• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30 
qcow2_grow_l1_table(BlockDriverState * bs,int min_size)31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
32 {
33     BDRVQcowState *s = bs->opaque;
34     int new_l1_size, new_l1_size2, ret, i;
35     uint64_t *new_l1_table;
36     int64_t new_l1_table_offset;
37     uint8_t data[12];
38 
39     new_l1_size = s->l1_size;
40     if (min_size <= new_l1_size)
41         return 0;
42     if (new_l1_size == 0) {
43         new_l1_size = 1;
44     }
45     while (min_size > new_l1_size) {
46         new_l1_size = (new_l1_size * 3 + 1) / 2;
47     }
48 #ifdef DEBUG_ALLOC2
49     printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
50 #endif
51 
52     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
53     new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
54     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
55 
56     /* write new table (align to cluster) */
57     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
58     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
59     if (new_l1_table_offset < 0) {
60         qemu_free(new_l1_table);
61         return new_l1_table_offset;
62     }
63 
64     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
65     for(i = 0; i < s->l1_size; i++)
66         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
67     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
68     if (ret < 0)
69         goto fail;
70     for(i = 0; i < s->l1_size; i++)
71         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
72 
73     /* set new table */
74     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
75     cpu_to_be32w((uint32_t*)data, new_l1_size);
76     cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
77     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
78     if (ret < 0) {
79         goto fail;
80     }
81     qemu_free(s->l1_table);
82     qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
83     s->l1_table_offset = new_l1_table_offset;
84     s->l1_table = new_l1_table;
85     s->l1_size = new_l1_size;
86     return 0;
87  fail:
88     qemu_free(new_l1_table);
89     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
90     return ret;
91 }
92 
qcow2_l2_cache_reset(BlockDriverState * bs)93 void qcow2_l2_cache_reset(BlockDriverState *bs)
94 {
95     BDRVQcowState *s = bs->opaque;
96 
97     memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
98     memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
99     memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
100 }
101 
l2_cache_new_entry(BlockDriverState * bs)102 static inline int l2_cache_new_entry(BlockDriverState *bs)
103 {
104     BDRVQcowState *s = bs->opaque;
105     uint32_t min_count;
106     int min_index, i;
107 
108     /* find a new entry in the least used one */
109     min_index = 0;
110     min_count = 0xffffffff;
111     for(i = 0; i < L2_CACHE_SIZE; i++) {
112         if (s->l2_cache_counts[i] < min_count) {
113             min_count = s->l2_cache_counts[i];
114             min_index = i;
115         }
116     }
117     return min_index;
118 }
119 
120 /*
121  * seek_l2_table
122  *
123  * seek l2_offset in the l2_cache table
124  * if not found, return NULL,
125  * if found,
126  *   increments the l2 cache hit count of the entry,
127  *   if counter overflow, divide by two all counters
128  *   return the pointer to the l2 cache entry
129  *
130  */
131 
seek_l2_table(BDRVQcowState * s,uint64_t l2_offset)132 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
133 {
134     int i, j;
135 
136     for(i = 0; i < L2_CACHE_SIZE; i++) {
137         if (l2_offset == s->l2_cache_offsets[i]) {
138             /* increment the hit count */
139             if (++s->l2_cache_counts[i] == 0xffffffff) {
140                 for(j = 0; j < L2_CACHE_SIZE; j++) {
141                     s->l2_cache_counts[j] >>= 1;
142                 }
143             }
144             return s->l2_cache + (i << s->l2_bits);
145         }
146     }
147     return NULL;
148 }
149 
150 /*
151  * l2_load
152  *
153  * Loads a L2 table into memory. If the table is in the cache, the cache
154  * is used; otherwise the L2 table is loaded from the image file.
155  *
156  * Returns a pointer to the L2 table on success, or NULL if the read from
157  * the image file failed.
