• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21 
22 #define TARGET_LONG_BITS 32
23 
24 #define ELF_MACHINE	EM_ARM
25 
26 #define CPUState struct CPUARMState
27 
28 #include "config.h"
29 #include "qemu-common.h"
30 #include "cpu-defs.h"
31 
32 #include "softfloat.h"
33 
34 #define TARGET_HAS_ICE 1
35 
36 #define EXCP_UDEF            1   /* undefined instruction */
37 #define EXCP_SWI             2   /* software interrupt */
38 #define EXCP_PREFETCH_ABORT  3
39 #define EXCP_DATA_ABORT      4
40 #define EXCP_IRQ             5
41 #define EXCP_FIQ             6
42 #define EXCP_BKPT            7
43 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45 #define EXCP_STREX          10
46 #define EXCP_SMC            11   /* secure monitor call */
47 
48 #define ARMV7M_EXCP_RESET   1
49 #define ARMV7M_EXCP_NMI     2
50 #define ARMV7M_EXCP_HARD    3
51 #define ARMV7M_EXCP_MEM     4
52 #define ARMV7M_EXCP_BUS     5
53 #define ARMV7M_EXCP_USAGE   6
54 #define ARMV7M_EXCP_SVC     11
55 #define ARMV7M_EXCP_DEBUG   12
56 #define ARMV7M_EXCP_PENDSV  14
57 #define ARMV7M_EXCP_SYSTICK 15
58 
59 /* ARM-specific interrupt pending bits.  */
60 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
61 
62 
63 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
64                             int srcreg, int operand, uint32_t value,
65                             void *retaddr);
66 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
67                                int dstreg, int operand,
68                                void *retaddr);
69 
70 struct arm_boot_info;
71 
72 #define NB_MMU_MODES 2
73 
74 /* We currently assume float and double are IEEE single and double
75    precision respectively.
76    Doing runtime conversions is tricky because VFP registers may contain
77    integer values (eg. as the result of a FTOSI instruction).
78    s<2n> maps to the least significant half of d<n>
79    s<2n+1> maps to the most significant half of d<n>
80  */
81 
82 typedef struct CPUARMState {
83     /* Regs for current mode.  */
84     uint32_t regs[16];
85     /* Frequently accessed CPSR bits are stored separately for efficiently.
86        This contains all the other bits.  Use cpsr_{read,write} to access
87        the whole CPSR.  */
88     uint32_t uncached_cpsr;
89     uint32_t spsr;
90 
91     /* Banked registers.  */
92     uint32_t banked_spsr[7];
93     uint32_t banked_r13[7];
94     uint32_t banked_r14[7];
95 
96     /* These hold r8-r12.  */
97     uint32_t usr_regs[5];
98     uint32_t fiq_regs[5];
99 
100     /* cpsr flag cache for faster execution */
101     uint32_t CF; /* 0 or 1 */
102     uint32_t VF; /* V is the bit 31. All other bits are undefined */
103     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
104     uint32_t ZF; /* Z set if zero.  */
105     uint32_t QF; /* 0 or 1 */
106     uint32_t GE; /* cpsr[19:16] */
107     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
108     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
109 
110     /* System control coprocessor (cp15) */
111     struct {
112         uint32_t c0_cpuid;
113         uint32_t c0_cachetype;
114         uint32_t c0_ccsid[16]; /* Cache size.  */
115         uint32_t c0_clid; /* Cache level.  */
116         uint32_t c0_cssel; /* Cache size selection.  */
117         uint32_t c0_c1[8]; /* Feature registers.  */
118         uint32_t c0_c2[8]; /* Instruction set registers.  */
119         uint32_t c1_sys; /* System control register.  */
120         uint32_t c1_coproc; /* Coprocessor access register.  */
121         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
122         uint32_t c1_secfg; /* Secure configuration register. */
123         uint32_t c1_sedbg; /* Secure debug enable register. */
