1 //===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the Expr interface and subclasses for C++ expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_AST_EXPRCXX_H
15 #define LLVM_CLANG_AST_EXPRCXX_H
16
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/TemplateBase.h"
20 #include "clang/AST/UnresolvedSet.h"
21 #include "clang/Basic/ExpressionTraits.h"
22 #include "clang/Basic/Lambda.h"
23 #include "clang/Basic/TypeTraits.h"
24 #include "llvm/Support/Compiler.h"
25
26 namespace clang {
27
28 class CXXConstructorDecl;
29 class CXXDestructorDecl;
30 class CXXMethodDecl;
31 class CXXTemporary;
32 class TemplateArgumentListInfo;
33 class UuidAttr;
34
35 //===--------------------------------------------------------------------===//
36 // C++ Expressions.
37 //===--------------------------------------------------------------------===//
38
39 /// \brief A call to an overloaded operator written using operator
40 /// syntax.
41 ///
42 /// Represents a call to an overloaded operator written using operator
43 /// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
44 /// normal call, this AST node provides better information about the
45 /// syntactic representation of the call.
46 ///
47 /// In a C++ template, this expression node kind will be used whenever
48 /// any of the arguments are type-dependent. In this case, the
49 /// function itself will be a (possibly empty) set of functions and
50 /// function templates that were found by name lookup at template
51 /// definition time.
52 class CXXOperatorCallExpr : public CallExpr {
53 /// \brief The overloaded operator.
54 OverloadedOperatorKind Operator;
55 SourceRange Range;
56
57 // Record the FP_CONTRACT state that applies to this operator call. Only
58 // meaningful for floating point types. For other types this value can be
59 // set to false.
60 unsigned FPContractable : 1;
61
62 SourceRange getSourceRangeImpl() const LLVM_READONLY;
63 public:
CXXOperatorCallExpr(ASTContext & C,OverloadedOperatorKind Op,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation operatorloc,bool fpContractable)64 CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
65 ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
66 SourceLocation operatorloc, bool fpContractable)
67 : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
68 operatorloc),
69 Operator(Op), FPContractable(fpContractable) {
70 Range = getSourceRangeImpl();
71 }
CXXOperatorCallExpr(ASTContext & C,EmptyShell Empty)72 explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
73 CallExpr(C, CXXOperatorCallExprClass, Empty) { }
74
75
76 /// getOperator - Returns the kind of overloaded operator that this
77 /// expression refers to.
getOperator()78 OverloadedOperatorKind getOperator() const { return Operator; }
79
80 /// getOperatorLoc - Returns the location of the operator symbol in
81 /// the expression. When @c getOperator()==OO_Call, this is the
82 /// location of the right parentheses; when @c
83 /// getOperator()==OO_Subscript, this is the location of the right
84 /// bracket.
getOperatorLoc()85 SourceLocation getOperatorLoc() const { return getRParenLoc(); }
86
getLocStart()87 SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
getLocEnd()88 SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
getSourceRange()89 SourceRange getSourceRange() const { return Range; }
90
classof(const Stmt * T)91 static bool classof(const Stmt *T) {
92 return T->getStmtClass() == CXXOperatorCallExprClass;
93 }
94
95 // Set the FP contractability status of this operator. Only meaningful for
96 // operations on floating point types.
setFPContractable(bool FPC)97 void setFPContractable(bool FPC) { FPContractable = FPC; }
98
99 // Get the FP contractability status of this operator. Only meaningful for
100 // operations on floating point types.
isFPContractable()101 bool isFPContractable() const { return FPContractable; }
102
103 friend class ASTStmtReader;
104 friend class ASTStmtWriter;
105 };
106
107 /// CXXMemberCallExpr - Represents a call to a member function that
108 /// may be written either with member call syntax (e.g., "obj.func()"
109 /// or "objptr->func()") or with normal function-call syntax
110 /// ("func()") within a member function that ends up calling a member
111 /// function. The callee in either case is a MemberExpr that contains
112 /// both the object argument and the member function, while the
113 /// arguments are the arguments within the parentheses (not including
114 /// the object argument).
