y + 1)) + 1);
1505 }
1506 
1507 static struct tm *
timesub(timep,offset,sp,tmp)1508 timesub(timep, offset, sp, tmp)
1509 const time_t * const            timep;
1510 const long              offset;
1511 register const struct state * const sp;
1512 register struct tm * const      tmp;
1513 {
1514     register const struct lsinfo *  lp;
1515     register time_t         tdays;
1516     register int            idays;  /* unsigned would be so 2003 */
1517     register long           rem;
1518     int             y;
1519     register const int *        ip;
1520     register long           corr;
1521     register int            hit;
1522     register int            i;
1523 
1524     corr = 0;
1525     hit = 0;
1526 #ifdef ALL_STATE
1527     i = (sp == NULL) ? 0 : sp->leapcnt;
1528 #endif /* defined ALL_STATE */
1529 #ifndef ALL_STATE
1530     i = sp->leapcnt;
1531 #endif /* State Farm */
1532     while (--i >= 0) {
1533         lp = &sp->lsis[i];
1534         if (*timep >= lp->ls_trans) {
1535             if (*timep == lp->ls_trans) {
1536                 hit = ((i == 0 && lp->ls_corr > 0) ||
1537                     lp->ls_corr > sp->lsis[i - 1].ls_corr);
1538                 if (hit)
1539                     while (i > 0 &&
1540                         sp->lsis[i].ls_trans ==
1541                         sp->lsis[i - 1].ls_trans + 1 &&
1542                         sp->lsis[i].ls_corr ==
1543                         sp->lsis[i - 1].ls_corr + 1) {
1544                             ++hit;
1545                             --i;
1546                     }
1547             }
1548             corr = lp->ls_corr;
1549             break;
1550         }
1551     }
1552     y = EPOCH_YEAR;
1553     tdays = *timep / SECSPERDAY;
1554     rem = *timep - tdays * SECSPERDAY;
1555     while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1556         int     newy;
1557         register time_t tdelta;
1558         register int    idelta;
1559         register int    leapdays;
1560 
1561         tdelta = tdays / DAYSPERLYEAR;
1562         idelta = tdelta;
1563         if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1564             return NULL;
1565         if (idelta == 0)
1566             idelta = (tdays < 0) ? -1 : 1;
1567         newy = y;
1568         if (increment_overflow(&newy, idelta))
1569             return NULL;
1570         leapdays = leaps_thru_end_of(newy - 1) -
1571             leaps_thru_end_of(y - 1);
1572         tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1573         tdays -= leapdays;
1574         y = newy;
1575     }
1576     {
1577         register long   seconds;
1578 
1579         seconds = tdays * SECSPERDAY + 0.5;
1580         tdays = seconds / SECSPERDAY;
1581         rem += seconds - tdays * SECSPERDAY;
1582     }
1583     /*
1584     ** Given the range, we can now fearlessly cast...
1585     */
1586     idays = tdays;
1587     rem += offset - corr;
1588     while (rem < 0) {
1589         rem += SECSPERDAY;
1590         --idays;
1591     }
1592     while (rem >= SECSPERDAY) {
1593         rem -= SECSPERDAY;
1594         ++idays;
1595     }
1596     while (idays < 0) {
1597         if (increment_overflow(&y, -1))
1598             return NULL;
1599         idays += year_lengths[isleap(y)];
1600     }
1601     while (idays >= year_lengths[isleap(y)]) {
1602         idays -= year_lengths[isleap(y)];
1603         if (increment_overflow(&y, 1))
1604             return NULL;
1605     }
1606     tmp->tm_year = y;
1607     if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1608         return NULL;
1609     tmp->tm_yday = idays;
1610     /*
1611     ** The "extra" mods below avoid overflow problems.
