1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30
qcow2_grow_l1_table(BlockDriverState * bs,int min_size)31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
32 {
33 BDRVQcowState *s = bs->opaque;
34 int new_l1_size, new_l1_size2, ret, i;
35 uint64_t *new_l1_table;
36 int64_t new_l1_table_offset;
37 uint8_t data[12];
38
39 new_l1_size = s->l1_size;
40 if (min_size <= new_l1_size)
41 return 0;
42 if (new_l1_size == 0) {
43 new_l1_size = 1;
44 }
45 while (min_size > new_l1_size) {
46 new_l1_size = (new_l1_size * 3 + 1) / 2;
47 }
48 #ifdef DEBUG_ALLOC2
49 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
50 #endif
51
52 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
53 new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
54 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
55
56 /* write new table (align to cluster) */
57 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
58 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
59 if (new_l1_table_offset < 0) {
60 qemu_free(new_l1_table);
61 return new_l1_table_offset;
62 }
63
64 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
65 for(i = 0; i < s->l1_size; i++)
66 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
67 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
68 if (ret < 0)
69 goto fail;
70 for(i = 0; i < s->l1_size; i++)
71 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
72
73 /* set new table */
74 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
75 cpu_to_be32w((uint32_t*)data, new_l1_size);
76 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
77 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
78 if (ret < 0) {
79 goto fail;
80 }
81 qemu_free(s->l1_table);
82 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
83 s->l1_table_offset = new_l1_table_offset;
84 s->l1_table = new_l1_table;
85 s->l1_size = new_l1_size;
86 return 0;
87 fail:
88 qemu_free(new_l1_table);
89 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
90 return ret;
91 }
92
qcow2_l2_cache_reset(BlockDriverState * bs)93 void qcow2_l2_cache_reset(BlockDriverState *bs)
94 {
95 BDRVQcowState *s = bs->opaque;
96
97 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
98 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
99 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
100 }
101
l2_cache_new_entry(BlockDriverState * bs)102 static inline int l2_cache_new_entry(BlockDriverState *bs)
103 {
104 BDRVQcowState *s = bs->opaque;
105 uint32_t min_count;
106 int min_index, i;
107
108 /* find a new entry in the least used one */
109 min_index = 0;
110 min_count = 0xffffffff;
111 for(i = 0; i < L2_CACHE_SIZE; i++) {
112 if (s->l2_cache_counts[i] < min_count) {
113 min_count = s->l2_cache_counts[i];
114 min_index = i;
115 }
116 }
117 return min_index;
118 }
119
120 /*
121 * seek_l2_table
122 *
123 * seek l2_offset in the l2_cache table
124 * if not found, return NULL,
125 * if found,
126 * increments the l2 cache hit count of the entry,
127 * if counter overflow, divide by two all counters
128 * return the pointer to the l2 cache entry
129 *
130 */
131
seek_l2_table(BDRVQcowState * s,uint64_t l2_offset)132 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
133 {
134 int i, j;
135
136 for(i = 0; i < L2_CACHE_SIZE; i++) {
137 if (l2_offset == s->l2_cache_offsets[i]) {
138 /* increment the hit count */
139 if (++s->l2_cache_counts[i] == 0xffffffff) {
140 for(j = 0; j < L2_CACHE_SIZE; j++) {
141 s->l2_cache_counts[j] >>= 1;
142 }
143 }
144 return s->l2_cache + (i << s->l2_bits);
145 }
146 }
147 return NULL;
148 }
149
150 /*
151 * l2_load
152 *
153 * Loads a L2 table into memory. If the table is in the cache, the cache
154 * is used; otherwise the L2 table is loaded from the image file.
155 *
156 * Returns a pointer to the L2 table on success, or NULL if the read from
157 * the image file failed.
