• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_EIGENSOLVER_H
12 #define EIGEN_EIGENSOLVER_H
13 
14 #include "./RealSchur.h"
15 
16 namespace Eigen {
17 
18 /** \eigenvalues_module \ingroup Eigenvalues_Module
19   *
20   *
21   * \class EigenSolver
22   *
23   * \brief Computes eigenvalues and eigenvectors of general matrices
24   *
25   * \tparam _MatrixType the type of the matrix of which we are computing the
26   * eigendecomposition; this is expected to be an instantiation of the Matrix
27   * class template. Currently, only real matrices are supported.
28   *
29   * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
30   * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If
31   * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
32   * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
33   * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
34   * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
35   *
36   * The eigenvalues and eigenvectors of a matrix may be complex, even when the
37   * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
38   * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
39   * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
40   * have blocks of the form
41   * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
42   * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These
43   * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
44   * this variant of the eigendecomposition the pseudo-eigendecomposition.
45   *
46   * Call the function compute() to compute the eigenvalues and eigenvectors of
47   * a given matrix. Alternatively, you can use the
48   * EigenSolver(const MatrixType&, bool) constructor which computes the
49   * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
50   * eigenvectors are computed, they can be retrieved with the eigenvalues() and
51   * eigenvectors() functions. The pseudoEigenvalueMatrix() and
52   * pseudoEigenvectors() methods allow the construction of the
53   * pseudo-eigendecomposition.
54   *
55   * The documentation for EigenSolver(const MatrixType&, bool) contains an
56   * example of the typical use of this class.
57   *
58   * \note The implementation is adapted from
59   * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
60   * Their code is based on EISPACK.
61   *
62   * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
63   */
64 template<typename _MatrixType> class EigenSolver
65 {
66   public:
67 
68     /** \brief Synonym for the template parameter \p _MatrixType. */
69     typedef _MatrixType MatrixType;
70 
71     enum {
72       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
74       Options = MatrixType::Options,
75       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
76       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
77     };
78 
79     /** \brief Scalar type for matrices of type #MatrixType. */
80     typedef typename MatrixType::Scalar Scalar;
81     typedef typename NumTraits<Scalar>::Real RealScalar;
82     typedef typename MatrixType::Index Index;
83 
84     /** \brief Complex scalar type for #MatrixType.
85       *
86       * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
87       * \c float or \c double) and just \c Scalar if #Scalar is
88       * complex.
89       */
90     typedef std::complex<RealScalar> ComplexScalar;
91 
92     /** \brief Type for vector of eigenvalues as returned by eigenvalues().
93       *
94       * This is a column vector with entries of type #ComplexScalar.
95       * The length of the vector is the size of #MatrixType.
96       */
97     typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
98 
99     /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
100       *
101       * This is a square matrix with entries of type #ComplexScalar.
102       * The size is the same as the size of #MatrixType.
103       */
104     typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
105 
106     /** \brief Default constructor.
107       *
108       * The default constructor is useful in cases in which the user intends to
109       * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
110       *
111       * \sa compute() for an example.
112       */
EigenSolver()113  EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
114 
115     /** \brief Default constructor with memory preallocation
116       *
117       * Like the default constructor but with preallocation of the internal data
118       * according to the specified problem \a size.
119       * \sa EigenSolver()
120       */
EigenSolver(Index size)121     EigenSolver(Index size)
122       : m_eivec(size, size),
123         m_eivalues(size),
124         m_isInitialized(false),
125         m_eigenvectorsOk(false),
126         m_realSchur(size),
127         m_matT(size, size),
128         m_tmp(size)
129     {}
130 
131     /** \brief Constructor; computes eigendecomposition of given matrix.
132       *
133       * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
134       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
135       *    eigenvalues are computed; if false, only the eigenvalues are
136       *    computed.
137       *
138       * This constructor calls compute() to compute the eigenvalues
139       * and eigenvectors.
140       *
141       * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
142       * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
143       *
144       * \sa compute()
145       */
146     EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
147       : m_eivec(matrix.rows(), matrix.cols()),
148         m_eivalues(matrix.cols()),
149         m_isInitialized(false),
150         m_eigenvectorsOk(false),
151         m_realSchur(matrix.cols()),
152         m_matT(matrix.rows(), matrix.cols()),
153         m_tmp(matrix.cols())
154     {
155       compute(matrix, computeEigenvectors);
156     }
157 
158     /** \brief Returns the eigenvectors of given matrix.