158  */
159 
l2_load(BlockDriverState * bs,uint64_t l2_offset,uint64_t ** l2_table)160 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
161     uint64_t **l2_table)
162 {
163     BDRVQcowState *s = bs->opaque;
164     int min_index;
165     int ret;
166 
167     /* seek if the table for the given offset is in the cache */
168 
169     *l2_table = seek_l2_table(s, l2_offset);
170     if (*l2_table != NULL) {
171         return 0;
172     }
173 
174     /* not found: load a new entry in the least used one */
175 
176     min_index = l2_cache_new_entry(bs);
177     *l2_table = s->l2_cache + (min_index << s->l2_bits);
178 
179     BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD);
180     ret = bdrv_pread(bs->file, l2_offset, *l2_table,
181         s->l2_size * sizeof(uint64_t));
182     if (ret < 0) {
183         return ret;
184     }
185 
186     s->l2_cache_offsets[min_index] = l2_offset;
187     s->l2_cache_counts[min_index] = 1;
188 
189     return 0;
190 }
191 
192 /*
193  * Writes one sector of the L1 table to the disk (can't update single entries
194  * and we really don't want bdrv_pread to perform a read-modify-write)
195  */
196 #define L1_ENTRIES_PER_SECTOR (512 / 8)
write_l1_entry(BlockDriverState * bs,int l1_index)197 static int write_l1_entry(BlockDriverState *bs, int l1_index)
198 {
199     BDRVQcowState *s = bs->opaque;
200     uint64_t buf[L1_ENTRIES_PER_SECTOR];
201     int l1_start_index;
202     int i, ret;
203 
204     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
205     for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
206         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
207     }
208 
209     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
210     ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
211         buf, sizeof(buf));
212     if (ret < 0) {
213         return ret;
214     }
215 
216     return 0;
217 }
218 
219 /*
220  * l2_allocate
221  *
222  * Allocate a new l2 entry in the file. If l1_index points to an already
223  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
224  * table) copy the contents of the old L2 table into the newly allocated one.
225  * Otherwise the new table is initialized with zeros.
226  *
227  */
228 
l2_allocate(BlockDriverState * bs,int l1_index,uint64_t ** table)229 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
230 {
231     BDRVQcowState *s = bs->opaque;
232     int min_index;
233     uint64_t old_l2_offset;
234     uint64_t *l2_table;
235     int64_t l2_offset;
236     int ret;
237 
238     old_l2_offset = s->l1_table[l1_index];
239 
240     /* allocate a new l2 entry */
241 
242     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
243     if (l2_offset < 0) {
244         return l2_offset;
245     }
246 
247     /* allocate a new entry in the l2 cache */
248 
249     min_index = l2_cache_new_entry(bs);
250     l2_table = s->l2_cache + (min_index << s->l2_bits);
251 
252     if (old_l2_offset == 0) {
253         /* if there was no old l2 table, clear the new table */
254         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
255     } else {
256         /* if there was an old l2 table, read it from the disk */
257         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
258         ret = bdrv_pread(bs->file, old_l2_offset, l2_table,
259             s->l2_size * sizeof(uint64_t));
260         if (ret < 0) {
261             goto fail;
262         }
263     }
264     /* write the l2 table to the file */
265     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
266     ret = bdrv_pwrite_sync(bs->file, l2_offset, l2_table,
267         s->l2_size * sizeof(uint64_t));
268     if (ret < 0) {
269         goto fail;
270     }
271 
272     /* update the L1 entry */
273     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
274     ret = write_l1_entry(bs, l1_index);
275     if (ret < 0) {
276         goto fail;
277     }
278 
279     /* update the l2 cache entry */
280 
281     s->l2_cache_offsets[min_index] = l2_offset;
282     s->l2_cache_counts[min_index] = 1;
283 
284     *table = l2_table;
285     return 0;
286 
287 fail:
288     s->l1_table[l1_index] = old_l2_offset;
289     qcow2_l2_cache_reset(bs);
290     return ret;
291 }
292 
count_contiguous_clusters(uint64_t nb_clusters,int cluster_size,uint64_t * l2_table,uint64_t start,uint64_t mask)293 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
294         uint64_t *l2_table, uint64_t start, uint64_t mask)
295 {
296     int i;
297     uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
298 
299     if (!offset)
300         return 0;