115 class CXXMemberCallExpr : public CallExpr {
116 public:
CXXMemberCallExpr(ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation RP)117 CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
118 QualType t, ExprValueKind VK, SourceLocation RP)
119 : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
120
CXXMemberCallExpr(ASTContext & C,EmptyShell Empty)121 CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
122 : CallExpr(C, CXXMemberCallExprClass, Empty) { }
123
124 /// getImplicitObjectArgument - Retrieves the implicit object
125 /// argument for the member call. For example, in "x.f(5)", this
126 /// operation would return "x".
127 Expr *getImplicitObjectArgument() const;
128
129 /// Retrieves the declaration of the called method.
130 CXXMethodDecl *getMethodDecl() const;
131
132 /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
133 /// the implicit object argument. Note that this is may not be the same
134 /// declaration as that of the class context of the CXXMethodDecl which this
135 /// function is calling.
136 /// FIXME: Returns 0 for member pointer call exprs.
137 CXXRecordDecl *getRecordDecl() const;
138
classof(const Stmt * T)139 static bool classof(const Stmt *T) {
140 return T->getStmtClass() == CXXMemberCallExprClass;
141 }
142 };
143
144 /// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
145 class CUDAKernelCallExpr : public CallExpr {
146 private:
147 enum { CONFIG, END_PREARG };
148
149 public:
CUDAKernelCallExpr(ASTContext & C,Expr * fn,CallExpr * Config,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation RP)150 CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
151 ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
152 SourceLocation RP)
153 : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
154 setConfig(Config);
155 }
156
CUDAKernelCallExpr(ASTContext & C,EmptyShell Empty)157 CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
158 : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
159
getConfig()160 const CallExpr *getConfig() const {
161 return cast_or_null<CallExpr>(getPreArg(CONFIG));
162 }
getConfig()163 CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
setConfig(CallExpr * E)164 void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
165
classof(const Stmt * T)166 static bool classof(const Stmt *T) {
167 return T->getStmtClass() == CUDAKernelCallExprClass;
168 }
169 };
170
171 /// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
172 /// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
173 /// const_cast.
174 ///
175 /// This abstract class is inherited by all of the classes
176 /// representing "named" casts, e.g., CXXStaticCastExpr,
177 /// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
178 class CXXNamedCastExpr : public ExplicitCastExpr {
179 private:
180 SourceLocation Loc; // the location of the casting op
181 SourceLocation RParenLoc; // the location of the right parenthesis
182 SourceRange AngleBrackets; // range for '<' '>'
183
184 protected:
CXXNamedCastExpr(StmtClass SC,QualType ty,ExprValueKind VK,CastKind kind,Expr * op,unsigned PathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)185 CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
186 CastKind kind, Expr *op, unsigned PathSize,
187 TypeSourceInfo *writtenTy, SourceLocation l,
188 SourceLocation RParenLoc,
189 SourceRange AngleBrackets)
190 : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
191 RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
192
CXXNamedCastExpr(StmtClass SC,EmptyShell Shell,unsigned PathSize)193 explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
194 : ExplicitCastExpr(SC, Shell, PathSize) { }
195
196 friend class ASTStmtReader;
197
198 public:
199 const char *getCastName() const;
200
201 /// \brief Retrieve the location of the cast operator keyword, e.g.,
202 /// "static_cast".
getOperatorLoc()203 SourceLocation getOperatorLoc() const { return Loc; }
204
205 /// \brief Retrieve the location of the closing parenthesis.
getRParenLoc()206 SourceLocation getRParenLoc() const { return RParenLoc; }
207
getLocStart()208 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()209 SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
getAngleBrackets()210 SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
211
classof(const Stmt * T)212 static bool classof(const Stmt *T) {
213 switch (T->getStmtClass()) {
214 case CXXStaticCastExprClass:
215 case CXXDynamicCastExprClass:
216 case CXXReinterpretCastExprClass:
217 case CXXConstCastExprClass:
218 return true;
219 default:
220 return false;
221 }
222 }
223 };
224
225 /// CXXStaticCastExpr - A C++ @c static_cast expression
226 /// (C++ [expr.static.cast]).
227 ///
228 /// This expression node represents a C++ static cast, e.g.,
229 /// @c static_cast<int>(1.0).