159       *
160       * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
161       *
162       * \pre Either the constructor
163       * EigenSolver(const MatrixType&,bool) or the member function
164       * compute(const MatrixType&, bool) has been called before, and
165       * \p computeEigenvectors was set to true (the default).
166       *
167       * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
168       * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
169       * eigenvectors are normalized to have (Euclidean) norm equal to one. The
170       * matrix returned by this function is the matrix \f$ V \f$ in the
171       * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
172       *
173       * Example: \include EigenSolver_eigenvectors.cpp
174       * Output: \verbinclude EigenSolver_eigenvectors.out
175       *
176       * \sa eigenvalues(), pseudoEigenvectors()
177       */
178     EigenvectorsType eigenvectors() const;
179 
180     /** \brief Returns the pseudo-eigenvectors of given matrix.
181       *
182       * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors.
183       *
184       * \pre Either the constructor
185       * EigenSolver(const MatrixType&,bool) or the member function
186       * compute(const MatrixType&, bool) has been called before, and
187       * \p computeEigenvectors was set to true (the default).
188       *
189       * The real matrix \f$ V \f$ returned by this function and the
190       * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
191       * satisfy \f$ AV = VD \f$.
192       *
193       * Example: \include EigenSolver_pseudoEigenvectors.cpp
194       * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
195       *
196       * \sa pseudoEigenvalueMatrix(), eigenvectors()
197       */
pseudoEigenvectors()198     const MatrixType& pseudoEigenvectors() const
199     {
200       eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
201       eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
202       return m_eivec;
203     }
204 
205     /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
206       *
207       * \returns  A block-diagonal matrix.
208       *
209       * \pre Either the constructor
210       * EigenSolver(const MatrixType&,bool) or the member function
211       * compute(const MatrixType&, bool) has been called before.
212       *
213       * The matrix \f$ D \f$ returned by this function is real and
214       * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
215       * blocks of the form
216       * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
217       * These blocks are not sorted in any particular order.
218       * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
219       * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
220       *
221       * \sa pseudoEigenvectors() for an example, eigenvalues()
222       */
223     MatrixType pseudoEigenvalueMatrix() const;
224 
225     /** \brief Returns the eigenvalues of given matrix.
226       *
227       * \returns A const reference to the column vector containing the eigenvalues.
228       *
229       * \pre Either the constructor
230       * EigenSolver(const MatrixType&,bool) or the member function
231       * compute(const MatrixType&, bool) has been called before.
232       *
233       * The eigenvalues are repeated according to their algebraic multiplicity,
234       * so there are as many eigenvalues as rows in the matrix. The eigenvalues
235       * are not sorted in any particular order.
236       *
237       * Example: \include EigenSolver_eigenvalues.cpp
238       * Output: \verbinclude EigenSolver_eigenvalues.out
239       *
240       * \sa eigenvectors(), pseudoEigenvalueMatrix(),
241       *     MatrixBase::eigenvalues()
242       */
eigenvalues()243     const EigenvalueType& eigenvalues() const
244     {
245       eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
246       return m_eivalues;
247     }
248 
249     /** \brief Computes eigendecomposition of given matrix.
250       *
251       * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
252       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
253       *    eigenvalues are computed; if false, only the eigenvalues are
254       *    computed.
255       * \returns    Reference to \c *this
256       *
257       * This function computes the eigenvalues of the real matrix \p matrix.
258       * The eigenvalues() function can be used to retrieve them.  If
259       * \p computeEigenvectors is true, then the eigenvectors are also computed
260       * and can be retrieved by calling eigenvectors().
261       *
262       * The matrix is first reduced to real Schur form using the RealSchur
263       * class. The Schur decomposition is then used to compute the eigenvalues
264       * and eigenvectors.
265       *
266       * The cost of the computation is dominated by the cost of the
267       * Schur decomposition, which is very approximately \f$ 25n^3 \f$
268       * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
269       * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
270       *
271       * This method reuses of the allocated data in the EigenSolver object.
