• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/sparse_normal_cholesky_solver.h"
32 
33 #include <algorithm>
34 #include <cstring>
35 #include <ctime>
36 
37 #ifndef CERES_NO_CXSPARSE
38 #include "cs.h"
39 #endif
40 
41 #include "ceres/compressed_row_sparse_matrix.h"
42 #include "ceres/linear_solver.h"
43 #include "ceres/suitesparse.h"
44 #include "ceres/triplet_sparse_matrix.h"
45 #include "ceres/internal/eigen.h"
46 #include "ceres/internal/scoped_ptr.h"
47 #include "ceres/types.h"
48 
49 namespace ceres {
50 namespace internal {
51 
SparseNormalCholeskySolver(const LinearSolver::Options & options)52 SparseNormalCholeskySolver::SparseNormalCholeskySolver(
53     const LinearSolver::Options& options)
54     : options_(options) {
55 #ifndef CERES_NO_SUITESPARSE
56   factor_ = NULL;
57 #endif
58 
59 #ifndef CERES_NO_CXSPARSE
60   cxsparse_factor_ = NULL;
61 #endif  // CERES_NO_CXSPARSE
62 }
63 
~SparseNormalCholeskySolver()64 SparseNormalCholeskySolver::~SparseNormalCholeskySolver() {
65 #ifndef CERES_NO_SUITESPARSE
66   if (factor_ != NULL) {
67     ss_.Free(factor_);
68     factor_ = NULL;
69   }
70 #endif
71 
72 #ifndef CERES_NO_CXSPARSE
73   if (cxsparse_factor_ != NULL) {
74     cxsparse_.Free(cxsparse_factor_);
75     cxsparse_factor_ = NULL;
76   }
77 #endif  // CERES_NO_CXSPARSE
78 }
79 
SolveImpl(CompressedRowSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)80 LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl(
81     CompressedRowSparseMatrix* A,
82     const double* b,
83     const LinearSolver::PerSolveOptions& per_solve_options,
84     double * x) {
85   switch (options_.sparse_linear_algebra_library) {
86     case SUITE_SPARSE:
87       return SolveImplUsingSuiteSparse(A, b, per_solve_options, x);
88     case CX_SPARSE:
89       return SolveImplUsingCXSparse(A, b, per_solve_options, x);
90     default:
91       LOG(FATAL) << "Unknown sparse linear algebra library : "
92                  << options_.sparse_linear_algebra_library;
93   }
94 
95   LOG(FATAL) << "Unknown sparse linear algebra library : "
96              << options_.sparse_linear_algebra_library;
97   return LinearSolver::Summary();
98 }
99 
100 #ifndef CERES_NO_CXSPARSE
SolveImplUsingCXSparse(CompressedRowSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)101 LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse(
102     CompressedRowSparseMatrix* A,
103     const double* b,
104     const LinearSolver::PerSolveOptions& per_solve_options,
105     double * x) {
106   LinearSolver::Summary summary;
107   summary.num_iterations = 1;
108   const int num_cols = A->num_cols();
109   Vector Atb = Vector::Zero(num_cols);
110   A->LeftMultiply(b, Atb.data());
111 
112   if (per_solve_options.D != NULL) {
113     // Temporarily append a diagonal block to the A matrix, but undo
114     // it before returning the matrix to the user.
115     CompressedRowSparseMatrix D(per_solve_options.D, num_cols);
116     A->AppendRows(D);
117   }
118 
119   VectorRef(x, num_cols).setZero();
120 
121   // Wrap the augmented Jacobian in a compressed sparse column matrix.
122   cs_di At = cxsparse_.CreateSparseMatrixTransposeView(A);
123 
124   // Compute the normal equations. J'J delta = J'f and solve them
125   // using a sparse Cholesky factorization. Notice that when compared
126   // to SuiteSparse we have to explicitly compute the transpose of Jt,
127   // and then the normal equations before they can be
128   // factorized. CHOLMOD/SuiteSparse on the other hand can just work
129   // off of Jt to compute the Cholesky factorization of the normal
130   // equations.
131   cs_di* A2 = cs_transpose(&At, 1);
132   cs_di* AtA = cs_multiply(&At,A2);
133 
134   cxsparse_.Free(A2);
135   if (per_solve_options.D != NULL) {
136     A->DeleteRows(num_cols);
137   }
138 
139   // Compute symbolic factorization if not available.