124         uint32_t c1_nseac; /* Non-secure access control register. */
125         uint32_t c2_base0; /* MMU translation table base 0.  */
126         uint32_t c2_base1; /* MMU translation table base 1.  */
127         uint32_t c2_control; /* MMU translation table base control.  */
128         uint32_t c2_mask; /* MMU translation table base selection mask.  */
129         uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
130         uint32_t c2_data; /* MPU data cachable bits.  */
131         uint32_t c2_insn; /* MPU instruction cachable bits.  */
132         uint32_t c3; /* MMU domain access control register
133                         MPU write buffer control.  */
134         uint32_t c5_insn; /* Fault status registers.  */
135         uint32_t c5_data;
136         uint32_t c6_region[8]; /* MPU base/size registers.  */
137         uint32_t c6_insn; /* Fault address registers.  */
138         uint32_t c6_data;
139         uint32_t c7_par;  /* Translation result. */
140         uint32_t c9_insn; /* Cache lockdown registers.  */
141         uint32_t c9_data;
142         uint32_t c9_pmcr_data; /* Performance Monitor Control Register */
143         uint32_t c9_useren; /* user enable register */
144         uint32_t c9_inten; /* interrupt enable set/clear register */
145         uint32_t c12_vbar; /* secure/nonsecure vector base address register. */
146         uint32_t c12_mvbar; /* monitor vector base address register. */
147         uint32_t c13_fcse; /* FCSE PID.  */
148         uint32_t c13_context; /* Context ID.  */
149         uint32_t c13_tls1; /* User RW Thread register.  */
150         uint32_t c13_tls2; /* User RO Thread register.  */
151         uint32_t c13_tls3; /* Privileged Thread register.  */
152         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
153         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
154         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
155         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
156         uint32_t c15_threadid; /* TI debugger thread-ID.  */
157     } cp15;
158 
159     struct {
160         uint32_t other_sp;
161         uint32_t vecbase;
162         uint32_t basepri;
163         uint32_t control;
164         int current_sp;
165         int exception;
166         int pending_exception;
167     } v7m;
168 
169     /* Minimal set of debug coprocessor state (cp14) */
170     uint32_t cp14_dbgdidr;
171 
172     /* Thumb-2 EE state.  */
173     uint32_t teecr;
174     uint32_t teehbr;
175 
176     /* Internal CPU feature flags.  */
177     uint32_t features;
178 
179     /* VFP coprocessor state.  */
180     struct {
181         float64 regs[32];
182 
183         uint32_t xregs[16];
184         /* We store these fpcsr fields separately for convenience.  */
185         int vec_len;
186         int vec_stride;
187 
188         /* scratch space when Tn are not sufficient.  */
189         uint32_t scratch[8];
190 
191         /* fp_status is the "normal" fp status. standard_fp_status retains
192          * values corresponding to the ARM "Standard FPSCR Value", ie
193          * default-NaN, flush-to-zero, round-to-nearest and is used by
194          * any operations (generally Neon) which the architecture defines
195          * as controlled by the standard FPSCR value rather than the FPSCR.
196          *
197          * To avoid having to transfer exception bits around, we simply
198          * say that the FPSCR cumulative exception flags are the logical
199          * OR of the flags in the two fp statuses. This relies on the
200          * only thing which needs to read the exception flags being
201          * an explicit FPSCR read.