1612     */
1613     tmp->tm_wday = EPOCH_WDAY +
1614         ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1615         (DAYSPERNYEAR % DAYSPERWEEK) +
1616         leaps_thru_end_of(y - 1) -
1617         leaps_thru_end_of(EPOCH_YEAR - 1) +
1618         idays;
1619     tmp->tm_wday %= DAYSPERWEEK;
1620     if (tmp->tm_wday < 0)
1621         tmp->tm_wday += DAYSPERWEEK;
1622     tmp->tm_hour = (int) (rem / SECSPERHOUR);
1623     rem %= SECSPERHOUR;
1624     tmp->tm_min = (int) (rem / SECSPERMIN);
1625     /*
1626     ** A positive leap second requires a special
1627     ** representation. This uses "... ??:59:60" et seq.
1628     */
1629     tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1630     ip = mon_lengths[isleap(y)];
1631     for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1632         idays -= ip[tmp->tm_mon];
1633     tmp->tm_mday = (int) (idays + 1);
1634     tmp->tm_isdst = 0;
1635 #ifdef TM_GMTOFF
1636     tmp->TM_GMTOFF = offset;
1637 #endif /* defined TM_GMTOFF */
1638     return tmp;
1639 }
1640 
1641 char *
ctime(timep)1642 ctime(timep)
1643 const time_t * const    timep;
1644 {
1645 /*
1646 ** Section 4.12.3.2 of X3.159-1989 requires that
1647 **  The ctime function converts the calendar time pointed to by timer
1648 **  to local time in the form of a string. It is equivalent to
1649 **      asctime(localtime(timer))
1650 */
1651     return asctime(localtime(timep));
1652 }
1653 
1654 char *
ctime_r(timep,buf)1655 ctime_r(timep, buf)
1656 const time_t * const    timep;
1657 char *          buf;
1658 {
1659     struct tm   mytm;
1660 
1661     return asctime_r(localtime_r(timep, &mytm), buf);
1662 }
1663 
1664 /*
1665 ** Adapted from code provided by Robert Elz, who writes:
1666 **  The "best" way to do mktime I think is based on an idea of Bob
1667 **  Kridle's (so its said...) from a long time ago.
1668 **  It does a binary search of the time_t space. Since time_t's are
1669 **  just 32 bits, its a max of 32 iterations (even at 64 bits it
1670 **  would still be very reasonable).
1671 */
1672 
1673 #ifndef WRONG
1674 #define WRONG   (-1)
1675 #endif /* !defined WRONG */
1676 
1677 /*
1678 ** Simplified normalize logic courtesy Paul Eggert.
1679 */
1680 
1681 static int
increment_overflow(number,delta)1682 increment_overflow(number, delta)
1683 int *   number;
1684 int delta;
1685 {
1686     unsigned  number0 = (unsigned)*number;
1687     unsigned  number1 = (unsigned)(number0 + delta);
1688 
1689     *number = (int)number1;
1690 
1691     if (delta >= 0) {
1692         return ((int)number1 < (int)number0);
1693     } else {
1694         return ((int)number1 > (int)number0);
1695     }
1696 }
1697 
1698 static int
long_increment_overflow(number,delta)1699 long_increment_overflow(number, delta)
1700 long *  number;
1701 int delta;
1702 {
1703     unsigned long  number0 = (unsigned long)*number;
1704     unsigned long  number1 = (unsigned long)(number0 + delta);
1705 
1706     *number = (long)number1;
1707 
1708     if (delta >= 0) {
1709         return ((long)number1 < (long)number0);
1710     } else {
1711         return ((long)number1 > (long)number0);
1712     }
1713 }
1714 
1715 static int
normalize_overflow(tensptr,unitsptr,base)1716 normalize_overflow(tensptr, unitsptr, base)
1717 int * const tensptr;
1718 int * const unitsptr;
1719 const int   base;
1720 {
1721     register int    tensdelta;
1722 
1723     tensdelta = (*unitsptr >= 0) ?