301 
302     for (i = start; i < start + nb_clusters; i++)
303         if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
304             break;
305 
306 	return (i - start);
307 }
308 
count_contiguous_free_clusters(uint64_t nb_clusters,uint64_t * l2_table)309 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
310 {
311     int i = 0;
312 
313     while(nb_clusters-- && l2_table[i] == 0)
314         i++;
315 
316     return i;
317 }
318 
319 /* The crypt function is compatible with the linux cryptoloop
320    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
321    supported */
qcow2_encrypt_sectors(BDRVQcowState * s,int64_t sector_num,uint8_t * out_buf,const uint8_t * in_buf,int nb_sectors,int enc,const AES_KEY * key)322 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
323                            uint8_t *out_buf, const uint8_t *in_buf,
324                            int nb_sectors, int enc,
325                            const AES_KEY *key)
326 {
327     union {
328         uint64_t ll[2];
329         uint8_t b[16];
330     } ivec;
331     int i;
332 
333     for(i = 0; i < nb_sectors; i++) {
334         ivec.ll[0] = cpu_to_le64(sector_num);
335         ivec.ll[1] = 0;
336         AES_cbc_encrypt(in_buf, out_buf, 512, key,
337                         ivec.b, enc);
338         sector_num++;
339         in_buf += 512;
340         out_buf += 512;
341     }
342 }
343 
344 
qcow_read(BlockDriverState * bs,int64_t sector_num,uint8_t * buf,int nb_sectors)345 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
346                      uint8_t *buf, int nb_sectors)
347 {
348     BDRVQcowState *s = bs->opaque;
349     int ret, index_in_cluster, n, n1;
350     uint64_t cluster_offset;
351 
352     while (nb_sectors > 0) {
353         n = nb_sectors;
354 
355         ret = qcow2_get_cluster_offset(bs, sector_num << 9, &n,
356             &cluster_offset);
357         if (ret < 0) {
358             return ret;
359         }
360 
361         index_in_cluster = sector_num & (s->cluster_sectors - 1);
362         if (!cluster_offset) {
363             if (bs->backing_hd) {
364                 /* read from the base image */
365                 n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
366                 if (n1 > 0) {
367                     BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING);
368                     ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
369                     if (ret < 0)
370                         return -1;
371                 }
372             } else {
373                 memset(buf, 0, 512 * n);
374             }
375         } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
376             if (qcow2_decompress_cluster(bs, cluster_offset) < 0)
377                 return -1;
378             memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
379         } else {
380             BLKDBG_EVENT(bs->file, BLKDBG_READ);
381             ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
382             if (ret != n * 512)
383                 return -1;
384             if (s->crypt_method) {
385                 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
386                                 &s->aes_decrypt_key);
387             }
388         }
389         nb_sectors -= n;
390         sector_num += n;
391         buf += n * 512;
392     }
393     return 0;
394 }
395 
copy_sectors(BlockDriverState * bs,uint64_t start_sect,uint64_t cluster_offset,int n_start,int n_end)396 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
397                         uint64_t cluster_offset, int n_start, int n_end)
398 {
399     BDRVQcowState *s = bs->opaque;
400     int n, ret;
401 
402     n = n_end - n_start;
403     if (n <= 0)
404         return 0;
405     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
406     ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
407     if (ret < 0)
408         return ret;
409     if (s->crypt_method) {
410         qcow2_encrypt_sectors(s, start_sect + n_start,
411                         s->cluster_data,
412                         s->cluster_data, n, 1,
413                         &s->aes_encrypt_key);
414     }
415     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
416     ret = bdrv_write_sync(bs->file, (cluster_offset >> 9) + n_start,
417         s->cluster_data, n);
418     if (ret < 0)
419         return ret;
420     return 0;
421 }
422 
423 
424 /*
425  * get_cluster_offset
426  *
427  * For a given offset of the disk image, find the cluster offset in
428  * qcow2 file. The offset is stored in *cluster_offset.