202          */
203         float_status fp_status;
204         float_status standard_fp_status;
205     } vfp;
206     uint32_t exclusive_addr;
207     uint32_t exclusive_val;
208     uint32_t exclusive_high;
209 #if defined(CONFIG_USER_ONLY)
210     uint32_t exclusive_test;
211     uint32_t exclusive_info;
212 #endif
213 
214     /* iwMMXt coprocessor state.  */
215     struct {
216         uint64_t regs[16];
217         uint64_t val;
218 
219         uint32_t cregs[16];
220     } iwmmxt;
221 
222 #if defined(CONFIG_USER_ONLY)
223     /* For usermode syscall translation.  */
224     int eabi;
225 #endif
226 
227     CPU_COMMON
228 
229     /* These fields after the common ones so they are preserved on reset.  */
230 
231     /* Coprocessor IO used by peripherals */
232     struct {
233         ARMReadCPFunc *cp_read;
234         ARMWriteCPFunc *cp_write;
235         void *opaque;
236     } cp[15];
237     void *nvic;
238     struct arm_boot_info *boot_info;
239 } CPUARMState;
240 
241 CPUARMState *cpu_arm_init(const char *cpu_model);
242 void arm_translate_init(void);
243 int cpu_arm_exec(CPUARMState *s);
244 void cpu_arm_close(CPUARMState *s);
245 void do_interrupt(CPUARMState *);
246 void switch_mode(CPUARMState *, int);
247 uint32_t do_arm_semihosting(CPUARMState *env);
248 
249 /* you can call this signal handler from your SIGBUS and SIGSEGV
250    signal handlers to inform the virtual CPU of exceptions. non zero
251    is returned if the signal was handled by the virtual CPU.  */
252 int cpu_arm_signal_handler(int host_signum, void *pinfo,
253                            void *puc);
254 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
255                               int mmu_idx, int is_softmuu);
256 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
257 
cpu_set_tls(CPUARMState * env,target_ulong newtls)258 static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
259 {
260   env->cp15.c13_tls2 = newtls;
261 }
262 
263 #define CPSR_M (0x1f)
264 #define CPSR_T (1 << 5)
265 #define CPSR_F (1 << 6)
266 #define CPSR_I (1 << 7)
267 #define CPSR_A (1 << 8)
268 #define CPSR_E (1 << 9)
269 #define CPSR_IT_2_7 (0xfc00)
270 #define CPSR_GE (0xf << 16)
271 #define CPSR_RESERVED (0xf << 20)
272 #define CPSR_J (1 << 24)
273 #define CPSR_IT_0_1 (3 << 25)
274 #define CPSR_Q (1 << 27)
275 #define CPSR_V (1 << 28)
276 #define CPSR_C (1 << 29)
277 #define CPSR_Z (1 << 30)
278 #define CPSR_N (1 << 31)
279 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
280 
281 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
282 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
283 /* Bits writable in user mode.  */
284 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
285 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
286 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
287 
288 /* Return the current CPSR value.  */
289 uint32_t cpsr_read(CPUARMState *env);
290 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
291 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
292 
293 /* Return the current xPSR value.  */
xpsr_read(CPUARMState * env)294 static inline uint32_t xpsr_read(CPUARMState *env)
295 {
296     int ZF;
297     ZF = (env->ZF == 0);
298     return (env->NF & 0x80000000) | (ZF << 30)
299         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
300         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
301         | ((env->condexec_bits & 0xfc) << 8)
302         | env->v7m.exception;
303 }
304 
305 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
xpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)306 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
307 {
308     if (mask & CPSR_NZCV) {
309         env->ZF = (~val) & CPSR_Z;
310         env->NF = val;
311         env->CF = (val >> 29) & 1;
312         env->VF = (val << 3) & 0x80000000;
313     }
314     if (mask & CPSR_Q)
315         env->QF = ((val & CPSR_Q) != 0);
316     if (mask & (1 << 24))
317         env->thumb = ((val & (1 << 24)) != 0);
318     if (mask & CPSR_IT_0_1) {
319         env->condexec_bits &= ~3;