272       *
273       * Example: \include EigenSolver_compute.cpp
274       * Output: \verbinclude EigenSolver_compute.out
275       */
276     EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
277 
info()278     ComputationInfo info() const
279     {
280       eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
281       return m_realSchur.info();
282     }
283 
284   private:
285     void doComputeEigenvectors();
286 
287   protected:
288     MatrixType m_eivec;
289     EigenvalueType m_eivalues;
290     bool m_isInitialized;
291     bool m_eigenvectorsOk;
292     RealSchur<MatrixType> m_realSchur;
293     MatrixType m_matT;
294 
295     typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
296     ColumnVectorType m_tmp;
297 };
298 
299 template<typename MatrixType>
pseudoEigenvalueMatrix()300 MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
301 {
302   eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
303   Index n = m_eivalues.rows();
304   MatrixType matD = MatrixType::Zero(n,n);
305   for (Index i=0; i<n; ++i)
306   {
307     if (internal::isMuchSmallerThan(internal::imag(m_eivalues.coeff(i)), internal::real(m_eivalues.coeff(i))))
308       matD.coeffRef(i,i) = internal::real(m_eivalues.coeff(i));
309     else
310     {
311       matD.template block<2,2>(i,i) <<  internal::real(m_eivalues.coeff(i)), internal::imag(m_eivalues.coeff(i)),
312                                        -internal::imag(m_eivalues.coeff(i)), internal::real(m_eivalues.coeff(i));
313       ++i;
314     }
315   }
316   return matD;
317 }
318 
319 template<typename MatrixType>
eigenvectors()320 typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
321 {
322   eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
323   eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
324   Index n = m_eivec.cols();
325   EigenvectorsType matV(n,n);
326   for (Index j=0; j<n; ++j)
327   {
328     if (internal::isMuchSmallerThan(internal::imag(m_eivalues.coeff(j)), internal::real(m_eivalues.coeff(j))) || j+1==n)
329     {
330       // we have a real eigen value
331       matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
332       matV.col(j).normalize();
333     }
334     else
335     {
336       // we have a pair of complex eigen values
337       for (Index i=0; i<n; ++i)
338       {
339         matV.coeffRef(i,j)   = ComplexScalar(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1));
340         matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
341       }
342       matV.col(j).normalize();
343       matV.col(j+1).normalize();
344       ++j;
345     }
346   }
347   return matV;
348 }
349 
350 template<typename MatrixType>
compute(const MatrixType & matrix,bool computeEigenvectors)351 EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
352 {
353   assert(matrix.cols() == matrix.rows());
354 
355   // Reduce to real Schur form.
356   m_realSchur.compute(matrix, computeEigenvectors);
357   if (m_realSchur.info() == Success)
358   {
359     m_matT = m_realSchur.matrixT();
360     if (computeEigenvectors)
361       m_eivec = m_realSchur.matrixU();
362 
363     // Compute eigenvalues from matT
364     m_eivalues.resize(matrix.cols());
365     Index i = 0;
366     while (i < matrix.cols())
367     {
368       if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
369       {
370         m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
371         ++i;
372       }
373       else
374       {
375         Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
376         Scalar z = internal::sqrt(internal::abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
377         m_eivalues.coeffRef(i)   = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
378         m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
379         i += 2;
380       }
381     }
382 
383     // Compute eigenvectors.
384     if (computeEigenvectors)
385       doComputeEigenvectors();
386   }
387 
388   m_isInitialized = true;
389   m_eigenvectorsOk = computeEigenvectors;
390 
391   return *this;
392 }
393 
394 // Complex scalar division.