158 */
159
l2_load(BlockDriverState * bs,uint64_t l2_offset,uint64_t ** l2_table)160 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
161 uint64_t **l2_table)
162 {
163 BDRVQcowState *s = bs->opaque;
164 int min_index;
165 int ret;
166
167 /* seek if the table for the given offset is in the cache */
168
169 *l2_table = seek_l2_table(s, l2_offset);
170 if (*l2_table != NULL) {
171 return 0;
172 }
173
174 /* not found: load a new entry in the least used one */
175
176 min_index = l2_cache_new_entry(bs);
177 *l2_table = s->l2_cache + (min_index << s->l2_bits);
178
179 BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD);
180 ret = bdrv_pread(bs->file, l2_offset, *l2_table,
181 s->l2_size * sizeof(uint64_t));
182 if (ret < 0) {
183 return ret;
184 }
185
186 s->l2_cache_offsets[min_index] = l2_offset;
187 s->l2_cache_counts[min_index] = 1;
188
189 return 0;
190 }
191
192 /*
193 * Writes one sector of the L1 table to the disk (can't update single entries
194 * and we really don't want bdrv_pread to perform a read-modify-write)
195 */
196 #define L1_ENTRIES_PER_SECTOR (512 / 8)
write_l1_entry(BlockDriverState * bs,int l1_index)197 static int write_l1_entry(BlockDriverState *bs, int l1_index)
198 {
199 BDRVQcowState *s = bs->opaque;
200 uint64_t buf[L1_ENTRIES_PER_SECTOR];
201 int l1_start_index;
202 int i, ret;
203
204 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
205 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
206 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
207 }
208
209 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
210 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
211 buf, sizeof(buf));
212 if (ret < 0) {
213 return ret;
214 }
215
216 return 0;
217 }
218
219 /*
220 * l2_allocate
221 *
222 * Allocate a new l2 entry in the file. If l1_index points to an already
223 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
224 * table) copy the contents of the old L2 table into the newly allocated one.
225 * Otherwise the new table is initialized with zeros.
226 *
227 */
228
l2_allocate(BlockDriverState * bs,int l1_index,uint64_t ** table)229 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
230 {
231 BDRVQcowState *s = bs->opaque;
232 int min_index;
233 uint64_t old_l2_offset;
234 uint64_t *l2_table;
235 int64_t l2_offset;
236 int ret;
237
238 old_l2_offset = s->l1_table[l1_index];
239
240 /* allocate a new l2 entry */
241
242 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
243 if (l2_offset < 0) {
244 return l2_offset;
245 }
246
247 /* allocate a new entry in the l2 cache */
248
249 min_index = l2_cache_new_entry(bs);
250 l2_table = s->l2_cache + (min_index << s->l2_bits);
251
252 if (old_l2_offset == 0) {
253 /* if there was no old l2 table, clear the new table */
254 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
255 } else {
256 /* if there was an old l2 table, read it from the disk */
257 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
258 ret = bdrv_pread(bs->file, old_l2_offset, l2_table,
259 s->l2_size * sizeof(uint64_t));
260 if (ret < 0) {
261 goto fail;
262 }
263 }
264 /* write the l2 table to the file */
265 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
266 ret = bdrv_pwrite_sync(bs->file, l2_offset, l2_table,
267 s->l2_size * sizeof(uint64_t));
268 if (ret < 0) {
269 goto fail;
270 }
271
272 /* update the L1 entry */
273 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
274 ret = write_l1_entry(bs, l1_index);
275 if (ret < 0) {
276 goto fail;
277 }
278
279 /* update the l2 cache entry */
280
281 s->l2_cache_offsets[min_index] = l2_offset;
282 s->l2_cache_counts[min_index] = 1;
283
284 *table = l2_table;
285 return 0;
286
287 fail:
288 s->l1_table[l1_index] = old_l2_offset;
289 qcow2_l2_cache_reset(bs);
290 return ret;
291 }
292
count_contiguous_clusters(uint64_t nb_clusters,int cluster_size,uint64_t * l2_table,uint64_t start,uint64_t mask)293 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
294 uint64_t *l2_table, uint64_t start, uint64_t mask)
295 {
296 int i;
297 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
298
299 if (!offset)
300 return 0;
301
302 for (i = start; i < start + nb_clusters; i++)
303 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
304 break;
305
306 return (i - start);
307 }
308
count_contiguous_free_clusters(uint64_t nb_clusters,uint64_t * l2_table)309 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
310 {
311 int i = 0;
312
313 while(nb_clusters-- && l2_table[i] == 0)
314 i++;
315
316 return i;
317 }
318
319 /* The crypt function is compatible with the linux cryptoloop
320 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
321 supported */
qcow2_encrypt_sectors(BDRVQcowState * s,int64_t sector_num,uint8_t * out_buf,const uint8_t * in_buf,int nb_sectors,int enc,const AES_KEY * key)322 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
323 uint8_t *out_buf, const uint8_t *in_buf,
324 int nb_sectors, int enc,
325 const AES_KEY *key)
326 {
327 union {
328 uint64_t ll[2];
329 uint8_t b[16];
330 } ivec;
331 int i;
332
333 for(i = 0; i < nb_sectors; i++) {
334 ivec.ll[0] = cpu_to_le64(sector_num);
335 ivec.ll[1] = 0;
336 AES_cbc_encrypt(in_buf, out_buf, 512, key,