230 class CXXStaticCastExpr : public CXXNamedCastExpr {
CXXStaticCastExpr(QualType ty,ExprValueKind vk,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)231 CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
232 unsigned pathSize, TypeSourceInfo *writtenTy,
233 SourceLocation l, SourceLocation RParenLoc,
234 SourceRange AngleBrackets)
235 : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
236 writtenTy, l, RParenLoc, AngleBrackets) {}
237
CXXStaticCastExpr(EmptyShell Empty,unsigned PathSize)238 explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
239 : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
240
241 public:
242 static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
243 ExprValueKind VK, CastKind K, Expr *Op,
244 const CXXCastPath *Path,
245 TypeSourceInfo *Written, SourceLocation L,
246 SourceLocation RParenLoc,
247 SourceRange AngleBrackets);
248 static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
249 unsigned PathSize);
250
classof(const Stmt * T)251 static bool classof(const Stmt *T) {
252 return T->getStmtClass() == CXXStaticCastExprClass;
253 }
254 };
255
256 /// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
257 /// (C++ [expr.dynamic.cast]), which may perform a run-time check to
258 /// determine how to perform the type cast.
259 ///
260 /// This expression node represents a dynamic cast, e.g.,
261 /// @c dynamic_cast<Derived*>(BasePtr).
262 class CXXDynamicCastExpr : public CXXNamedCastExpr {
CXXDynamicCastExpr(QualType ty,ExprValueKind VK,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)263 CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
264 Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
265 SourceLocation l, SourceLocation RParenLoc,
266 SourceRange AngleBrackets)
267 : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
268 writtenTy, l, RParenLoc, AngleBrackets) {}
269
CXXDynamicCastExpr(EmptyShell Empty,unsigned pathSize)270 explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
271 : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
272
273 public:
274 static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
275 ExprValueKind VK, CastKind Kind, Expr *Op,
276 const CXXCastPath *Path,
277 TypeSourceInfo *Written, SourceLocation L,
278 SourceLocation RParenLoc,
279 SourceRange AngleBrackets);
280
281 static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
282 unsigned pathSize);
283
284 bool isAlwaysNull() const;
285
classof(const Stmt * T)286 static bool classof(const Stmt *T) {
287 return T->getStmtClass() == CXXDynamicCastExprClass;
288 }
289 };
290
291 /// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
292 /// [expr.reinterpret.cast]), which provides a differently-typed view
293 /// of a value but performs no actual work at run time.
294 ///
295 /// This expression node represents a reinterpret cast, e.g.,
296 /// @c reinterpret_cast<int>(VoidPtr).
297 class CXXReinterpretCastExpr : public CXXNamedCastExpr {
CXXReinterpretCastExpr(QualType ty,ExprValueKind vk,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)298 CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
299 Expr *op, unsigned pathSize,
300 TypeSourceInfo *writtenTy, SourceLocation l,
301 SourceLocation RParenLoc,
302 SourceRange AngleBrackets)
303 : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
304 pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
305
CXXReinterpretCastExpr(EmptyShell Empty,unsigned pathSize)306 CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
307 : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
308
309 public:
310 static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
311 ExprValueKind VK, CastKind Kind,
312 Expr *Op, const CXXCastPath *Path,
313 TypeSourceInfo *WrittenTy, SourceLocation L,
314 SourceLocation RParenLoc,
315 SourceRange AngleBrackets);
316 static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
317 unsigned pathSize);
318
classof(const Stmt * T)319 static bool classof(const Stmt *T) {
320 return T->getStmtClass() == CXXReinterpretCastExprClass;
321 }
322 };
323
324 /// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
325 /// which can remove type qualifiers but does not change the underlying value.
326 ///
327 /// This expression node represents a const cast, e.g.,
328 /// @c const_cast<char*>(PtrToConstChar).
329 class CXXConstCastExpr : public CXXNamedCastExpr {
CXXConstCastExpr(QualType ty,ExprValueKind VK,Expr * op,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)330 CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
331 TypeSourceInfo *writtenTy, SourceLocation l,
332 SourceLocation RParenLoc, SourceRange AngleBrackets)
333 : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
334 0, writtenTy, l, RParenLoc, AngleBrackets) {}
335
CXXConstCastExpr(EmptyShell Empty)336 explicit CXXConstCastExpr(EmptyShell Empty)
337 : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
338
339 public:
340 static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
341 ExprValueKind VK, Expr *Op,
342 TypeSourceInfo *WrittenTy, SourceLocation L,
343 SourceLocation RParenLoc,
344 SourceRange AngleBrackets);
345 static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
346
classof(const Stmt * T)347 static bool classof(const Stmt *T) {
348 return T->getStmtClass() == CXXConstCastExprClass;
349 }
350 };
351
352 /// UserDefinedLiteral - A call to a literal operator (C++11 [over.literal])
353 /// written as a user-defined literal (C++11 [lit.ext]).