395 template<typename Scalar>
cdiv(Scalar xr,Scalar xi,Scalar yr,Scalar yi)396 std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
397 {
398   Scalar r,d;
399   if (internal::abs(yr) > internal::abs(yi))
400   {
401       r = yi/yr;
402       d = yr + r*yi;
403       return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
404   }
405   else
406   {
407       r = yr/yi;
408       d = yi + r*yr;
409       return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
410   }
411 }
412 
413 
414 template<typename MatrixType>
doComputeEigenvectors()415 void EigenSolver<MatrixType>::doComputeEigenvectors()
416 {
417   const Index size = m_eivec.cols();
418   const Scalar eps = NumTraits<Scalar>::epsilon();
419 
420   // inefficient! this is already computed in RealSchur
421   Scalar norm(0);
422   for (Index j = 0; j < size; ++j)
423   {
424     norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
425   }
426 
427   // Backsubstitute to find vectors of upper triangular form
428   if (norm == 0.0)
429   {
430     return;
431   }
432 
433   for (Index n = size-1; n >= 0; n--)
434   {
435     Scalar p = m_eivalues.coeff(n).real();
436     Scalar q = m_eivalues.coeff(n).imag();
437 
438     // Scalar vector
439     if (q == Scalar(0))
440     {
441       Scalar lastr(0), lastw(0);
442       Index l = n;
443 
444       m_matT.coeffRef(n,n) = 1.0;
445       for (Index i = n-1; i >= 0; i--)
446       {
447         Scalar w = m_matT.coeff(i,i) - p;
448         Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
449 
450         if (m_eivalues.coeff(i).imag() < 0.0)
451         {
452           lastw = w;
453           lastr = r;
454         }
455         else
456         {
457           l = i;
458           if (m_eivalues.coeff(i).imag() == 0.0)
459           {
460             if (w != 0.0)
461               m_matT.coeffRef(i,n) = -r / w;
462             else
463               m_matT.coeffRef(i,n) = -r / (eps * norm);
464           }
465           else // Solve real equations
466           {
467             Scalar x = m_matT.coeff(i,i+1);
468             Scalar y = m_matT.coeff(i+1,i);
469             Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
470             Scalar t = (x * lastr - lastw * r) / denom;
471             m_matT.coeffRef(i,n) = t;
472             if (internal::abs(x) > internal::abs(lastw))
473               m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
474             else
475               m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
476           }
477 
478           // Overflow control
479           Scalar t = internal::abs(m_matT.coeff(i,n));
480           if ((eps * t) * t > Scalar(1))
481             m_matT.col(n).tail(size-i) /= t;
482         }
483       }
484     }
485     else if (q < Scalar(0) && n > 0) // Complex vector
486     {
487       Scalar lastra(0), lastsa(0), lastw(0);
488       Index l = n-1;
489 
490       // Last vector component imaginary so matrix is triangular
491       if (internal::abs(m_matT.coeff(n,n-1)) > internal::abs(m_matT.coeff(n-1,n)))
492       {
493         m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
494         m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
495       }
496       else
497       {
498         std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q);
499         m_matT.coeffRef(n-1,n-1) = internal::real(cc);
500         m_matT.coeffRef(n-1,n) = internal::imag(cc);
501       }
502       m_matT.coeffRef(n,n-1) = 0.0;
503       m_matT.coeffRef(n,n) = 1.0;
504       for (Index i = n-2; i >= 0; i--)
505       {
506         Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
507         Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
508         Scalar w = m_matT.coeff(i,i) - p;
509 
510         if (m_eivalues.coeff(i).imag() < 0.0)
511         {
512           lastw = w;
513           lastra = ra;
514           lastsa = sa;
515         }
516         else
517         {
518           l = i;
519           if (m_eivalues.coeff(i).imag() == RealScalar(0))
520           {
521             std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
522             m_matT.coeffRef(i,n-1) = internal::real(cc);
523             m_matT.coeffRef(i,n) = internal::imag(cc);
524           }
525           else
526           {
527             // Solve complex equations
528             Scalar x = m_matT.coeff(i,i+1);
529             Scalar y = m_matT.coeff(i+1,i);
530             Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
531             Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
532             if ((vr == 0.0) && (vi == 0.0))
533               vr = eps * norm * (internal::abs(w) + internal::abs(q) + internal::abs(x) + internal::abs(y) + internal::abs(lastw));
534 
535 	    std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
536             m_matT.coeffRef(i,n-1) = internal::real(cc);
537             m_matT.coeffRef(i,n) = internal::imag(cc);
538             if (internal::abs(x) > (internal::abs(lastw) + internal::abs(q)))
539             {
540               m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
541               m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
542             }
543             else
544             {
545               cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q);
546               m_matT.coeffRef(i+1,n-1) = internal::real(cc);
547               m_matT.coeffRef(i+1,n) = internal::imag(cc);
548             }
549           }
550 
551           // Overflow control
552           using std::max;
553           Scalar t = (max)(internal::abs(m_matT.coeff(i,n-1)),internal::abs(m_matT.coeff(i,n)));
554           if ((eps * t) * t > Scalar(1))
555             m_matT.block(i, n-1, size-i, 2) /= t;
556 
557         }
558       }
559 
560       // We handled a pair of complex conjugate eigenvalues, so need to skip them both
561       n--;
562     }
563     else
564     {
565       eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen
566     }
567   }
568 
569   // Back transformation to get eigenvectors of original matrix
570   for (Index j = size-1; j >= 0; j--)
571   {
572     m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
573     m_eivec.col(j) = m_tmp;
574   }
575 }
576 
577 } // end namespace Eigen
578 
579 #endif // EIGEN_EIGENSOLVER_H
580