• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 
29 // Declares a Simulator for ARM instructions if we are not generating a native
30 // ARM binary. This Simulator allows us to run and debug ARM code generation on
31 // regular desktop machines.
32 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33 // which will start execution in the Simulator or forwards to the real entry
34 // on a ARM HW platform.
35 
36 #ifndef V8_ARM_SIMULATOR_ARM_H_
37 #define V8_ARM_SIMULATOR_ARM_H_
38 
39 #include "allocation.h"
40 
41 #if !defined(USE_SIMULATOR)
42 // Running without a simulator on a native arm platform.
43 
44 namespace v8 {
45 namespace internal {
46 
47 // When running without a simulator we call the entry directly.
48 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
49   (entry(p0, p1, p2, p3, p4))
50 
51 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
52                                   void*, int*, Address, int, Isolate*);
53 
54 
55 // Call the generated regexp code directly. The code at the entry address
56 // should act as a function matching the type arm_regexp_matcher.
57 // The fifth argument is a dummy that reserves the space used for
58 // the return address added by the ExitFrame in native calls.
59 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
60   (FUNCTION_CAST<arm_regexp_matcher>(entry)(                              \
61       p0, p1, p2, p3, NULL, p4, p5, p6, p7))
62 
63 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
64   reinterpret_cast<TryCatch*>(try_catch_address)
65 
66 // The stack limit beyond which we will throw stack overflow errors in
67 // generated code. Because generated code on arm uses the C stack, we
68 // just use the C stack limit.
69 class SimulatorStack : public v8::internal::AllStatic {
70  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)71   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
72                                             uintptr_t c_limit) {
73     USE(isolate);
74     return c_limit;
75   }
76 
RegisterCTryCatch(uintptr_t try_catch_address)77   static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
78     return try_catch_address;
79   }
80 
UnregisterCTryCatch()81   static inline void UnregisterCTryCatch() { }
82 };
83 
84 } }  // namespace v8::internal
85 
86 #else  // !defined(USE_SIMULATOR)
87 // Running with a simulator.
88 
89 #include "constants-arm.h"
90 #include "hashmap.h"
91 #include "assembler.h"
92 
93 namespace v8 {
94 namespace internal {
95 
96 class CachePage {
97  public:
98   static const int LINE_VALID = 0;
99   static const int LINE_INVALID = 1;
100 
101   static const int kPageShift = 12;
102   static const int kPageSize = 1 << kPageShift;
103   static const int kPageMask = kPageSize - 1;
104   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
105   static const int kLineLength = 1 << kLineShift;
106   static const int kLineMask = kLineLength - 1;
107 
CachePage()108   CachePage() {
109     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
110   }
111 
ValidityByte(int offset)112   char* ValidityByte(int offset) {
113     return &validity_map_[offset >> kLineShift];
114   }
115 
CachedData(int offset)116   char* CachedData(int offset) {
117     return &data_[offset];
118   }
119 
120  private:
121   char data_[kPageSize];   // The cached data.
122   static const int kValidityMapSize = kPageSize >> kLineShift;
123   char validity_map_[kValidityMapSize];  // One byte per line.
124 };
125 
126 
127 class Simulator {
128  public:
129   friend class ArmDebugger;
130   enum Register {
131     no_reg = -1,
132     r0 = 0, r1, r2, r3, r4, r5, r6, r7,
133     r8, r9, r10, r11, r12, r13, r14, r15,
134     num_registers,
135     sp = 13,
136     lr = 14,
137     pc = 15,
138     s0 = 0, s1, s2, s3, s4, s5, s6, s7,
139     s8, s9, s10, s11, s12, s13, s14, s15,
140     s16, s17, s18, s19, s20, s21, s22, s23,
141     s24, s25, s26, s27, s28, s29, s30, s31,
142     num_s_registers = 32,
143     d0 = 0, d1, d2, d3, d4, d5, d6, d7,
144     d8, d9, d10, d11, d12, d13, d14, d15,
145     num_d_registers = 16
146   };
147 
148   explicit Simulator(Isolate* isolate);
149   ~Simulator();
150 
151   // The currently executing Simulator instance. Potentially there can be one
152   // for each native thread.
153   static Simulator* current(v8::internal::Isolate* isolate);
154 
155   // Accessors for register state. Reading the pc value adheres to the ARM
156   // architecture specification and is off by a 8 from the currently executing
157   // instruction.
158   void set_register(int reg, int32_t value);
159   int32_t get_register(int reg) const;
160   double get_double_from_register_pair(int reg);
161   void set_dw_register(int dreg, const int* dbl);
162 
163   // Support for VFP.
164   void set_s_register(int reg, unsigned int value);
165   unsigned int get_s_register(int reg) const;
166   void set_d_register_from_double(int dreg, const double& dbl);
167   double get_double_from_d_register(int dreg);
168   void set_s_register_from_float(int sreg, const float dbl);
169   float get_float_from_s_register(int sreg);
170   void set_s_register_from_sinteger(int reg, const int value);
171   int get_sinteger_from_s_register(int reg);
172 
173   // Special case of set_register and get_register to access the raw PC value.