429  *
430  * on entry, *num is the number of contiguous clusters we'd like to
431  * access following offset.
432  *
433  * on exit, *num is the number of contiguous clusters we can read.
434  *
435  * Return 0, if the offset is found
436  * Return -errno, otherwise.
437  *
438  */
439 
qcow2_get_cluster_offset(BlockDriverState * bs,uint64_t offset,int * num,uint64_t * cluster_offset)440 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
441     int *num, uint64_t *cluster_offset)
442 {
443     BDRVQcowState *s = bs->opaque;
444     unsigned int l1_index, l2_index;
445     uint64_t l2_offset, *l2_table;
446     int l1_bits, c;
447     unsigned int index_in_cluster, nb_clusters;
448     uint64_t nb_available, nb_needed;
449     int ret;
450 
451     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
452     nb_needed = *num + index_in_cluster;
453 
454     l1_bits = s->l2_bits + s->cluster_bits;
455 
456     /* compute how many bytes there are between the offset and
457      * the end of the l1 entry
458      */
459 
460     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
461 
462     /* compute the number of available sectors */
463 
464     nb_available = (nb_available >> 9) + index_in_cluster;
465 
466     if (nb_needed > nb_available) {
467         nb_needed = nb_available;
468     }
469 
470     *cluster_offset = 0;
471 
472     /* seek the the l2 offset in the l1 table */
473 
474     l1_index = offset >> l1_bits;
475     if (l1_index >= s->l1_size)
476         goto out;
477 
478     l2_offset = s->l1_table[l1_index];
479 
480     /* seek the l2 table of the given l2 offset */
481 
482     if (!l2_offset)
483         goto out;
484 
485     /* load the l2 table in memory */
486 
487     l2_offset &= ~QCOW_OFLAG_COPIED;
488     ret = l2_load(bs, l2_offset, &l2_table);
489     if (ret < 0) {
490         return ret;
491     }
492 
493     /* find the cluster offset for the given disk offset */
494 
495     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
496     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
497     nb_clusters = size_to_clusters(s, nb_needed << 9);
498 
499     if (!*cluster_offset) {
500         /* how many empty clusters ? */
501         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
502     } else {
503         /* how many allocated clusters ? */
504         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
505                 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
506     }
507 
508    nb_available = (c * s->cluster_sectors);
509 out:
510     if (nb_available > nb_needed)
511         nb_available = nb_needed;
512 
513     *num = nb_available - index_in_cluster;
514 
515     *cluster_offset &=~QCOW_OFLAG_COPIED;
516     return 0;
517 }
518 
519 /*
520  * get_cluster_table
521  *
522  * for a given disk offset, load (and allocate if needed)
523  * the l2 table.
524  *
525  * the l2 table offset in the qcow2 file and the cluster index
526  * in the l2 table are given to the caller.
