• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // This file is part of Eigen, a lightweight C++ template library
2  // for linear algebra.
3  //
4  // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
5  // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
6  //
7  // This Source Code Form is subject to the terms of the Mozilla
8  // Public License v. 2.0. If a copy of the MPL was not distributed
9  // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10  
11  #ifndef EIGEN_MATRIX_LOGARITHM
12  #define EIGEN_MATRIX_LOGARITHM
13  
14  #ifndef M_PI
15  #define M_PI 3.141592653589793238462643383279503L
16  #endif
17  
18  namespace Eigen {
19  
20  /** \ingroup MatrixFunctions_Module
21    * \class MatrixLogarithmAtomic
22    * \brief Helper class for computing matrix logarithm of atomic matrices.
23    *
24    * \internal
25    * Here, an atomic matrix is a triangular matrix whose diagonal
26    * entries are close to each other.
27    *
28    * \sa class MatrixFunctionAtomic, MatrixBase::log()
29    */
30  template <typename MatrixType>
31  class MatrixLogarithmAtomic
32  {
33  public:
34  
35    typedef typename MatrixType::Scalar Scalar;
36    // typedef typename MatrixType::Index Index;
37    typedef typename NumTraits<Scalar>::Real RealScalar;
38    // typedef typename internal::stem_function<Scalar>::type StemFunction;
39    // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
40  
41    /** \brief Constructor. */
MatrixLogarithmAtomic()42    MatrixLogarithmAtomic() { }
43  
44    /** \brief Compute matrix logarithm of atomic matrix
45      * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
46      * \returns  The logarithm of \p A.
47      */
48    MatrixType compute(const MatrixType& A);
49  
50  private:
51  
52    void compute2x2(const MatrixType& A, MatrixType& result);
53    void computeBig(const MatrixType& A, MatrixType& result);
54    static Scalar atanh(Scalar x);
55    int getPadeDegree(float normTminusI);
56    int getPadeDegree(double normTminusI);
57    int getPadeDegree(long double normTminusI);
58    void computePade(MatrixType& result, const MatrixType& T, int degree);
59    void computePade3(MatrixType& result, const MatrixType& T);
60    void computePade4(MatrixType& result, const MatrixType& T);
61    void computePade5(MatrixType& result, const MatrixType& T);
62    void computePade6(MatrixType& result, const MatrixType& T);
63    void computePade7(MatrixType& result, const MatrixType& T);
64    void computePade8(MatrixType& result, const MatrixType& T);
65    void computePade9(MatrixType& result, const MatrixType& T);
66    void computePade10(MatrixType& result, const MatrixType& T);
67    void computePade11(MatrixType& result, const MatrixType& T);
68  
69    static const int minPadeDegree = 3;
70    static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24?  5:      // single precision
71                                     std::numeric_limits<RealScalar>::digits<= 53?  7:      // double precision
72                                     std::numeric_limits<RealScalar>::digits<= 64?  8:      // extended precision
73                                     std::numeric_limits<RealScalar>::digits<=106? 10: 11;  // double-double or quadruple precision
74  
75    // Prevent copying
76    MatrixLogarithmAtomic(const MatrixLogarithmAtomic&);
77    MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&);
78  };
79  
80  /** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
81  template <typename MatrixType>
compute(const MatrixType & A)82  MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
83  {
84    using std::log;
85    MatrixType result(A.rows(), A.rows());
86    if (A.rows() == 1)
87      result(0,0) = log(A(0,0));
88    else if (A.rows() == 2)
89      compute2x2(A, result);
90    else
91      computeBig(A, result);
92    return result;
93  }
94  
95  /** \brief Compute atanh (inverse hyperbolic tangent). */
96  template <typename MatrixType>
atanh(typename MatrixType::Scalar x)97  typename MatrixType::Scalar MatrixLogarithmAtomic<MatrixType>::atanh(typename MatrixType::Scalar x)
98  {
99    using std::abs;
100    using std::sqrt;
101    if (abs(x) > sqrt(NumTraits<Scalar>::epsilon()))
102      return Scalar(0.5) * log((Scalar(1) + x) / (Scalar(1) - x));
103    else
104      return x + x*x*x / Scalar(3);
105  }
106  
107  /** \brief Compute logarithm of 2x2 triangular matrix. */
108  template <typename MatrixType>
compute2x2(const MatrixType & A,MatrixType & result)109  void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result)
110  {
111    using std::abs;
112    using std::ceil;
113    using std::imag;
114    using std::log;
115  
116    Scalar logA00 = log(A(0,0));
117    Scalar logA11 = log(A(1,1));
118  
119    result(0,0) = logA00;
120    result(1,0) = Scalar(0);
121    result(1,1) = logA11;
122  
123    if (A(0,0) == A(1,1)) {
124      result(0,1) = A(0,1) / A(0,0);
125    } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) {
126      result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0));
127    } else {
128      // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
129      int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI)));
130      Scalar z = (A(1,1) - A(0,0)) / (A(1,1) + A(0,0));
131      result(0,1) = A(0,1) * (Scalar(2) * atanh(z) + Scalar(0,2*M_PI*unwindingNumber)) / (A(1,1) - A(0,0));
132    }
133  }
134  
135  /** \brief Compute logarithm of triangular matrices with size > 2.