174   void set_pc(int32_t value);
175   int32_t get_pc() const;
176 
177   // Accessor to the internal simulator stack area.
178   uintptr_t StackLimit() const;
179 
180   // Executes ARM instructions until the PC reaches end_sim_pc.
181   void Execute();
182 
183   // Call on program start.
184   static void Initialize(Isolate* isolate);
185 
186   // V8 generally calls into generated JS code with 5 parameters and into
187   // generated RegExp code with 7 parameters. This is a convenience function,
188   // which sets up the simulator state and grabs the result on return.
189   int32_t Call(byte* entry, int argument_count, ...);
190 
191   // Push an address onto the JS stack.
192   uintptr_t PushAddress(uintptr_t address);
193 
194   // Pop an address from the JS stack.
195   uintptr_t PopAddress();
196 
197   // Debugger input.
198   void set_last_debugger_input(char* input);
last_debugger_input()199   char* last_debugger_input() { return last_debugger_input_; }
200 
201   // ICache checking.
202   static void FlushICache(v8::internal::HashMap* i_cache, void* start,
203                           size_t size);
204 
205   // Returns true if pc register contains one of the 'special_values' defined
206   // below (bad_lr, end_sim_pc).
207   bool has_bad_pc() const;
208 
209   // EABI variant for double arguments in use.
use_eabi_hardfloat()210   bool use_eabi_hardfloat() {
211 #if USE_EABI_HARDFLOAT
212     return true;
213 #else
214     return false;
215 #endif
216   }
217 
218  private:
219   enum special_values {
220     // Known bad pc value to ensure that the simulator does not execute
221     // without being properly setup.
222     bad_lr = -1,
223     // A pc value used to signal the simulator to stop execution.  Generally
224     // the lr is set to this value on transition from native C code to
225     // simulated execution, so that the simulator can "return" to the native
226     // C code.
227     end_sim_pc = -2
228   };
229 
230   // Unsupported instructions use Format to print an error and stop execution.
231   void Format(Instruction* instr, const char* format);
232 
233   // Checks if the current instruction should be executed based on its
234   // condition bits.
235   bool ConditionallyExecute(Instruction* instr);
236 
237   // Helper functions to set the conditional flags in the architecture state.
238   void SetNZFlags(int32_t val);
239   void SetCFlag(bool val);
240   void SetVFlag(bool val);
241   bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
242   bool BorrowFrom(int32_t left, int32_t right);
243   bool OverflowFrom(int32_t alu_out,
244                     int32_t left,
245                     int32_t right,
246                     bool addition);
247 
GetCarry()248   inline int GetCarry() {
249     return c_flag_ ? 1 : 0;
250   };
251 
252   // Support for VFP.
253   void Compute_FPSCR_Flags(double val1, double val2);
254   void Copy_FPSCR_to_APSR();
255 
256   // Helper functions to decode common "addressing" modes
257   int32_t GetShiftRm(Instruction* instr, bool* carry_out);
258   int32_t GetImm(Instruction* instr, bool* carry_out);
259   void ProcessPUW(Instruction* instr,
260                   int num_regs,
261                   int operand_size,
262                   intptr_t* start_address,
263                   intptr_t* end_address);
264   void HandleRList(Instruction* instr, bool load);
265   void HandleVList(Instruction* inst);
266   void SoftwareInterrupt(Instruction* instr);
267 
268   // Stop helper functions.
269   inline bool isStopInstruction(Instruction* instr);
270   inline bool isWatchedStop(uint32_t bkpt_code);
271   inline bool isEnabledStop(uint32_t bkpt_code);
272   inline void EnableStop(uint32_t bkpt_code);
273   inline void DisableStop(uint32_t bkpt_code);
274   inline void IncreaseStopCounter(uint32_t bkpt_code);
275   void PrintStopInfo(uint32_t code);
276 
277   // Read and write memory.
278   inline uint8_t ReadBU(int32_t addr);
279   inline int8_t ReadB(int32_t addr);
280   inline void WriteB(int32_t addr, uint8_t value);
281   inline void WriteB(int32_t addr, int8_t value);
282 
283   inline uint16_t ReadHU(int32_t addr, Instruction* instr);
284   inline int16_t ReadH(int32_t addr, Instruction* instr);
285   // Note: Overloaded on the sign of the value.
286   inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
287   inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
288 
289   inline int ReadW(int32_t addr, Instruction* instr);
290   inline void WriteW(int32_t addr, int value, Instruction* instr);
291 
292   int32_t* ReadDW(int32_t addr);
293   void WriteDW(int32_t addr, int32_t value1, int32_t value2);
294 
295   // Executing is handled based on the instruction type.