527  *
528  * Returns 0 on success, -errno in failure case
529  */
get_cluster_table(BlockDriverState * bs,uint64_t offset,uint64_t ** new_l2_table,uint64_t * new_l2_offset,int * new_l2_index)530 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
531                              uint64_t **new_l2_table,
532                              uint64_t *new_l2_offset,
533                              int *new_l2_index)
534 {
535     BDRVQcowState *s = bs->opaque;
536     unsigned int l1_index, l2_index;
537     uint64_t l2_offset;
538     uint64_t *l2_table = NULL;
539     int ret;
540 
541     /* seek the the l2 offset in the l1 table */
542 
543     l1_index = offset >> (s->l2_bits + s->cluster_bits);
544     if (l1_index >= s->l1_size) {
545         ret = qcow2_grow_l1_table(bs, l1_index + 1);
546         if (ret < 0) {
547             return ret;
548         }
549     }
550     l2_offset = s->l1_table[l1_index];
551 
552     /* seek the l2 table of the given l2 offset */
553 
554     if (l2_offset & QCOW_OFLAG_COPIED) {
555         /* load the l2 table in memory */
556         l2_offset &= ~QCOW_OFLAG_COPIED;
557         ret = l2_load(bs, l2_offset, &l2_table);
558         if (ret < 0) {
559             return ret;
560         }
561     } else {
562         if (l2_offset)
563             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
564         ret = l2_allocate(bs, l1_index, &l2_table);
565         if (ret < 0) {
566             return ret;
567         }
568         l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
569     }
570 
571     /* find the cluster offset for the given disk offset */
572 
573     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
574 
575     *new_l2_table = l2_table;
576     *new_l2_offset = l2_offset;
577     *new_l2_index = l2_index;
578 
579     return 0;
580 }
581 
582 /*
583  * alloc_compressed_cluster_offset
584  *
585  * For a given offset of the disk image, return cluster offset in
586  * qcow2 file.
587  *
588  * If the offset is not found, allocate a new compressed cluster.
589  *
590  * Return the cluster offset if successful,
591  * Return 0, otherwise.
592  *
593  */
594 
qcow2_alloc_compressed_cluster_offset(BlockDriverState * bs,uint64_t offset,int compressed_size)595 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
596                                                uint64_t offset,
597                                                int compressed_size)
598 {
599     BDRVQcowState *s = bs->opaque;
600     int l2_index, ret;
601     uint64_t l2_offset, *l2_table;
602     int64_t cluster_offset;
603     int nb_csectors;
604 
605     ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
606     if (ret < 0) {
607         return 0;
608     }
609 
610     cluster_offset = be64_to_cpu(l2_table[l2_index]);
611     if (cluster_offset & QCOW_OFLAG_COPIED)
612         return cluster_offset & ~QCOW_OFLAG_COPIED;
613 
614     if (cluster_offset)
615         qcow2_free_any_clusters(bs, cluster_offset, 1);
616 
617     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
618     if (cluster_offset < 0) {
619         return 0;
620     }
621 
622     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
623                   (cluster_offset >> 9);
624 
625     cluster_offset |= QCOW_OFLAG_COMPRESSED |
626                       ((uint64_t)nb_csectors << s->csize_shift);
627 
628     /* update L2 table */
629 
630     /* compressed clusters never have the copied flag */
631 
632     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
633     l2_table[l2_index] = cpu_to_be64(cluster_offset);
634     if (bdrv_pwrite_sync(bs->file,
635                     l2_offset + l2_index * sizeof(uint64_t),
636                     l2_table + l2_index,
637                     sizeof(uint64_t)) < 0)
638         return 0;
639 
640     return cluster_offset;
641 }
642 
643 /*
644  * Write L2 table updates to disk, writing whole sectors to avoid a
645  * read-modify-write in bdrv_pwrite
646  */
647 #define L2_ENTRIES_PER_SECTOR (512 / 8)
write_l2_entries(BlockDriverState * bs,uint64_t * l2_table,uint64_t l2_offset,int l2_index,int num)648 static int write_l2_entries(BlockDriverState *bs, uint64_t *l2_table,
649     uint64_t l2_offset, int l2_index, int num)
650 {
651     int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
652     int start_offset = (8 * l2_index) & ~511;
653     int end_offset = (8 * (l2_index + num) + 511) & ~511;
654     size_t len = end_offset - start_offset;
655     int ret;
656 
657     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE);
658     ret = bdrv_pwrite_sync(bs->file, l2_offset + start_offset,
659         &l2_table[l2_start_index], len);
660     if (ret < 0) {
661         return ret;
662     }
663 
664     return 0;
665 }
666 
qcow2_alloc_cluster_link_l2(BlockDriverState * bs,QCowL2Meta * m)667 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
668 {
669     BDRVQcowState *s = bs->opaque;
670     int i, j = 0, l2_index, ret;
671     uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
672     uint64_t cluster_offset = m->cluster_offset;
673 
674     if (m->nb_clusters == 0)
675         return 0;
676 
677     old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
678 
679     /* copy content of unmodified sectors */
680     start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
681     if (m->n_start) {
682         ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
683         if (ret < 0)
684             goto err;
685     }
686 
687     if (m->nb_available & (s->cluster_sectors - 1)) {
688         uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
689         ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
690                 m->nb_available - end, s->cluster_sectors);
691         if (ret < 0)
692             goto err;
693     }
694 
695     /* update L2 table */
696     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
697     if (ret < 0) {
698         goto err;
699     }
700 
701     for (i = 0; i < m->nb_clusters; i++) {
702         /* if two concurrent writes happen to the same unallocated cluster
703 	 * each write allocates separate cluster and writes data concurrently.