354 ///
355 /// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
356 /// is semantically equivalent to a normal call, this AST node provides better
357 /// information about the syntactic representation of the literal.
358 ///
359 /// Since literal operators are never found by ADL and can only be declared at
360 /// namespace scope, a user-defined literal is never dependent.
361 class UserDefinedLiteral : public CallExpr {
362 /// \brief The location of a ud-suffix within the literal.
363 SourceLocation UDSuffixLoc;
364
365 public:
UserDefinedLiteral(ASTContext & C,Expr * Fn,ArrayRef<Expr * > Args,QualType T,ExprValueKind VK,SourceLocation LitEndLoc,SourceLocation SuffixLoc)366 UserDefinedLiteral(ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
367 QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
368 SourceLocation SuffixLoc)
369 : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
370 UDSuffixLoc(SuffixLoc) {}
UserDefinedLiteral(ASTContext & C,EmptyShell Empty)371 explicit UserDefinedLiteral(ASTContext &C, EmptyShell Empty)
372 : CallExpr(C, UserDefinedLiteralClass, Empty) {}
373
374 /// The kind of literal operator which is invoked.
375 enum LiteralOperatorKind {
376 LOK_Raw, ///< Raw form: operator "" X (const char *)
377 LOK_Template, ///< Raw form: operator "" X<cs...> ()
378 LOK_Integer, ///< operator "" X (unsigned long long)
379 LOK_Floating, ///< operator "" X (long double)
380 LOK_String, ///< operator "" X (const CharT *, size_t)
381 LOK_Character ///< operator "" X (CharT)
382 };
383
384 /// getLiteralOperatorKind - Returns the kind of literal operator invocation
385 /// which this expression represents.
386 LiteralOperatorKind getLiteralOperatorKind() const;
387
388 /// getCookedLiteral - If this is not a raw user-defined literal, get the
389 /// underlying cooked literal (representing the literal with the suffix
390 /// removed).
391 Expr *getCookedLiteral();
getCookedLiteral()392 const Expr *getCookedLiteral() const {
393 return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
394 }
395
getLocStart()396 SourceLocation getLocStart() const {
397 if (getLiteralOperatorKind() == LOK_Template)
398 return getRParenLoc();
399 return getArg(0)->getLocStart();
400 }
getLocEnd()401 SourceLocation getLocEnd() const { return getRParenLoc(); }
402
403
404 /// getUDSuffixLoc - Returns the location of a ud-suffix in the expression.
405 /// For a string literal, there may be multiple identical suffixes. This
406 /// returns the first.
getUDSuffixLoc()407 SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
408
409 /// getUDSuffix - Returns the ud-suffix specified for this literal.
410 const IdentifierInfo *getUDSuffix() const;
411
classof(const Stmt * S)412 static bool classof(const Stmt *S) {
413 return S->getStmtClass() == UserDefinedLiteralClass;
414 }
415
416 friend class ASTStmtReader;
417 friend class ASTStmtWriter;
418 };
419
420 /// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
421 ///
422 class CXXBoolLiteralExpr : public Expr {
423 bool Value;
424 SourceLocation Loc;
425 public:
CXXBoolLiteralExpr(bool val,QualType Ty,SourceLocation l)426 CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
427 Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
428 false, false),
429 Value(val), Loc(l) {}
430
CXXBoolLiteralExpr(EmptyShell Empty)431 explicit CXXBoolLiteralExpr(EmptyShell Empty)
432 : Expr(CXXBoolLiteralExprClass, Empty) { }
433
getValue()434 bool getValue() const { return Value; }
setValue(bool V)435 void setValue(bool V) { Value = V; }
436
getLocStart()437 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()438 SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
439
getLocation()440 SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation L)441 void setLocation(SourceLocation L) { Loc = L; }
442
classof(const Stmt * T)443 static bool classof(const Stmt *T) {
444 return T->getStmtClass() == CXXBoolLiteralExprClass;
445 }
446
447 // Iterators
children()448 child_range children() { return child_range(); }
449 };
450
451 /// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
452 class CXXNullPtrLiteralExpr : public Expr {
453 SourceLocation Loc;
454 public:
CXXNullPtrLiteralExpr(QualType Ty,SourceLocation l)455 CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
456 Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
457 false, false),
458 Loc(l) {}
459
CXXNullPtrLiteralExpr(EmptyShell Empty)460 explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
461 : Expr(CXXNullPtrLiteralExprClass, Empty) { }
462
getLocStart()463 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()464 SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
465
getLocation()466 SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation L)467 void setLocation(SourceLocation L) { Loc = L; }
468
classof(const Stmt * T)469 static bool classof(const Stmt *T) {
470 return T->getStmtClass() == CXXNullPtrLiteralExprClass;
471 }
472
children()473 child_range children() { return child_range(); }
474 };
475
476 /// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
477 /// the type_info that corresponds to the supplied type, or the (possibly
478 /// dynamic) type of the supplied expression.