1724         (*unitsptr / base) :
1725         (-1 - (-1 - *unitsptr) / base);
1726     *unitsptr -= tensdelta * base;
1727     return increment_overflow(tensptr, tensdelta);
1728 }
1729 
1730 static int
long_normalize_overflow(tensptr,unitsptr,base)1731 long_normalize_overflow(tensptr, unitsptr, base)
1732 long * const    tensptr;
1733 int * const unitsptr;
1734 const int   base;
1735 {
1736     register int    tensdelta;
1737 
1738     tensdelta = (*unitsptr >= 0) ?
1739         (*unitsptr / base) :
1740         (-1 - (-1 - *unitsptr) / base);
1741     *unitsptr -= tensdelta * base;
1742     return long_increment_overflow(tensptr, tensdelta);
1743 }
1744 
1745 static int
tmcomp(atmp,btmp)1746 tmcomp(atmp, btmp)
1747 register const struct tm * const atmp;
1748 register const struct tm * const btmp;
1749 {
1750     register int    result;
1751 
1752     if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1753         (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1754         (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1755         (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1756         (result = (atmp->tm_min - btmp->tm_min)) == 0)
1757             result = atmp->tm_sec - btmp->tm_sec;
1758     return result;
1759 }
1760 
1761 static time_t
time2sub(tmp,funcp,offset,okayp,do_norm_secs,sp)1762 time2sub(tmp, funcp, offset, okayp, do_norm_secs, sp) // android-changed: added sp
1763 struct tm * const   tmp;
1764 struct tm * (* const    funcp) P((const time_t*, long, struct tm*, const struct state*)); // android-changed: added state*
1765 const long      offset;
1766 int * const     okayp;
1767 const int       do_norm_secs;
1768 const struct state * sp; // android-changed: added sp
1769 {
1770     register int            dir;
1771     register int            i, j;
1772     register int            saved_seconds;
1773     register long           li;
1774     register time_t         lo;
1775     register time_t         hi;
1776     long                y;
1777     time_t              newt;
1778     time_t              t;
1779     struct tm           yourtm, mytm;
1780 
1781     *okayp = FALSE;
1782     yourtm = *tmp;
1783     if (do_norm_secs) {
1784         if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1785             SECSPERMIN))
1786                 return WRONG;
1787     }
1788     if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1789         return WRONG;
1790     if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1791         return WRONG;
1792     y = yourtm.tm_year;
1793     if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1794         return WRONG;
1795     /*
1796     ** Turn y into an actual year number for now.
1797     ** It is converted back to an offset from TM_YEAR_BASE later.
1798     */
1799     if (long_increment_overflow(&y, TM_YEAR_BASE))
1800         return WRONG;
1801     while (yourtm.tm_mday <= 0) {
1802         if (long_increment_overflow(&y, -1))
1803             return WRONG;
1804         li = y + (1 < yourtm.tm_mon);
1805         yourtm.tm_mday += year_lengths[isleap(li)];
1806     }
1807     while (yourtm.tm_mday > DAYSPERLYEAR) {
1808         li = y + (1 < yourtm.tm_mon);
1809         yourtm.tm_mday -= year_lengths[isleap(li)];
1810         if (long_increment_overflow(&y, 1))
1811             return WRONG;
1812     }
1813     for ( ; ; ) {
1814         i = mon_lengths[isleap(y)][yourtm.tm_mon];
1815         if (yourtm.tm_mday <= i)
1816             break;
1817         yourtm.tm_mday -= i;
1818         if (++yourtm.tm_mon >= MONSPERYEAR) {
1819             yourtm.tm_mon = 0;
1820             if (long_increment_overflow(&y, 1))
1821                 return WRONG;
1822         }
1823     }
1824     if (long_increment_overflow(&y, -TM_YEAR_BASE))
1825         return WRONG;
1826     yourtm.tm_year = y;
1827     if (yourtm.tm_year != y)
1828         return WRONG;
1829     if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1830         saved_seconds = 0;
1831     else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1832         /*
1833         ** We can't set tm_sec to 0, because that might push the
1834         ** time below the minimum representable time.