320         env->condexec_bits |= (val >> 25) & 3;
321     }
322     if (mask & CPSR_IT_2_7) {
323         env->condexec_bits &= 3;
324         env->condexec_bits |= (val >> 8) & 0xfc;
325     }
326     if (mask & 0x1ff) {
327         env->v7m.exception = val & 0x1ff;
328     }
329 }
330 
331 /* Return the current FPSCR value.  */
332 uint32_t vfp_get_fpscr(CPUARMState *env);
333 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
334 
335 enum arm_cpu_mode {
336   ARM_CPU_MODE_USR = 0x10,
337   ARM_CPU_MODE_FIQ = 0x11,
338   ARM_CPU_MODE_IRQ = 0x12,
339   ARM_CPU_MODE_SVC = 0x13,
340   ARM_CPU_MODE_SMC = 0x16,
341   ARM_CPU_MODE_ABT = 0x17,
342   ARM_CPU_MODE_UND = 0x1b,
343   ARM_CPU_MODE_SYS = 0x1f
344 };
345 
346 /* VFP system registers.  */
347 #define ARM_VFP_FPSID   0
348 #define ARM_VFP_FPSCR   1
349 #define ARM_VFP_MVFR1   6
350 #define ARM_VFP_MVFR0   7
351 #define ARM_VFP_FPEXC   8
352 #define ARM_VFP_FPINST  9
353 #define ARM_VFP_FPINST2 10
354 
355 /* iwMMXt coprocessor control registers.  */
356 #define ARM_IWMMXT_wCID		0
357 #define ARM_IWMMXT_wCon		1
358 #define ARM_IWMMXT_wCSSF	2
359 #define ARM_IWMMXT_wCASF	3
360 #define ARM_IWMMXT_wCGR0	8
361 #define ARM_IWMMXT_wCGR1	9
362 #define ARM_IWMMXT_wCGR2	10
363 #define ARM_IWMMXT_wCGR3	11
364 
365 enum arm_features {
366     ARM_FEATURE_VFP,
367     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
368     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
369     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
370     ARM_FEATURE_V6,
371     ARM_FEATURE_V6K,
372     ARM_FEATURE_V7,
373     ARM_FEATURE_THUMB2,
374     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
375     ARM_FEATURE_VFP3,
376     ARM_FEATURE_VFP_FP16,
377     ARM_FEATURE_NEON,
378     ARM_FEATURE_DIV,
379     ARM_FEATURE_M, /* Microcontroller profile.  */
380     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
381     ARM_FEATURE_THUMB2EE,
382     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
383     ARM_FEATURE_V4T,
384     ARM_FEATURE_V5,
385     ARM_FEATURE_STRONGARM,
386     ARM_FEATURE_TRUSTZONE, /* TrustZone Security Extensions. */
387 };
388 
arm_feature(CPUARMState * env,int feature)389 static inline int arm_feature(CPUARMState *env, int feature)
390 {
391     return (env->features & (1u << feature)) != 0;
392 }
393 
394 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
395 
396 /* Interface between CPU and Interrupt controller.  */
397 void armv7m_nvic_set_pending(void *opaque, int irq);
398 int armv7m_nvic_acknowledge_irq(void *opaque);
399 void armv7m_nvic_complete_irq(void *opaque, int irq);
400 
401 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
402                        ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
403                        void *opaque);
404 
405 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
406    Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
407    conventional cores (ie. Application or Realtime profile).  */
408 
409 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
410 #define ARM_CPUID(env) (env->cp15.c0_cpuid)
411 
412 #define ARM_CPUID_ARM1026     0x4106a262
413 #define ARM_CPUID_ARM926      0x41069265
414 #define ARM_CPUID_ARM946      0x41059461
415 #define ARM_CPUID_TI915T      0x54029152
416 #define ARM_CPUID_TI925T      0x54029252
417 #define ARM_CPUID_SA1100      0x4401A11B
418 #define ARM_CPUID_SA1110      0x6901B119
419 #define ARM_CPUID_PXA250      0x69052100
420 #define ARM_CPUID_PXA255      0x69052d00
421 #define ARM_CPUID_PXA260      0x69052903
422 #define ARM_CPUID_PXA261      0x69052d05
423 #define ARM_CPUID_PXA262      0x69052d06
424 #define ARM_CPUID_PXA270      0x69054110
425 #define ARM_CPUID_PXA270_A0   0x69054110
426 #define ARM_CPUID_PXA270_A1   0x69054111
427 #define ARM_CPUID_PXA270_B0   0x69054112
428 #define ARM_CPUID_PXA270_B1   0x69054113
429 #define ARM_CPUID_PXA270_C0   0x69054114
430 #define ARM_CPUID_PXA270_C5   0x69054117
431 #define ARM_CPUID_ARM1136     0x4117b363
432 #define ARM_CPUID_ARM1136_R2  0x4107b362
433 #define ARM_CPUID_ARM11MPCORE 0x410fb022