479 ///
480 /// This represents code like @c typeid(int) or @c typeid(*objPtr)
481 class CXXTypeidExpr : public Expr {
482 private:
483 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
484 SourceRange Range;
485
486 public:
CXXTypeidExpr(QualType Ty,TypeSourceInfo * Operand,SourceRange R)487 CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
488 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
489 // typeid is never type-dependent (C++ [temp.dep.expr]p4)
490 false,
491 // typeid is value-dependent if the type or expression are dependent
492 Operand->getType()->isDependentType(),
493 Operand->getType()->isInstantiationDependentType(),
494 Operand->getType()->containsUnexpandedParameterPack()),
495 Operand(Operand), Range(R) { }
496
CXXTypeidExpr(QualType Ty,Expr * Operand,SourceRange R)497 CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
498 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
499 // typeid is never type-dependent (C++ [temp.dep.expr]p4)
500 false,
501 // typeid is value-dependent if the type or expression are dependent
502 Operand->isTypeDependent() || Operand->isValueDependent(),
503 Operand->isInstantiationDependent(),
504 Operand->containsUnexpandedParameterPack()),
505 Operand(Operand), Range(R) { }
506
CXXTypeidExpr(EmptyShell Empty,bool isExpr)507 CXXTypeidExpr(EmptyShell Empty, bool isExpr)
508 : Expr(CXXTypeidExprClass, Empty) {
509 if (isExpr)
510 Operand = (Expr*)0;
511 else
512 Operand = (TypeSourceInfo*)0;
513 }
514
515 /// Determine whether this typeid has a type operand which is potentially
516 /// evaluated, per C++11 [expr.typeid]p3.
517 bool isPotentiallyEvaluated() const;
518
isTypeOperand()519 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
520
521 /// \brief Retrieves the type operand of this typeid() expression after
522 /// various required adjustments (removing reference types, cv-qualifiers).
523 QualType getTypeOperand() const;
524
525 /// \brief Retrieve source information for the type operand.
getTypeOperandSourceInfo()526 TypeSourceInfo *getTypeOperandSourceInfo() const {
527 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
528 return Operand.get<TypeSourceInfo *>();
529 }
530
setTypeOperandSourceInfo(TypeSourceInfo * TSI)531 void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
532 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
533 Operand = TSI;
534 }
535
getExprOperand()536 Expr *getExprOperand() const {
537 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
538 return static_cast<Expr*>(Operand.get<Stmt *>());
539 }
540
setExprOperand(Expr * E)541 void setExprOperand(Expr *E) {
542 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
543 Operand = E;
544 }
545
getLocStart()546 SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
getLocEnd()547 SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
getSourceRange()548 SourceRange getSourceRange() const LLVM_READONLY { return Range; }
setSourceRange(SourceRange R)549 void setSourceRange(SourceRange R) { Range = R; }
550
classof(const Stmt * T)551 static bool classof(const Stmt *T) {
552 return T->getStmtClass() == CXXTypeidExprClass;
553 }
554
555 // Iterators
children()556 child_range children() {
557 if (isTypeOperand()) return child_range();
558 Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
559 return child_range(begin, begin + 1);
560 }
561 };
562
563 /// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
564 /// the _GUID that corresponds to the supplied type or expression.