1835         ** Set tm_sec to 59 instead.
1836         ** This assumes that the minimum representable time is
1837         ** not in the same minute that a leap second was deleted from,
1838         ** which is a safer assumption than using 58 would be.
1839         */
1840         if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1841             return WRONG;
1842         saved_seconds = yourtm.tm_sec;
1843         yourtm.tm_sec = SECSPERMIN - 1;
1844     } else {
1845         saved_seconds = yourtm.tm_sec;
1846         yourtm.tm_sec = 0;
1847     }
1848     /*
1849     ** Do a binary search (this works whatever time_t's type is).
1850     */
1851     if (!TYPE_SIGNED(time_t)) {
1852         lo = 0;
1853         hi = lo - 1;
1854     } else if (!TYPE_INTEGRAL(time_t)) {
1855         if (sizeof(time_t) > sizeof(float))
1856             hi = (time_t) DBL_MAX;
1857         else    hi = (time_t) FLT_MAX;
1858         lo = -hi;
1859     } else {
1860         lo = 1;
1861         for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1862             lo *= 2;
1863         hi = -(lo + 1);
1864     }
1865     for ( ; ; ) {
1866         t = lo / 2 + hi / 2;
1867         if (t < lo)
1868             t = lo;
1869         else if (t > hi)
1870             t = hi;
1871         if ((*funcp)(&t, offset, &mytm, sp) == NULL) { // android-changed: added sp.
1872             /*
1873             ** Assume that t is too extreme to be represented in
1874             ** a struct tm; arrange things so that it is less
1875             ** extreme on the next pass.
1876             */
1877             dir = (t > 0) ? 1 : -1;
1878         } else  dir = tmcomp(&mytm, &yourtm);
1879         if (dir != 0) {
1880             if (t == lo) {
1881                 if (t == TIME_T_MAX)
1882                     return WRONG;
1883                 ++t;
1884                 ++lo;
1885             } else if (t == hi) {
1886                 if (t == TIME_T_MIN)
1887                     return WRONG;
1888                 --t;
1889                 --hi;
1890             }
1891             if (lo > hi)
1892                 return WRONG;
1893             if (dir > 0)
1894                 hi = t;
1895             else    lo = t;
1896             continue;
1897         }
1898         if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1899             break;
1900         /*
1901         ** Right time, wrong type.
1902         ** Hunt for right time, right type.
1903         ** It's okay to guess wrong since the guess
1904         ** gets checked.
1905         */
1906         /*
1907         ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1908         */
1909         // BEGIN android-changed: support user-supplied sp
1910         if (sp == NULL) {
1911             sp = (const struct state *)
1912                 (((void *) funcp == (void *) localsub) ?
1913                 lclptr : gmtptr);
1914         }
1915         // END android-changed
1916 #ifdef ALL_STATE
1917         if (sp == NULL)
1918             return WRONG;
1919 #endif /* defined ALL_STATE */
1920         for (i = sp->typecnt - 1; i >= 0; --i) {
1921             if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1922                 continue;
1923             for (j = sp->typecnt - 1; j >= 0; --j) {
1924                 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1925                     continue;
1926                 newt = t + sp->ttis[j].tt_gmtoff -
1927                     sp->ttis[i].tt_gmtoff;
1928                 if ((*funcp)(&newt, offset, &mytm, sp) == NULL) // android-changed: added sp.
1929                     continue;
1930                 if (tmcomp(&mytm, &yourtm) != 0)
1931                     continue;
1932                 if (mytm.tm_isdst != yourtm.tm_isdst)
1933                     continue;
1934                 /*
1935                 ** We have a match.