337 ivec.b, enc);
338 sector_num++;
339 in_buf += 512;
340 out_buf += 512;
341 }
342 }
343
344
qcow_read(BlockDriverState * bs,int64_t sector_num,uint8_t * buf,int nb_sectors)345 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
346 uint8_t *buf, int nb_sectors)
347 {
348 BDRVQcowState *s = bs->opaque;
349 int ret, index_in_cluster, n, n1;
350 uint64_t cluster_offset;
351
352 while (nb_sectors > 0) {
353 n = nb_sectors;
354
355 ret = qcow2_get_cluster_offset(bs, sector_num << 9, &n,
356 &cluster_offset);
357 if (ret < 0) {
358 return ret;
359 }
360
361 index_in_cluster = sector_num & (s->cluster_sectors - 1);
362 if (!cluster_offset) {
363 if (bs->backing_hd) {
364 /* read from the base image */
365 n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
366 if (n1 > 0) {
367 BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING);
368 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
369 if (ret < 0)
370 return -1;
371 }
372 } else {
373 memset(buf, 0, 512 * n);
374 }
375 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
376 if (qcow2_decompress_cluster(bs, cluster_offset) < 0)
377 return -1;
378 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
379 } else {
380 BLKDBG_EVENT(bs->file, BLKDBG_READ);
381 ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
382 if (ret != n * 512)
383 return -1;
384 if (s->crypt_method) {
385 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
386 &s->aes_decrypt_key);
387 }
388 }
389 nb_sectors -= n;
390 sector_num += n;
391 buf += n * 512;
392 }
393 return 0;
394 }
395
copy_sectors(BlockDriverState * bs,uint64_t start_sect,uint64_t cluster_offset,int n_start,int n_end)396 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
397 uint64_t cluster_offset, int n_start, int n_end)
398 {
399 BDRVQcowState *s = bs->opaque;
400 int n, ret;
401
402 n = n_end - n_start;
403 if (n <= 0)
404 return 0;
405 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
406 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
407 if (ret < 0)
408 return ret;
409 if (s->crypt_method) {
410 qcow2_encrypt_sectors(s, start_sect + n_start,
411 s->cluster_data,
412 s->cluster_data, n, 1,
413 &s->aes_encrypt_key);
414 }
415 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
416 ret = bdrv_write_sync(bs->file, (cluster_offset >> 9) + n_start,
417 s->cluster_data, n);
418 if (ret < 0)
419 return ret;
420 return 0;
421 }
422
423
424 /*
425 * get_cluster_offset
426 *
427 * For a given offset of the disk image, find the cluster offset in
428 * qcow2 file. The offset is stored in *cluster_offset.
429 *
430 * on entry, *num is the number of contiguous clusters we'd like to
431 * access following offset.
432 *
433 * on exit, *num is the number of contiguous clusters we can read.
434 *
435 * Return 0, if the offset is found
436 * Return -errno, otherwise.
437 *
438 */
439
qcow2_get_cluster_offset(BlockDriverState * bs,uint64_t offset,int * num,uint64_t * cluster_offset)440 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
441 int *num, uint64_t *cluster_offset)
442 {
443 BDRVQcowState *s = bs->opaque;
444 unsigned int l1_index, l2_index;
445 uint64_t l2_offset, *l2_table;
446 int l1_bits, c;
447 unsigned int index_in_cluster, nb_clusters;
448 uint64_t nb_available, nb_needed;
449 int ret;
450
451 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
452 nb_needed = *num + index_in_cluster;
453
454 l1_bits = s->l2_bits + s->cluster_bits;
455
456 /* compute how many bytes there are between the offset and
457 * the end of the l1 entry
458 */
459
460 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
461
462 /* compute the number of available sectors */
463
464 nb_available = (nb_available >> 9) + index_in_cluster;
465
466 if (nb_needed > nb_available) {
467 nb_needed = nb_available;
468 }
469
470 *cluster_offset = 0;
471
472 /* seek the the l2 offset in the l1 table */
473
474 l1_index = offset >> l1_bits;
475 if (l1_index >= s->l1_size)
476 goto out;
477
478 l2_offset = s->l1_table[l1_index];
479
480 /* seek the l2 table of the given l2 offset */
481
482 if (!l2_offset)
483 goto out;
484
485 /* load the l2 table in memory */
486
487 l2_offset &= ~QCOW_OFLAG_COPIED;
488 ret = l2_load(bs, l2_offset, &l2_table);
489 if (ret < 0) {
490 return ret;
491 }
492
493 /* find the cluster offset for the given disk offset */
494
495 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
496 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
497 nb_clusters = size_to_clusters(s, nb_needed << 9);
498
499 if (!*cluster_offset) {
500 /* how many empty clusters ? */
501 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
502 } else {
503 /* how many allocated clusters ? */
504 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
505 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
506 }
507
508 nb_available = (c * s->cluster_sectors);
509 out:
510 if (nb_available > nb_needed)
511 nb_available = nb_needed;
512
513 *num = nb_available - index_in_cluster;
514
515 *cluster_offset &=~QCOW_OFLAG_COPIED;
516 return 0;
517 }
518
519 /*
520 * get_cluster_table
521 *
522 * for a given disk offset, load (and allocate if needed)
523 * the l2 table.