140   if (cxsparse_factor_ == NULL) {
141     cxsparse_factor_ = CHECK_NOTNULL(cxsparse_.AnalyzeCholesky(AtA));
142   }
143 
144   // Solve the linear system.
145   if (cxsparse_.SolveCholesky(AtA, cxsparse_factor_, Atb.data())) {
146     VectorRef(x, Atb.rows()) = Atb;
147     summary.termination_type = TOLERANCE;
148   }
149 
150   cxsparse_.Free(AtA);
151   return summary;
152 }
153 #else
SolveImplUsingCXSparse(CompressedRowSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)154 LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse(
155     CompressedRowSparseMatrix* A,
156     const double* b,
157     const LinearSolver::PerSolveOptions& per_solve_options,
158     double * x) {
159   LOG(FATAL) << "No CXSparse support in Ceres.";
160 
161   // Unreachable but MSVC does not know this.
162   return LinearSolver::Summary();
163 }
164 #endif
165 
166 #ifndef CERES_NO_SUITESPARSE
SolveImplUsingSuiteSparse(CompressedRowSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)167 LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse(
168     CompressedRowSparseMatrix* A,
169     const double* b,
170     const LinearSolver::PerSolveOptions& per_solve_options,
171     double * x) {
172   const time_t start_time = time(NULL);
173   const int num_cols = A->num_cols();
174 
175   LinearSolver::Summary summary;
176   Vector Atb = Vector::Zero(num_cols);
177   A->LeftMultiply(b, Atb.data());
178 
179   if (per_solve_options.D != NULL) {
180     // Temporarily append a diagonal block to the A matrix, but undo it before
181     // returning the matrix to the user.
182     CompressedRowSparseMatrix D(per_solve_options.D, num_cols);
183     A->AppendRows(D);
184   }
185 
186   VectorRef(x, num_cols).setZero();
187 
188   scoped_ptr<cholmod_sparse> lhs(ss_.CreateSparseMatrixTransposeView(A));
189   CHECK_NOTNULL(lhs.get());
190 
191   cholmod_dense* rhs = ss_.CreateDenseVector(Atb.data(), num_cols, num_cols);
192   const time_t init_time = time(NULL);
193 
194   if (factor_ == NULL) {
195     if (options_.use_block_amd) {
196       factor_ = ss_.BlockAnalyzeCholesky(lhs.get(),
197                                          A->col_blocks(),
198                                          A->row_blocks());
199     } else {
200       factor_ = ss_.AnalyzeCholesky(lhs.get());
201     }
202 
203     if (VLOG_IS_ON(2)) {
204       cholmod_print_common("Symbolic Analysis", ss_.mutable_cc());
205     }
206   }
207 
208   CHECK_NOTNULL(factor_);
209 
210   const time_t symbolic_time = time(NULL);
211 
212   cholmod_dense* sol = ss_.SolveCholesky(lhs.get(), factor_, rhs);
213   const time_t solve_time = time(NULL);
214 
215   ss_.Free(rhs);
216   rhs = NULL;
217 
218   if (per_solve_options.D != NULL) {
219     A->DeleteRows(num_cols);
220   }
221 
222   summary.num_iterations = 1;
223   if (sol != NULL) {
224     memcpy(x, sol->x, num_cols * sizeof(*x));
225 
226     ss_.Free(sol);
227     sol = NULL;
228     summary.termination_type = TOLERANCE;
229   }
230 
231   const time_t cleanup_time = time(NULL);
232   VLOG(2) << "time (sec) total: " << (cleanup_time - start_time)
233           << " init: " << (init_time - start_time)
234           << " symbolic: " << (symbolic_time - init_time)
235           << " solve: " << (solve_time - symbolic_time)
236           << " cleanup: " << (cleanup_time - solve_time);
237   return summary;
238 }
239 #else
SolveImplUsingSuiteSparse(CompressedRowSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)240 LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse(
241     CompressedRowSparseMatrix* A,
242     const double* b,
243     const LinearSolver::PerSolveOptions& per_solve_options,
244     double * x) {
245   LOG(FATAL) << "No SuiteSparse support in Ceres.";
246 
247   // Unreachable but MSVC does not know this.
248   return LinearSolver::Summary();
249 }
250 #endif
251 
252 }   // namespace internal
253 }   // namespace ceres
254