296   // Both type 0 and type 1 rolled into one.
297   void DecodeType01(Instruction* instr);
298   void DecodeType2(Instruction* instr);
299   void DecodeType3(Instruction* instr);
300   void DecodeType4(Instruction* instr);
301   void DecodeType5(Instruction* instr);
302   void DecodeType6(Instruction* instr);
303   void DecodeType7(Instruction* instr);
304 
305   // Support for VFP.
306   void DecodeTypeVFP(Instruction* instr);
307   void DecodeType6CoprocessorIns(Instruction* instr);
308 
309   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
310   void DecodeVCMP(Instruction* instr);
311   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
312   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
313 
314   // Executes one instruction.
315   void InstructionDecode(Instruction* instr);
316 
317   // ICache.
318   static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
319   static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
320                            int size);
321   static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
322 
323   // Runtime call support.
324   static void* RedirectExternalReference(
325       void* external_function,
326       v8::internal::ExternalReference::Type type);
327 
328   // For use in calls that take double value arguments.
329   void GetFpArgs(double* x, double* y);
330   void GetFpArgs(double* x);
331   void GetFpArgs(double* x, int32_t* y);
332   void SetFpResult(const double& result);
333   void TrashCallerSaveRegisters();
334 
335   // Architecture state.
336   // Saturating instructions require a Q flag to indicate saturation.
337   // There is currently no way to read the CPSR directly, and thus read the Q
338   // flag, so this is left unimplemented.
339   int32_t registers_[16];
340   bool n_flag_;
341   bool z_flag_;
342   bool c_flag_;
343   bool v_flag_;
344 
345   // VFP architecture state.
346   unsigned int vfp_register[num_s_registers];
347   bool n_flag_FPSCR_;
348   bool z_flag_FPSCR_;
349   bool c_flag_FPSCR_;
350   bool v_flag_FPSCR_;
351 
352   // VFP rounding mode. See ARM DDI 0406B Page A2-29.
353   VFPRoundingMode FPSCR_rounding_mode_;
354 
355   // VFP FP exception flags architecture state.
356   bool inv_op_vfp_flag_;
357   bool div_zero_vfp_flag_;
358   bool overflow_vfp_flag_;
359   bool underflow_vfp_flag_;
360   bool inexact_vfp_flag_;
361 
362   // Simulator support.
363   char* stack_;
364   bool pc_modified_;
365   int icount_;
366 
367   // Debugger input.
368   char* last_debugger_input_;
369 
370   // Icache simulation
371   v8::internal::HashMap* i_cache_;
372 
373   // Registered breakpoints.
374   Instruction* break_pc_;
375   Instr break_instr_;
376 
377   v8::internal::Isolate* isolate_;
378 
379   // A stop is watched if its code is less than kNumOfWatchedStops.
380   // Only watched stops support enabling/disabling and the counter feature.
381   static const uint32_t kNumOfWatchedStops = 256;
382 
383   // Breakpoint is disabled if bit 31 is set.
384   static const uint32_t kStopDisabledBit = 1 << 31;
385 
386   // A stop is enabled, meaning the simulator will stop when meeting the
387   // instruction, if bit 31 of watched_stops[code].count is unset.
388   // The value watched_stops[code].count & ~(1 << 31) indicates how many times
389   // the breakpoint was hit or gone through.
390   struct StopCountAndDesc {
391     uint32_t count;
392     char* desc;
393   };
394   StopCountAndDesc watched_stops[kNumOfWatchedStops];
395 };
396 
397 
398 // When running with the simulator transition into simulated execution at this
399 // point.
400 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
401   reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
402       FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
403 
404 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
405   Simulator::current(Isolate::Current())->Call( \
406       entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7)
407 
408 #define TRY_CATCH_FROM_ADDRESS(try_catch_address)                              \
409   try_catch_address == NULL ?                                                  \
410       NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
411 
412 
413 // The simulator has its own stack. Thus it has a different stack limit from
414 // the C-based native code.  Setting the c_limit to indicate a very small
415 // stack cause stack overflow errors, since the simulator ignores the input.
416 // This is unlikely to be an issue in practice, though it might cause testing
417 // trouble down the line.
418 class SimulatorStack : public v8::internal::AllStatic {
419  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)420   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
421                                             uintptr_t c_limit) {
422     return Simulator::current(isolate)->StackLimit();
423   }
424 
RegisterCTryCatch(uintptr_t try_catch_address)425   static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
426     Simulator* sim = Simulator::current(Isolate::Current());
427     return sim->PushAddress(try_catch_address);
428   }
429 
UnregisterCTryCatch()430   static inline void UnregisterCTryCatch() {
431     Simulator::current(Isolate::Current())->PopAddress();
432   }
433 };
434 
435 } }  // namespace v8::internal
436 
437 #endif  // !defined(USE_SIMULATOR)
438 #endif  // V8_ARM_SIMULATOR_ARM_H_
439