565 ///
566 /// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
567 class CXXUuidofExpr : public Expr {
568 private:
569 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
570 SourceRange Range;
571
572 public:
CXXUuidofExpr(QualType Ty,TypeSourceInfo * Operand,SourceRange R)573 CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
574 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
575 false, Operand->getType()->isDependentType(),
576 Operand->getType()->isInstantiationDependentType(),
577 Operand->getType()->containsUnexpandedParameterPack()),
578 Operand(Operand), Range(R) { }
579
CXXUuidofExpr(QualType Ty,Expr * Operand,SourceRange R)580 CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
581 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
582 false, Operand->isTypeDependent(),
583 Operand->isInstantiationDependent(),
584 Operand->containsUnexpandedParameterPack()),
585 Operand(Operand), Range(R) { }
586
CXXUuidofExpr(EmptyShell Empty,bool isExpr)587 CXXUuidofExpr(EmptyShell Empty, bool isExpr)
588 : Expr(CXXUuidofExprClass, Empty) {
589 if (isExpr)
590 Operand = (Expr*)0;
591 else
592 Operand = (TypeSourceInfo*)0;
593 }
594
isTypeOperand()595 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
596
597 /// \brief Retrieves the type operand of this __uuidof() expression after
598 /// various required adjustments (removing reference types, cv-qualifiers).
599 QualType getTypeOperand() const;
600
601 /// \brief Retrieve source information for the type operand.
getTypeOperandSourceInfo()602 TypeSourceInfo *getTypeOperandSourceInfo() const {
603 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
604 return Operand.get<TypeSourceInfo *>();
605 }
606
setTypeOperandSourceInfo(TypeSourceInfo * TSI)607 void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
608 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
609 Operand = TSI;
610 }
611
getExprOperand()612 Expr *getExprOperand() const {
613 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
614 return static_cast<Expr*>(Operand.get<Stmt *>());
615 }
616
setExprOperand(Expr * E)617 void setExprOperand(Expr *E) {
618 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
619 Operand = E;
620 }
621
getLocStart()622 SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
getLocEnd()623 SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
getSourceRange()624 SourceRange getSourceRange() const LLVM_READONLY { return Range; }
setSourceRange(SourceRange R)625 void setSourceRange(SourceRange R) { Range = R; }
626
classof(const Stmt * T)627 static bool classof(const Stmt *T) {
628 return T->getStmtClass() == CXXUuidofExprClass;
629 }
630
631 /// Grabs __declspec(uuid()) off a type, or returns 0 if there is none.
632 static UuidAttr *GetUuidAttrOfType(QualType QT);
633
634 // Iterators
children()635 child_range children() {
636 if (isTypeOperand()) return child_range();
637 Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
638 return child_range(begin, begin + 1);
639 }
640 };
641
642 /// CXXThisExpr - Represents the "this" expression in C++, which is a
643 /// pointer to the object on which the current member function is
644 /// executing (C++ [expr.prim]p3). Example:
645 ///
646 /// @code
647 /// class Foo {
648 /// public:
649 /// void bar();
650 /// void test() { this->bar(); }
651 /// };
652 /// @endcode
653 class CXXThisExpr : public Expr {
654 SourceLocation Loc;
655 bool Implicit : 1;
656
657 public:
CXXThisExpr(SourceLocation L,QualType Type,bool isImplicit)658 CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
659 : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
660 // 'this' is type-dependent if the class type of the enclosing
661 // member function is dependent (C++ [temp.dep.expr]p2)
662 Type->isDependentType(), Type->isDependentType(),
663 Type->isInstantiationDependentType(),
664 /*ContainsUnexpandedParameterPack=*/false),
665 Loc(L), Implicit(isImplicit) { }
666
CXXThisExpr(EmptyShell Empty)667 CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
668
getLocation()669 SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation L)670 void setLocation(SourceLocation L) { Loc = L; }
671
getLocStart()672 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()673 SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
674
isImplicit()675 bool isImplicit() const { return Implicit; }
setImplicit(bool I)676 void setImplicit(bool I) { Implicit = I; }
677
classof(const Stmt * T)678 static bool classof(const Stmt *T) {
679 return T->getStmtClass() == CXXThisExprClass;
680 }
681
682 // Iterators
children()683 child_range children() { return child_range(); }
684 };
685
686 /// CXXThrowExpr - [C++ 15] C++ Throw Expression. This handles
687 /// 'throw' and 'throw' assignment-expression. When
688 /// assignment-expression isn't present, Op will be null.