136    * \details This uses a inverse scale-and-square algorithm. */
137  template <typename MatrixType>
computeBig(const MatrixType & A,MatrixType & result)138  void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result)
139  {
140    int numberOfSquareRoots = 0;
141    int numberOfExtraSquareRoots = 0;
142    int degree;
143    MatrixType T = A;
144    const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1:                     // single precision
145                                      maxPadeDegree<= 7? 2.6429608311114350e-1:                     // double precision
146                                      maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
147                                      maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
148                                                         1.1880960220216759245467951592883642e-1L;  // quadruple precision
149  
150    while (true) {
151      RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
152      if (normTminusI < maxNormForPade) {
153        degree = getPadeDegree(normTminusI);
154        int degree2 = getPadeDegree(normTminusI / RealScalar(2));
155        if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
156  	break;
157        ++numberOfExtraSquareRoots;
158      }
159      MatrixType sqrtT;
160      MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
161      T = sqrtT;
162      ++numberOfSquareRoots;
163    }
164  
165    computePade(result, T, degree);
166    result *= pow(RealScalar(2), numberOfSquareRoots);
167  }
168  
169  /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
170  template <typename MatrixType>
getPadeDegree(float normTminusI)171  int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
172  {
173    const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
174              5.3149729967117310e-1 };
175    for (int degree = 3; degree <= maxPadeDegree; ++degree)
176      if (normTminusI <= maxNormForPade[degree - minPadeDegree])
177        return degree;
178    assert(false); // this line should never be reached
179  }
180  
181  /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
182  template <typename MatrixType>
getPadeDegree(double normTminusI)183  int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
184  {
185    const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
186              1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
187    for (int degree = 3; degree <= maxPadeDegree; ++degree)
188      if (normTminusI <= maxNormForPade[degree - minPadeDegree])
189        return degree;
190    assert(false); // this line should never be reached
191  }
192  
193  /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
194  template <typename MatrixType>
getPadeDegree(long double normTminusI)195  int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
196  {
197  #if   LDBL_MANT_DIG == 53         // double precision
198    const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
199              1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
200  #elif LDBL_MANT_DIG <= 64         // extended precision
201    const double maxNormForPade[] = { 5.48256690357782863103e-3 /* degree = 3 */, 2.34559162387971167321e-2,
202              5.84603923897347449857e-2, 1.08486423756725170223e-1, 1.68385767881294446649e-1,
203              2.32777776523703892094e-1 };
204  #elif LDBL_MANT_DIG <= 106        // double-double
205    const double maxNormForPade[] = { 8.58970550342939562202529664318890e-5 /* degree = 3 */,
206              9.34074328446359654039446552677759e-4, 4.26117194647672175773064114582860e-3,
207              1.21546224740281848743149666560464e-2, 2.61100544998339436713088248557444e-2,
208              4.66170074627052749243018566390567e-2, 7.32585144444135027565872014932387e-2,
209              1.05026503471351080481093652651105e-1 };
210  #else                             // quadruple precision
211    const double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5 /* degree = 3 */,
212              5.8853168473544560470387769480192666e-4, 2.9216120366601315391789493628113520e-3,
213              8.8415758124319434347116734705174308e-3, 1.9850836029449446668518049562565291e-2,
214              3.6688019729653446926585242192447447e-2, 5.9290962294020186998954055264528393e-2,
215              8.6998436081634343903250580992127677e-2, 1.1880960220216759245467951592883642e-1 };
216  #endif
217    for (int degree = 3; degree <= maxPadeDegree; ++degree)
218      if (normTminusI <= maxNormForPade[degree - minPadeDegree])
219        return degree;
220    assert(false); // this line should never be reached
221  }
222  
223  /* \brief Compute Pade approximation to matrix logarithm */
224  template <typename MatrixType>
computePade(MatrixType & result,const MatrixType & T,int degree)225  void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree)
226  {
227    switch (degree) {
228      case 3:  computePade3(result, T);  break;
229      case 4:  computePade4(result, T);  break;
230      case 5:  computePade5(result, T);  break;
231      case 6:  computePade6(result, T);  break;
232      case 7:  computePade7(result, T);  break;
233      case 8:  computePade8(result, T);  break;
234      case 9:  computePade9(result, T);  break;
235      case 10: computePade10(result, T); break;
236      case 11: computePade11(result, T); break;
237      default: assert(false); // should never happen
238    }
239  }
240  
241  template <typename MatrixType>
computePade3(MatrixType & result,const MatrixType & T)242  void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T)
243  {
244    const int degree = 3;
245    const RealScalar nodes[]   = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
246              0.8872983346207416885179265399782400L };
247    const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
248              0.2777777777777777777777777777777778L };
249    assert(degree <= maxPadeDegree);
250    MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