524 *
525 * the l2 table offset in the qcow2 file and the cluster index
526 * in the l2 table are given to the caller.
527 *
528 * Returns 0 on success, -errno in failure case
529 */
get_cluster_table(BlockDriverState * bs,uint64_t offset,uint64_t ** new_l2_table,uint64_t * new_l2_offset,int * new_l2_index)530 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
531 uint64_t **new_l2_table,
532 uint64_t *new_l2_offset,
533 int *new_l2_index)
534 {
535 BDRVQcowState *s = bs->opaque;
536 unsigned int l1_index, l2_index;
537 uint64_t l2_offset;
538 uint64_t *l2_table = NULL;
539 int ret;
540
541 /* seek the the l2 offset in the l1 table */
542
543 l1_index = offset >> (s->l2_bits + s->cluster_bits);
544 if (l1_index >= s->l1_size) {
545 ret = qcow2_grow_l1_table(bs, l1_index + 1);
546 if (ret < 0) {
547 return ret;
548 }
549 }
550 l2_offset = s->l1_table[l1_index];
551
552 /* seek the l2 table of the given l2 offset */
553
554 if (l2_offset & QCOW_OFLAG_COPIED) {
555 /* load the l2 table in memory */
556 l2_offset &= ~QCOW_OFLAG_COPIED;
557 ret = l2_load(bs, l2_offset, &l2_table);
558 if (ret < 0) {
559 return ret;
560 }
561 } else {
562 if (l2_offset)
563 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
564 ret = l2_allocate(bs, l1_index, &l2_table);
565 if (ret < 0) {
566 return ret;
567 }
568 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
569 }
570
571 /* find the cluster offset for the given disk offset */
572
573 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
574
575 *new_l2_table = l2_table;
576 *new_l2_offset = l2_offset;
577 *new_l2_index = l2_index;
578
579 return 0;
580 }
581
582 /*
583 * alloc_compressed_cluster_offset
584 *
585 * For a given offset of the disk image, return cluster offset in
586 * qcow2 file.
587 *
588 * If the offset is not found, allocate a new compressed cluster.
589 *
590 * Return the cluster offset if successful,
591 * Return 0, otherwise.