689 ///
690 class CXXThrowExpr : public Expr {
691 Stmt *Op;
692 SourceLocation ThrowLoc;
693 /// \brief Whether the thrown variable (if any) is in scope.
694 unsigned IsThrownVariableInScope : 1;
695
696 friend class ASTStmtReader;
697
698 public:
699 // Ty is the void type which is used as the result type of the
700 // exepression. The l is the location of the throw keyword. expr
701 // can by null, if the optional expression to throw isn't present.
CXXThrowExpr(Expr * expr,QualType Ty,SourceLocation l,bool IsThrownVariableInScope)702 CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
703 bool IsThrownVariableInScope) :
704 Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
705 expr && expr->isInstantiationDependent(),
706 expr && expr->containsUnexpandedParameterPack()),
707 Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
CXXThrowExpr(EmptyShell Empty)708 CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
709
getSubExpr()710 const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
getSubExpr()711 Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
712
getThrowLoc()713 SourceLocation getThrowLoc() const { return ThrowLoc; }
714
715 /// \brief Determines whether the variable thrown by this expression (if any!)
716 /// is within the innermost try block.
717 ///
718 /// This information is required to determine whether the NRVO can apply to
719 /// this variable.
isThrownVariableInScope()720 bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
721
getLocStart()722 SourceLocation getLocStart() const LLVM_READONLY { return ThrowLoc; }
getLocEnd()723 SourceLocation getLocEnd() const LLVM_READONLY {
724 if (getSubExpr() == 0)
725 return ThrowLoc;
726 return getSubExpr()->getLocEnd();
727 }
728
classof(const Stmt * T)729 static bool classof(const Stmt *T) {
730 return T->getStmtClass() == CXXThrowExprClass;
731 }
732
733 // Iterators
children()734 child_range children() {
735 return child_range(&Op, Op ? &Op+1 : &Op);
736 }
737 };
738
739 /// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
740 /// function call argument that was created from the corresponding
741 /// parameter's default argument, when the call did not explicitly
742 /// supply arguments for all of the parameters.
743 class CXXDefaultArgExpr : public Expr {
744 /// \brief The parameter whose default is being used.
745 ///
746 /// When the bit is set, the subexpression is stored after the
747 /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
748 /// actual default expression is the subexpression.
749 llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
750
751 /// \brief The location where the default argument expression was used.
752 SourceLocation Loc;
753
CXXDefaultArgExpr(StmtClass SC,SourceLocation Loc,ParmVarDecl * param)754 CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
755 : Expr(SC,
756 param->hasUnparsedDefaultArg()
757 ? param->getType().getNonReferenceType()
758 : param->getDefaultArg()->getType(),
759 param->getDefaultArg()->getValueKind(),
760 param->getDefaultArg()->getObjectKind(), false, false, false, false),
761 Param(param, false), Loc(Loc) { }
762
CXXDefaultArgExpr(StmtClass SC,SourceLocation Loc,ParmVarDecl * param,Expr * SubExpr)763 CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
764 Expr *SubExpr)
765 : Expr(SC, SubExpr->getType(),
766 SubExpr->getValueKind(), SubExpr->getObjectKind(),
767 false, false, false, false),
768 Param(param, true), Loc(Loc) {
769 *reinterpret_cast<Expr **>(this + 1) = SubExpr;
770 }
771
772 public:
CXXDefaultArgExpr(EmptyShell Empty)773 CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
774
775
776 // Param is the parameter whose default argument is used by this
777 // expression.
Create(ASTContext & C,SourceLocation Loc,ParmVarDecl * Param)778 static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
779 ParmVarDecl *Param) {
780 return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
781 }
782
783 // Param is the parameter whose default argument is used by this
784 // expression, and SubExpr is the expression that will actually be used.