1936                 */
1937                 t = newt;
1938                 goto label;
1939             }
1940         }
1941         return WRONG;
1942     }
1943 label:
1944     newt = t + saved_seconds;
1945     if ((newt < t) != (saved_seconds < 0))
1946         return WRONG;
1947     t = newt;
1948     if ((*funcp)(&t, offset, tmp, sp)) // android-changed: added sp.
1949         *okayp = TRUE;
1950     return t;
1951 }
1952 
1953 // BEGIN android-changed: added sp.
1954 static time_t
time2(tmp,funcp,offset,okayp,sp)1955 time2(tmp, funcp, offset, okayp, sp)
1956 struct tm * const   tmp;
1957 struct tm * (* const    funcp) P((const time_t*, long, struct tm*, const struct state*));
1958 const long      offset;
1959 int * const     okayp;
1960 const struct state * sp;
1961 {
1962     time_t  t;
1963 
1964     /*
1965     ** First try without normalization of seconds
1966     ** (in case tm_sec contains a value associated with a leap second).
1967     ** If that fails, try with normalization of seconds.
1968     */
1969     t = time2sub(tmp, funcp, offset, okayp, FALSE, sp);
1970     return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE, sp);
1971 }
1972 // END android-changed
1973 
1974 static time_t
time1(tmp,funcp,offset,sp)1975 time1(tmp, funcp, offset, sp) // android-changed: added sp.
1976 struct tm * const   tmp;
1977 struct tm * (* const    funcp) P((const time_t *, long, struct tm *, const struct state *));
1978 const long      offset;
1979 const struct state * sp; // android-changed: added sp.
1980 {
1981     register time_t         t;
1982     register int            samei, otheri;
1983     register int            sameind, otherind;
1984     register int            i;
1985     register int            nseen;
1986     int             seen[TZ_MAX_TYPES];
1987     int             types[TZ_MAX_TYPES];
1988     int             okay;
1989 
1990     if (tmp->tm_isdst > 1)
1991         tmp->tm_isdst = 1;
1992     t = time2(tmp, funcp, offset, &okay, sp); // android-changed: added sp.
1993 #ifdef PCTS
1994     /*
1995     ** PCTS code courtesy Grant Sullivan.
1996     */
1997     if (okay)
1998         return t;
1999     if (tmp->tm_isdst < 0)
2000         tmp->tm_isdst = 0;  /* reset to std and try again */
2001 #endif /* defined PCTS */
2002 #ifndef PCTS
2003     if (okay || tmp->tm_isdst < 0)
2004         return t;
2005 #endif /* !defined PCTS */
2006     /*
2007     ** We're supposed to assume that somebody took a time of one type
2008     ** and did some math on it that yielded a "struct tm" that's bad.
2009     ** We try to divine the type they started from and adjust to the
2010     ** type they need.
2011     */
2012     /*
2013     ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
2014     */
2015     // BEGIN android-changed: support user-supplied sp.
2016     if (sp == NULL) {
2017         sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
2018             lclptr : gmtptr);
2019     }
2020     // BEGIN android-changed
2021 #ifdef ALL_STATE
2022     if (sp == NULL)
2023         return WRONG;
2024 #endif /* defined ALL_STATE */
2025     for (i = 0; i < sp->typecnt; ++i)
2026         seen[i] = FALSE;
2027     nseen = 0;
2028     for (i = sp->timecnt - 1; i >= 0; --i)
2029         if (!seen[sp->types[i]]) {
2030             seen[sp->types[i]] = TRUE;
2031             types[nseen++] = sp->types[i];
2032         }
2033     for (sameind = 0; sameind < nseen; ++sameind) {
2034         samei = types[sameind];
2035         if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2036             continue;
2037         for (otherind = 0; otherind < nseen; ++otherind) {
2038             otheri = types[otherind];
2039             if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2040                 continue;
2041             tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
2042                     sp->ttis[samei].tt_gmtoff;
2043             tmp->tm_isdst = !tmp->tm_isdst;
2044             t = time2(tmp, funcp, offset, &okay, sp); // android-changed: added sp.