251    result.setZero(T.rows(), T.rows());
252    for (int k = 0; k < degree; ++k)
253      result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
254                             .template triangularView<Upper>().solve(TminusI);
255  }
256  
257  template <typename MatrixType>
computePade4(MatrixType & result,const MatrixType & T)258  void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T)
259  {
260    const int degree = 4;
261    const RealScalar nodes[]   = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
262              0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L };
263    const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
264              0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L };
265    assert(degree <= maxPadeDegree);
266    MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
267    result.setZero(T.rows(), T.rows());
268    for (int k = 0; k < degree; ++k)
269      result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
270                             .template triangularView<Upper>().solve(TminusI);
271  }
272  
273  template <typename MatrixType>
computePade5(MatrixType & result,const MatrixType & T)274  void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T)
275  {
276    const int degree = 5;
277    const RealScalar nodes[]   = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
278              0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
279              0.9530899229693319963988134391496965L };
280    const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
281              0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
282              0.1184634425280945437571320203599587L };
283    assert(degree <= maxPadeDegree);
284    MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
285    result.setZero(T.rows(), T.rows());
286    for (int k = 0; k < degree; ++k)
287      result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
288                             .template triangularView<Upper>().solve(TminusI);
289  }
290  
291  template <typename MatrixType>
computePade6(MatrixType & result,const MatrixType & T)292  void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T)
293  {
294    const int degree = 6;
295    const RealScalar nodes[]   = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
296              0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
297  		        0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L };
298    const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
299              0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
300   		        0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L };
301    assert(degree <= maxPadeDegree);
302    MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
303    result.setZero(T.rows(), T.rows());
304    for (int k = 0; k < degree; ++k)
305      result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
306                             .template triangularView<Upper>().solve(TminusI);
307  }
308  
309  template <typename MatrixType>
computePade7(MatrixType & result,const MatrixType & T)310  void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T)
311  {
312    const int degree = 7;
313    const RealScalar nodes[]   = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
314              0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
315              0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
316              0.9745539561713792622630948420239256L };
317    const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
318              0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
319              0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
320              0.0647424830844348466353057163395410L };
321    assert(degree <= maxPadeDegree);
322    MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
323    result.setZero(T.rows(), T.rows());
324    for (int k = 0; k < degree; ++k)
325      result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
326                             .template triangularView<Upper>().solve(TminusI);
327  }
328  
329  template <typename MatrixType>
computePade8(MatrixType & result,const MatrixType & T)330  void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T)
331  {
332    const int degree = 8;
333    const RealScalar nodes[]   = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
334              0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
335              0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
336              0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L };
337    const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
338              0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
339              0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
340              0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L };
341    assert(degree <= maxPadeDegree);
342    MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
343    result.setZero(T.rows(), T.rows());
344    for (int k = 0; k < degree; ++k)
345      result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
346                             .template triangularView<Upper>().solve(TminusI);
347  }
348  
349  template <typename MatrixType>
computePade9(MatrixType & result,const MatrixType & T)350  void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T)
351  {
352    const int degree = 9;
353    const RealScalar nodes[]   = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
354              0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
355              0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
356              0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
357              0.9840801197538130449177881014518364L };
358    const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
359              0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
360              0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