704 	 * The first one to complete updates l2 table with pointer to its
705 	 * cluster the second one has to do RMW (which is done above by
706 	 * copy_sectors()), update l2 table with its cluster pointer and free
707 	 * old cluster. This is what this loop does */
708         if(l2_table[l2_index + i] != 0)
709             old_cluster[j++] = l2_table[l2_index + i];
710 
711         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
712                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
713      }
714 
715     ret = write_l2_entries(bs, l2_table, l2_offset, l2_index, m->nb_clusters);
716     if (ret < 0) {
717         qcow2_l2_cache_reset(bs);
718         goto err;
719     }
720 
721     for (i = 0; i < j; i++)
722         qcow2_free_any_clusters(bs,
723             be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
724 
725     ret = 0;
726 err:
727     qemu_free(old_cluster);
728     return ret;
729  }
730 
731 /*
732  * alloc_cluster_offset
733  *
734  * For a given offset of the disk image, return cluster offset in qcow2 file.
735  * If the offset is not found, allocate a new cluster.
736  *
737  * If the cluster was already allocated, m->nb_clusters is set to 0,
738  * m->depends_on is set to NULL and the other fields in m are meaningless.
739  *
740  * If the cluster is newly allocated, m->nb_clusters is set to the number of
741  * contiguous clusters that have been allocated. This may be 0 if the request
742  * conflict with another write request in flight; in this case, m->depends_on
743  * is set and the remaining fields of m are meaningless.
744  *
745  * If m->nb_clusters is non-zero, the other fields of m are valid and contain
746  * information about the first allocated cluster.
747  *
748  * Return 0 on success and -errno in error cases
749  */
qcow2_alloc_cluster_offset(BlockDriverState * bs,uint64_t offset,int n_start,int n_end,int * num,QCowL2Meta * m)750 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
751     int n_start, int n_end, int *num, QCowL2Meta *m)
752 {
753     BDRVQcowState *s = bs->opaque;
754     int l2_index, ret;
755     uint64_t l2_offset, *l2_table;
756     int64_t cluster_offset;
757     unsigned int nb_clusters, i = 0;
758     QCowL2Meta *old_alloc;
759 
760     ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
761     if (ret < 0) {
762         return ret;
763     }
764 
765     nb_clusters = size_to_clusters(s, n_end << 9);
766 
767     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
768 
769     cluster_offset = be64_to_cpu(l2_table[l2_index]);
770 
771     /* We keep all QCOW_OFLAG_COPIED clusters */
772 
773     if (cluster_offset & QCOW_OFLAG_COPIED) {
774         nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
775                 &l2_table[l2_index], 0, 0);
776 
777         cluster_offset &= ~QCOW_OFLAG_COPIED;
778         m->nb_clusters = 0;
779         m->depends_on = NULL;
780 
781         goto out;
782     }
783 
784     /* for the moment, multiple compressed clusters are not managed */
785 
786     if (cluster_offset & QCOW_OFLAG_COMPRESSED)
787         nb_clusters = 1;
788 
789     /* how many available clusters ? */
790 
791     while (i < nb_clusters) {
792         i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
793                 &l2_table[l2_index], i, 0);
794         if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
795             break;
796         }
797 
798         i += count_contiguous_free_clusters(nb_clusters - i,
799                 &l2_table[l2_index + i]);
800         if (i >= nb_clusters) {
801             break;
802         }
803 
804         cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
805 
806         if ((cluster_offset & QCOW_OFLAG_COPIED) ||
807                 (cluster_offset & QCOW_OFLAG_COMPRESSED))
808             break;
809     }
810     assert(i <= nb_clusters);
811     nb_clusters = i;
812 
813     /*
814      * Check if there already is an AIO write request in flight which allocates
815      * the same cluster. In this case we need to wait until the previous
816      * request has completed and updated the L2 table accordingly.