2045             if (okay)
2046                 return t;
2047             tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
2048                     sp->ttis[samei].tt_gmtoff;
2049             tmp->tm_isdst = !tmp->tm_isdst;
2050         }
2051     }
2052     return WRONG;
2053 }
2054 
2055 time_t
mktime(tmp)2056 mktime(tmp)
2057 struct tm * const   tmp;
2058 {
2059     time_t  result;
2060     _tzLock();
2061     tzset_locked();
2062     result = time1(tmp, localsub, 0L, NULL); // android-changed: extra parameter.
2063     _tzUnlock();
2064     return result;
2065 }
2066 
2067 // BEGIN android-added
2068 
2069 // Caches the most recent timezone (http://b/8270865).
__bionic_tzload_cached(const char * name,struct state * const sp,const int doextend)2070 static int __bionic_tzload_cached(const char* name, struct state* const sp, const int doextend) {
2071   _tzLock();
2072 
2073   // Our single-item cache.
2074   static char* gCachedTimeZoneName;
2075   static struct state gCachedTimeZone;
2076 
2077   // Do we already have this timezone cached?
2078   if (gCachedTimeZoneName != NULL && strcmp(name, gCachedTimeZoneName) == 0) {
2079     *sp = gCachedTimeZone;
2080     _tzUnlock();
2081     return 0;
2082   }
2083 
2084   // Can we load it?
2085   int rc = tzload(name, sp, doextend);
2086   if (rc == 0) {
2087     // Update the cache.
2088     free(gCachedTimeZoneName);
2089     gCachedTimeZoneName = strdup(name);
2090     gCachedTimeZone = *sp;
2091   }
2092 
2093   _tzUnlock();
2094   return rc;
2095 }
2096 
2097 // Non-standard API: mktime(3) but with an explicit timezone parameter.
mktime_tz(struct tm * const tmp,const char * tz)2098 time_t mktime_tz(struct tm* const tmp, const char* tz) {
2099   struct state st;
2100   if (__bionic_tzload_cached(tz, &st, TRUE) != 0) {
2101     // TODO: not sure what's best here, but for now, we fall back to gmt.
2102     gmtload(&st);
2103   }
2104   return time1(tmp, localsub, 0L, &st);
2105 }
2106 
2107 // Non-standard API: localtime(3) but with an explicit timezone parameter.
localtime_tz(const time_t * const timep,struct tm * tmp,const char * tz)2108 void localtime_tz(const time_t* const timep, struct tm* tmp, const char* tz) {
2109   struct state st;
2110   if (__bionic_tzload_cached(tz, &st, TRUE) != 0) {
2111     // TODO: not sure what's best here, but for now, we fall back to gmt.
2112     gmtload(&st);
2113   }
2114   localsub(timep, 0L, tmp, &st);
2115 }
2116 
2117 // END android-added
2118 
2119 #ifdef STD_INSPIRED
2120 
2121 time_t
timelocal(tmp)2122 timelocal(tmp)
2123 struct tm * const   tmp;
2124 {
2125     tmp->tm_isdst = -1; /* in case it wasn't initialized */
2126     return mktime(tmp);
2127 }
2128 
2129 time_t
timegm(tmp)2130 timegm(tmp)
2131 struct tm * const   tmp;
2132 {
2133     time_t  result;
2134 
2135     tmp->tm_isdst = 0;
2136     _tzLock();
2137     result = time1(tmp, gmtsub, 0L, NULL); // android-changed: extra parameter.
2138     _tzUnlock();
2139 
2140     return result;
2141 }
2142 
2143 #if 0 /* disable due to lack of clear documentation on this function */
2144 time_t
2145 timeoff(tmp, offset)
2146 struct tm * const   tmp;
2147 const long      offset;
2148 {
2149     time_t  result;
2150 
2151     tmp->tm_isdst = 0;
2152     _tzLock();
2153     result = time1(tmp, gmtsub, offset, NULL); // android-changed: extra parameter.