592 *
593 */
594
qcow2_alloc_compressed_cluster_offset(BlockDriverState * bs,uint64_t offset,int compressed_size)595 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
596 uint64_t offset,
597 int compressed_size)
598 {
599 BDRVQcowState *s = bs->opaque;
600 int l2_index, ret;
601 uint64_t l2_offset, *l2_table;
602 int64_t cluster_offset;
603 int nb_csectors;
604
605 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
606 if (ret < 0) {
607 return 0;
608 }
609
610 cluster_offset = be64_to_cpu(l2_table[l2_index]);
611 if (cluster_offset & QCOW_OFLAG_COPIED)
612 return cluster_offset & ~QCOW_OFLAG_COPIED;
613
614 if (cluster_offset)
615 qcow2_free_any_clusters(bs, cluster_offset, 1);
616
617 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
618 if (cluster_offset < 0) {
619 return 0;
620 }
621
622 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
623 (cluster_offset >> 9);
624
625 cluster_offset |= QCOW_OFLAG_COMPRESSED |
626 ((uint64_t)nb_csectors << s->csize_shift);
627
628 /* update L2 table */
629
630 /* compressed clusters never have the copied flag */
631
632 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
633 l2_table[l2_index] = cpu_to_be64(cluster_offset);
634 if (bdrv_pwrite_sync(bs->file,
635 l2_offset + l2_index * sizeof(uint64_t),
636 l2_table + l2_index,
637 sizeof(uint64_t)) < 0)
638 return 0;
639
640 return cluster_offset;
641 }
642
643 /*
644 * Write L2 table updates to disk, writing whole sectors to avoid a
645 * read-modify-write in bdrv_pwrite
646 */
647 #define L2_ENTRIES_PER_SECTOR (512 / 8)
write_l2_entries(BlockDriverState * bs,uint64_t * l2_table,uint64_t l2_offset,int l2_index,int num)648 static int write_l2_entries(BlockDriverState *bs, uint64_t *l2_table,
649 uint64_t l2_offset, int l2_index, int num)
650 {
651 int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
652 int start_offset = (8 * l2_index) & ~511;
653 int end_offset = (8 * (l2_index + num) + 511) & ~511;
654 size_t len = end_offset - start_offset;
655 int ret;
656
657 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE);
658 ret = bdrv_pwrite_sync(bs->file, l2_offset + start_offset,
659 &l2_table[l2_start_index], len);
660 if (ret < 0) {
661 return ret;
662 }
663
664 return 0;
665 }
666
qcow2_alloc_cluster_link_l2(BlockDriverState * bs,QCowL2Meta * m)667 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
668 {
669 BDRVQcowState *s = bs->opaque;
670 int i, j = 0, l2_index, ret;
671 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
672 uint64_t cluster_offset = m->cluster_offset;
673
674 if (m->nb_clusters == 0)
675 return 0;
676
677 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
678
679 /* copy content of unmodified sectors */
680 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
681 if (m->n_start) {
682 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
683 if (ret < 0)
684 goto err;
685 }
686
687 if (m->nb_available & (s->cluster_sectors - 1)) {
688 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
689 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
690 m->nb_available - end, s->cluster_sectors);
691 if (ret < 0)
692 goto err;
693 }
694
695 /* update L2 table */
696 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
697 if (ret < 0) {
698 goto err;
699 }
700
701 for (i = 0; i < m->nb_clusters; i++) {
702 /* if two concurrent writes happen to the same unallocated cluster
703 * each write allocates separate cluster and writes data concurrently.
704 * The first one to complete updates l2 table with pointer to its
705 * cluster the second one has to do RMW (which is done above by
706 * copy_sectors()), update l2 table with its cluster pointer and free
707 * old cluster. This is what this loop does */
708 if(l2_table[l2_index + i] != 0)
709 old_cluster[j++] = l2_table[l2_index + i];
710
711 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
712 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
713 }
714
715 ret = write_l2_entries(bs, l2_table, l2_offset, l2_index, m->nb_clusters);
716 if (ret < 0) {
717 qcow2_l2_cache_reset(bs);
718 goto err;
719 }
720
721 for (i = 0; i < j; i++)
722 qcow2_free_any_clusters(bs,
723 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
724
725 ret = 0;
726 err:
727 qemu_free(old_cluster);
728 return ret;
729 }
730
731 /*
732 * alloc_cluster_offset
733 *
734 * For a given offset of the disk image, return cluster offset in qcow2 file.
735 * If the offset is not found, allocate a new cluster.
736 *
737 * If the cluster was already allocated, m->nb_clusters is set to 0,
738 * m->depends_on is set to NULL and the other fields in m are meaningless.
739 *
740 * If the cluster is newly allocated, m->nb_clusters is set to the number of
741 * contiguous clusters that have been allocated. This may be 0 if the request
742 * conflict with another write request in flight; in this case, m->depends_on
743 * is set and the remaining fields of m are meaningless.
744 *
745 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
746 * information about the first allocated cluster.