361              0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
362              0.0406371941807872059859460790552618L };
363    assert(degree <= maxPadeDegree);
364    MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
365    result.setZero(T.rows(), T.rows());
366    for (int k = 0; k < degree; ++k)
367      result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
368                             .template triangularView<Upper>().solve(TminusI);
369  }
370  
371  template <typename MatrixType>
computePade10(MatrixType & result,const MatrixType & T)372  void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T)
373  {
374    const int degree = 10;
375    const RealScalar nodes[]   = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
376              0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
377              0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
378              0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
379              0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L };
380    const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
381              0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
382              0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
383              0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
384              0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L };
385    assert(degree <= maxPadeDegree);
386    MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
387    result.setZero(T.rows(), T.rows());
388    for (int k = 0; k < degree; ++k)
389      result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
390                             .template triangularView<Upper>().solve(TminusI);
391  }
392  
393  template <typename MatrixType>
computePade11(MatrixType & result,const MatrixType & T)394  void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T)
395  {
396    const int degree = 11;
397    const RealScalar nodes[]   = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
398              0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
399              0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
400              0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
401              0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
402              0.9891143290730284964019690005614287L };
403    const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
404              0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
405              0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
406              0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
407              0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
408              0.0278342835580868332413768602212743L };
409    assert(degree <= maxPadeDegree);
410    MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
411    result.setZero(T.rows(), T.rows());
412    for (int k = 0; k < degree; ++k)
413      result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
414                             .template triangularView<Upper>().solve(TminusI);
415  }
416  
417  /** \ingroup MatrixFunctions_Module
418    *
419    * \brief Proxy for the matrix logarithm of some matrix (expression).
420    *
421    * \tparam Derived  Type of the argument to the matrix function.
422    *
423    * This class holds the argument to the matrix function until it is
424    * assigned or evaluated for some other reason (so the argument
425    * should not be changed in the meantime). It is the return type of
426    * matrixBase::matrixLogarithm() and most of the time this is the
427    * only way it is used.
428    */
429  template<typename Derived> class MatrixLogarithmReturnValue
430  : public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
431  {
432  public:
433  
434    typedef typename Derived::Scalar Scalar;
435    typedef typename Derived::Index Index;
436  
437    /** \brief Constructor.
438      *
439      * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
440      */
MatrixLogarithmReturnValue(const Derived & A)441    MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
442  
443    /** \brief Compute the matrix logarithm.
444      *
445      * \param[out]  result  Logarithm of \p A, where \A is as specified in the constructor.
446      */
447    template <typename ResultType>
evalTo(ResultType & result)448    inline void evalTo(ResultType& result) const
449    {
450      typedef typename Derived::PlainObject PlainObject;
451      typedef internal::traits<PlainObject> Traits;
452      static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
453      static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
454      static const int Options = PlainObject::Options;
455      typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
456      typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
457      typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType;
458      AtomicType atomic;
459  
460      const PlainObject Aevaluated = m_A.eval();
461      MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
462      mf.compute(result);
463    }
464  
rows()465    Index rows() const { return m_A.rows(); }
cols()466    Index cols() const { return m_A.cols(); }
467  
468  private:
469    typename internal::nested<Derived>::type m_A;
470  
471    MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&);
472  };
473  
474  namespace internal {
475    template<typename Derived>
476    struct traits<MatrixLogarithmReturnValue<Derived> >
477    {
478      typedef typename Derived::PlainObject ReturnType;
479    };
480  }
481  
482  
483  /********** MatrixBase method **********/
484  
485  
486  template <typename Derived>
487  const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
488  {
489    eigen_assert(rows() == cols());
490    return MatrixLogarithmReturnValue<Derived>(derived());
491  }
492  
493  } // end namespace Eigen
494  
495  #endif // EIGEN_MATRIX_LOGARITHM
496