2154     _tzUnlock();
2155 
2156     return result;
2157 }
2158 #endif /* 0 */
2159 
2160 #endif /* defined STD_INSPIRED */
2161 
2162 #ifdef CMUCS
2163 
2164 /*
2165 ** The following is supplied for compatibility with
2166 ** previous versions of the CMUCS runtime library.
2167 */
2168 
2169 long
gtime(tmp)2170 gtime(tmp)
2171 struct tm * const   tmp;
2172 {
2173     const time_t    t = mktime(tmp);
2174 
2175     if (t == WRONG)
2176         return -1;
2177     return t;
2178 }
2179 
2180 #endif /* defined CMUCS */
2181 
2182 /*
2183 ** XXX--is the below the right way to conditionalize??
2184 */
2185 
2186 #ifdef STD_INSPIRED
2187 
2188 /*
2189 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2190 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2191 ** is not the case if we are accounting for leap seconds.
2192 ** So, we provide the following conversion routines for use
2193 ** when exchanging timestamps with POSIX conforming systems.
2194 */
2195 
2196 static long
leapcorr(timep)2197 leapcorr(timep)
2198 time_t *    timep;
2199 {
2200     register struct state *     sp;
2201     register struct lsinfo *    lp;
2202     register int            i;
2203 
2204     sp = lclptr;
2205     i = sp->leapcnt;
2206     while (--i >= 0) {
2207         lp = &sp->lsis[i];
2208         if (*timep >= lp->ls_trans)
2209             return lp->ls_corr;
2210     }
2211     return 0;
2212 }
2213 
2214 time_t
time2posix(t)2215 time2posix(t)
2216 time_t  t;
2217 {
2218     tzset();
2219     return t - leapcorr(&t);
2220 }
2221 
2222 time_t
posix2time(t)2223 posix2time(t)
2224 time_t  t;
2225 {
2226     time_t  x;
2227     time_t  y;
2228 
2229     tzset();
2230     /*
2231     ** For a positive leap second hit, the result
2232     ** is not unique. For a negative leap second
2233     ** hit, the corresponding time doesn't exist,
2234     ** so we return an adjacent second.
2235     */
2236     x = t + leapcorr(&t);
2237     y = x - leapcorr(&x);
2238     if (y < t) {
2239         do {
2240             x++;
2241             y = x - leapcorr(&x);
2242         } while (y < t);
2243         if (t != y)
2244             return x - 1;
2245     } else if (y > t) {
2246         do {
2247             --x;
2248             y = x - leapcorr(&x);
2249         } while (y > t);
2250         if (t != y)
2251             return x + 1;
2252     }
2253     return x;
2254 }
2255 
2256 #endif /* defined STD_INSPIRED */
2257 
2258 #include <assert.h>
2259 #include <stdint.h>
2260 #include <arpa/inet.h> // For ntohl(3).
2261 
__bionic_open_tzdata_path(const char * path,const char * olson_id,int * data_size)2262 static int __bionic_open_tzdata_path(const char* path, const char* olson_id, int* data_size) {
2263   int fd = TEMP_FAILURE_RETRY(open(path, OPEN_MODE));
2264   if (fd == -1) {
2265     XLOG(("%s: could not open \"%s\": %s\n", __FUNCTION__, path, strerror(errno)));
2266     return -2; // Distinguish failure to find any data from failure to find a specific id.