817      */
818     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
819 
820         uint64_t end_offset = offset + nb_clusters * s->cluster_size;
821         uint64_t old_offset = old_alloc->offset;
822         uint64_t old_end_offset = old_alloc->offset +
823             old_alloc->nb_clusters * s->cluster_size;
824 
825         if (end_offset < old_offset || offset > old_end_offset) {
826             /* No intersection */
827         } else {
828             if (offset < old_offset) {
829                 /* Stop at the start of a running allocation */
830                 nb_clusters = (old_offset - offset) >> s->cluster_bits;
831             } else {
832                 nb_clusters = 0;
833             }
834 
835             if (nb_clusters == 0) {
836                 /* Set dependency and wait for a callback */
837                 m->depends_on = old_alloc;
838                 m->nb_clusters = 0;
839                 *num = 0;
840                 return 0;
841             }
842         }
843     }
844 
845     if (!nb_clusters) {
846         abort();
847     }
848 
849     QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
850 
851     /* allocate a new cluster */
852 
853     cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
854     if (cluster_offset < 0) {
855         QLIST_REMOVE(m, next_in_flight);
856         return cluster_offset;
857     }
858 
859     /* save info needed for meta data update */
860     m->offset = offset;
861     m->n_start = n_start;
862     m->nb_clusters = nb_clusters;
863 
864 out:
865     m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
866     m->cluster_offset = cluster_offset;
867 
868     *num = m->nb_available - n_start;
869 
870     return 0;
871 }
872 
decompress_buffer(uint8_t * out_buf,int out_buf_size,const uint8_t * buf,int buf_size)873 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
874                              const uint8_t *buf, int buf_size)
875 {
876     z_stream strm1, *strm = &strm1;
877     int ret, out_len;
878 
879     memset(strm, 0, sizeof(*strm));
880 
881     strm->next_in = (uint8_t *)buf;
882     strm->avail_in = buf_size;
883     strm->next_out = out_buf;
884     strm->avail_out = out_buf_size;
885 
886     ret = inflateInit2(strm, -12);
887     if (ret != Z_OK)
888         return -1;
889     ret = inflate(strm, Z_FINISH);
890     out_len = strm->next_out - out_buf;
891     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
892         out_len != out_buf_size) {
893         inflateEnd(strm);
894         return -1;
895     }
896     inflateEnd(strm);
897     return 0;
898 }
899 
qcow2_decompress_cluster(BlockDriverState * bs,uint64_t cluster_offset)900 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
901 {
902     BDRVQcowState *s = bs->opaque;
903     int ret, csize, nb_csectors, sector_offset;
904     uint64_t coffset;
905 
906     coffset = cluster_offset & s->cluster_offset_mask;
907     if (s->cluster_cache_offset != coffset) {
908         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
909         sector_offset = coffset & 511;
910         csize = nb_csectors * 512 - sector_offset;
911         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
912         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
913         if (ret < 0) {
914             return -1;
915         }
916         if (decompress_buffer(s->cluster_cache, s->cluster_size,
917                               s->cluster_data + sector_offset, csize) < 0) {
918             return -1;
919         }
920         s->cluster_cache_offset = coffset;
921     }
922     return 0;
923 }
924