747 *
748 * Return 0 on success and -errno in error cases
749 */
qcow2_alloc_cluster_offset(BlockDriverState * bs,uint64_t offset,int n_start,int n_end,int * num,QCowL2Meta * m)750 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
751 int n_start, int n_end, int *num, QCowL2Meta *m)
752 {
753 BDRVQcowState *s = bs->opaque;
754 int l2_index, ret;
755 uint64_t l2_offset, *l2_table;
756 int64_t cluster_offset;
757 unsigned int nb_clusters, i = 0;
758 QCowL2Meta *old_alloc;
759
760 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
761 if (ret < 0) {
762 return ret;
763 }
764
765 nb_clusters = size_to_clusters(s, n_end << 9);
766
767 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
768
769 cluster_offset = be64_to_cpu(l2_table[l2_index]);
770
771 /* We keep all QCOW_OFLAG_COPIED clusters */
772
773 if (cluster_offset & QCOW_OFLAG_COPIED) {
774 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
775 &l2_table[l2_index], 0, 0);
776
777 cluster_offset &= ~QCOW_OFLAG_COPIED;
778 m->nb_clusters = 0;
779 m->depends_on = NULL;
780
781 goto out;
782 }
783
784 /* for the moment, multiple compressed clusters are not managed */
785
786 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
787 nb_clusters = 1;
788
789 /* how many available clusters ? */
790
791 while (i < nb_clusters) {
792 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
793 &l2_table[l2_index], i, 0);
794 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
795 break;
796 }
797
798 i += count_contiguous_free_clusters(nb_clusters - i,
799 &l2_table[l2_index + i]);
800 if (i >= nb_clusters) {
801 break;
802 }
803
804 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
805
806 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
807 (cluster_offset & QCOW_OFLAG_COMPRESSED))
808 break;
809 }
810 assert(i <= nb_clusters);
811 nb_clusters = i;
812
813 /*
814 * Check if there already is an AIO write request in flight which allocates
815 * the same cluster. In this case we need to wait until the previous
816 * request has completed and updated the L2 table accordingly.
817 */
818 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
819
820 uint64_t end_offset = offset + nb_clusters * s->cluster_size;
821 uint64_t old_offset = old_alloc->offset;
822 uint64_t old_end_offset = old_alloc->offset +
823 old_alloc->nb_clusters * s->cluster_size;
824
825 if (end_offset < old_offset || offset > old_end_offset) {
826 /* No intersection */
827 } else {
828 if (offset < old_offset) {
829 /* Stop at the start of a running allocation */
830 nb_clusters = (old_offset - offset) >> s->cluster_bits;
831 } else {
832 nb_clusters = 0;
833 }
834
835 if (nb_clusters == 0) {
836 /* Set dependency and wait for a callback */
837 m->depends_on = old_alloc;
838 m->nb_clusters = 0;
839 *num = 0;
840 return 0;
841 }
842 }
843 }
844
845 if (!nb_clusters) {
846 abort();
847 }
848
849 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
850
851 /* allocate a new cluster */
852
853 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
854 if (cluster_offset < 0) {
855 QLIST_REMOVE(m, next_in_flight);
856 return cluster_offset;
857 }
858
859 /* save info needed for meta data update */
860 m->offset = offset;
861 m->n_start = n_start;
862 m->nb_clusters = nb_clusters;
863
864 out:
865 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
866 m->cluster_offset = cluster_offset;
867
868 *num = m->nb_available - n_start;
869
870 return 0;
871 }
872
decompress_buffer(uint8_t * out_buf,int out_buf_size,const uint8_t * buf,int buf_size)873 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
874 const uint8_t *buf, int buf_size)
875 {
876 z_stream strm1, *strm = &strm1;
877 int ret, out_len;
878
879 memset(strm, 0, sizeof(*strm));
880
881 strm->next_in = (uint8_t *)buf;
882 strm->avail_in = buf_size;
883 strm->next_out = out_buf;
884 strm->avail_out = out_buf_size;
885
886 ret = inflateInit2(strm, -12);
887 if (ret != Z_OK)
888 return -1;
889 ret = inflate(strm, Z_FINISH);
890 out_len = strm->next_out - out_buf;
891 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
892 out_len != out_buf_size) {
893 inflateEnd(strm);
894 return -1;
895 }
896 inflateEnd(strm);
897 return 0;
898 }
899
qcow2_decompress_cluster(BlockDriverState * bs,uint64_t cluster_offset)900 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
901 {
902 BDRVQcowState *s = bs->opaque;
903 int ret, csize, nb_csectors, sector_offset;
904 uint64_t coffset;
905
906 coffset = cluster_offset & s->cluster_offset_mask;
907 if (s->cluster_cache_offset != coffset) {
908 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
909 sector_offset = coffset & 511;
910 csize = nb_csectors * 512 - sector_offset;
911 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
912 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
913 if (ret < 0) {
914 return -1;
915 }
916 if (decompress_buffer(s->cluster_cache, s->cluster_size,
917 s->cluster_data + sector_offset, csize) < 0) {
918 return -1;
919 }
920 s->cluster_cache_offset = coffset;
921 }
922 return 0;
923 }
924