2267   }
2268 
2269   // byte[12] tzdata_version  -- "tzdata2012f\0"
2270   // int index_offset
2271   // int data_offset
2272   // int zonetab_offset
2273   struct bionic_tzdata_header {
2274     char tzdata_version[12];
2275     int32_t index_offset;
2276     int32_t data_offset;
2277     int32_t zonetab_offset;
2278   } header;
2279   if (TEMP_FAILURE_RETRY(read(fd, &header, sizeof(header))) != sizeof(header)) {
2280     fprintf(stderr, "%s: could not read header: %s\n", __FUNCTION__, strerror(errno));
2281     close(fd);
2282     return -1;
2283   }
2284 
2285   if (strncmp(header.tzdata_version, "tzdata", 6) != 0 || header.tzdata_version[11] != 0) {
2286     fprintf(stderr, "%s: bad magic: %s\n", __FUNCTION__, header.tzdata_version);
2287     close(fd);
2288     return -1;
2289   }
2290 
2291 #if 0
2292   fprintf(stderr, "version: %s\n", header.tzdata_version);
2293   fprintf(stderr, "index_offset = %d\n", ntohl(header.index_offset));
2294   fprintf(stderr, "data_offset = %d\n", ntohl(header.data_offset));
2295   fprintf(stderr, "zonetab_offset = %d\n", ntohl(header.zonetab_offset));
2296 #endif
2297 
2298   if (TEMP_FAILURE_RETRY(lseek(fd, ntohl(header.index_offset), SEEK_SET)) == -1) {
2299     fprintf(stderr, "%s: couldn't seek to index: %s\n", __FUNCTION__, strerror(errno));
2300     close(fd);
2301     return -1;
2302   }
2303 
2304   off_t specific_zone_offset = -1;
2305 
2306   static const size_t NAME_LENGTH = 40;
2307   unsigned char buf[NAME_LENGTH + 3 * sizeof(int32_t)];
2308 
2309   size_t id_count = (ntohl(header.data_offset) - ntohl(header.index_offset)) / sizeof(buf);
2310   for (size_t i = 0; i < id_count; ++i) {
2311     if (TEMP_FAILURE_RETRY(read(fd, buf, sizeof(buf))) != (ssize_t) sizeof(buf)) {
2312       break;
2313     }
2314 
2315     char this_id[NAME_LENGTH + 1];
2316     memcpy(this_id, buf, NAME_LENGTH);
2317     this_id[NAME_LENGTH] = '\0';
2318 
2319     if (strcmp(this_id, olson_id) == 0) {
2320       specific_zone_offset = toint(buf + NAME_LENGTH) + ntohl(header.data_offset);
2321       *data_size = toint(buf + NAME_LENGTH + sizeof(int32_t));
2322       break;
2323     }
2324   }
2325 
2326   if (specific_zone_offset == -1) {
2327     XLOG(("%s: couldn't find zone \"%s\"\n", __FUNCTION__, olson_id));
2328     close(fd);
2329     return -1;
2330   }
2331 
2332   if (TEMP_FAILURE_RETRY(lseek(fd, specific_zone_offset, SEEK_SET)) == -1) {
2333     fprintf(stderr, "%s: could not seek to %ld: %s\n", __FUNCTION__, specific_zone_offset, strerror(errno));
2334     close(fd);
2335     return -1;
2336   }
2337 
2338   return fd;
2339 }
2340 
__bionic_open_tzdata(const char * olson_id,int * data_size)2341 static int __bionic_open_tzdata(const char* olson_id, int* data_size) {
2342   // TODO: use $ANDROID_DATA and $ANDROID_ROOT like libcore, to support bionic on the host.
2343   int fd = __bionic_open_tzdata_path("/data/misc/zoneinfo/tzdata", olson_id, data_size);
2344   if (fd < 0) {
2345     fd = __bionic_open_tzdata_path("/system/usr/share/zoneinfo/tzdata", olson_id, data_size);
2346     if (fd == -2) {
2347       // The first thing that 'recovery' does is try to format the current time. It doesn't have
2348       // any tzdata available, so we must not abort here --- doing so breaks the recovery image!
2349       fprintf(stderr, "%s: couldn't find any tzdata when looking for %s!\n", __FUNCTION__, olson_id);
2350     }
2351   }
2352   return fd;
2353 }
2354