434 #define ARM_CPUID_CORTEXA8    0x410fc080
435 #define ARM_CPUID_CORTEXA8_R2 0x412fc083
436 #define ARM_CPUID_CORTEXA9    0x410fc090
437 #define ARM_CPUID_CORTEXM3    0x410fc231
438 #define ARM_CPUID_ANY         0xffffffff
439 
440 #if defined(CONFIG_USER_ONLY)
441 #define TARGET_PAGE_BITS 12
442 #else
443 /* The ARM MMU allows 1k pages.  */
444 /* ??? Linux doesn't actually use these, and they're deprecated in recent
445    architecture revisions.  Maybe a configure option to disable them.  */
446 #define TARGET_PAGE_BITS 10
447 #endif
448 
449 #define TARGET_PHYS_ADDR_SPACE_BITS 32
450 #define TARGET_VIRT_ADDR_SPACE_BITS 32
451 
452 #define cpu_init cpu_arm_init
453 #define cpu_exec cpu_arm_exec
454 #define cpu_gen_code cpu_arm_gen_code
455 #define cpu_signal_handler cpu_arm_signal_handler
456 #define cpu_list arm_cpu_list
457 
458 #define CPU_SAVE_VERSION 3
459 
460 /* MMU modes definitions */
461 #define MMU_MODE0_SUFFIX _kernel
462 #define MMU_MODE1_SUFFIX _user
463 #define MMU_USER_IDX 1
cpu_mmu_index(CPUState * env)464 static inline int cpu_mmu_index (CPUState *env)
465 {
466     return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
467 }
468 
is_cpu_user(CPUState * env)469 static inline int is_cpu_user (CPUState *env)
470 {
471 #ifdef CONFIG_USER_ONLY
472     return 1;
473 #else
474     return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR;
475 #endif  // CONFIG_USER_ONLY
476 }
477 
478 #if defined(CONFIG_USER_ONLY)
cpu_clone_regs(CPUState * env,target_ulong newsp)479 static inline void cpu_clone_regs(CPUState *env, target_ulong newsp)
480 {
481     if (newsp)
482         env->regs[13] = newsp;
483     env->regs[0] = 0;
484 }
485 #endif
486 
487 #include "cpu-all.h"
488 
489 /* Bit usage in the TB flags field: */
490 #define ARM_TBFLAG_THUMB_SHIFT      0
491 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
492 #define ARM_TBFLAG_VECLEN_SHIFT     1
493 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
494 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
495 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
496 #define ARM_TBFLAG_PRIV_SHIFT       6
497 #define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
498 #define ARM_TBFLAG_VFPEN_SHIFT      7
499 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
500 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
501 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
502 /* Bits 31..16 are currently unused. */
503 
504 /* some convenience accessor macros */
505 #define ARM_TBFLAG_THUMB(F) \
506     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
507 #define ARM_TBFLAG_VECLEN(F) \
508     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
509 #define ARM_TBFLAG_VECSTRIDE(F) \
510     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
511 #define ARM_TBFLAG_PRIV(F) \
512     (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
513 #define ARM_TBFLAG_VFPEN(F) \
514     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
515 #define ARM_TBFLAG_CONDEXEC(F) \
516     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
517 
cpu_get_tb_cpu_state(CPUState * env,target_ulong * pc,target_ulong * cs_base,int * flags)518 static inline void cpu_get_tb_cpu_state(CPUState *env, target_ulong *pc,
519                                         target_ulong *cs_base, int *flags)
520 {
521     int privmode;
522     *pc = env->regs[15];
523     *cs_base = 0;
524     *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
525         | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
526         | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
527         | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT);
528     if (arm_feature(env, ARM_FEATURE_M)) {
529         privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
530     } else {
531         privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
532     }
533     if (privmode) {
534         *flags |= ARM_TBFLAG_PRIV_MASK;
535     }
536     if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
537         *flags |= ARM_TBFLAG_VFPEN_MASK;
538     }
539 }
540 
541 #endif
542