785 static CXXDefaultArgExpr *Create(ASTContext &C,
786 SourceLocation Loc,
787 ParmVarDecl *Param,
788 Expr *SubExpr);
789
790 // Retrieve the parameter that the argument was created from.
getParam()791 const ParmVarDecl *getParam() const { return Param.getPointer(); }
getParam()792 ParmVarDecl *getParam() { return Param.getPointer(); }
793
794 // Retrieve the actual argument to the function call.
getExpr()795 const Expr *getExpr() const {
796 if (Param.getInt())
797 return *reinterpret_cast<Expr const * const*> (this + 1);
798 return getParam()->getDefaultArg();
799 }
getExpr()800 Expr *getExpr() {
801 if (Param.getInt())
802 return *reinterpret_cast<Expr **> (this + 1);
803 return getParam()->getDefaultArg();
804 }
805
806 /// \brief Retrieve the location where this default argument was actually
807 /// used.
getUsedLocation()808 SourceLocation getUsedLocation() const { return Loc; }
809
810 // Default argument expressions have no representation in the
811 // source, so they have an empty source range.
getLocStart()812 SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
getLocEnd()813 SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
814
getExprLoc()815 SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
816
classof(const Stmt * T)817 static bool classof(const Stmt *T) {
818 return T->getStmtClass() == CXXDefaultArgExprClass;
819 }
820
821 // Iterators
children()822 child_range children() { return child_range(); }
823
824 friend class ASTStmtReader;
825 friend class ASTStmtWriter;
826 };
827
828 /// CXXTemporary - Represents a C++ temporary.
829 class CXXTemporary {
830 /// Destructor - The destructor that needs to be called.
831 const CXXDestructorDecl *Destructor;
832
CXXTemporary(const CXXDestructorDecl * destructor)833 CXXTemporary(const CXXDestructorDecl *destructor)
834 : Destructor(destructor) { }
835
836 public:
837 static CXXTemporary *Create(ASTContext &C,
838 const CXXDestructorDecl *Destructor);
839
getDestructor()840 const CXXDestructorDecl *getDestructor() const { return Destructor; }
setDestructor(const CXXDestructorDecl * Dtor)841 void setDestructor(const CXXDestructorDecl *Dtor) {
842 Destructor = Dtor;
843 }
844 };
845
846 /// \brief Represents binding an expression to a temporary.
847 ///
848 /// This ensures the destructor is called for the temporary. It should only be
849 /// needed for non-POD, non-trivially destructable class types. For example:
850 ///
851 /// \code
852 /// struct S {
853 /// S() { } // User defined constructor makes S non-POD.
854 /// ~S() { } // User defined destructor makes it non-trivial.
855 /// };
856 /// void test() {
857 /// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
858 /// }
859 /// \endcode
860 class CXXBindTemporaryExpr : public Expr {
861 CXXTemporary *Temp;
862
863 Stmt *SubExpr;
864
CXXBindTemporaryExpr(CXXTemporary * temp,Expr * SubExpr)865 CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
866 : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
867 VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
868 SubExpr->isValueDependent(),
869 SubExpr->isInstantiationDependent(),
870 SubExpr->containsUnexpandedParameterPack()),
871 Temp(temp), SubExpr(SubExpr) { }
872
873 public:
CXXBindTemporaryExpr(EmptyShell Empty)874 CXXBindTemporaryExpr(EmptyShell Empty)
875 : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
876
877 static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
878 Expr* SubExpr);
879
getTemporary()880 CXXTemporary *getTemporary() { return Temp; }
getTemporary()881 const CXXTemporary *getTemporary() const { return Temp; }
setTemporary(CXXTemporary * T)882 void setTemporary(CXXTemporary *T) { Temp = T; }
883
getSubExpr()884 const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
getSubExpr()885 Expr *getSubExpr() { return cast<Expr>(SubExpr); }
setSubExpr(Expr * E)886 void setSubExpr(Expr *E) { SubExpr = E; }
887
getLocStart()888 SourceLocation getLocStart() const LLVM_READONLY {
889 return SubExpr->getLocStart();
890 }
getLocEnd()891 SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
892
893 // Implement isa/cast/dyncast/etc.
classof(const Stmt * T)894 static bool classof(const Stmt *T) {
895 return T->getStmtClass() == CXXBindTemporaryExprClass;
896 }
897
898 // Iterators
children()899 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
900 };
901
902 /// \brief Represents a call to a C++ constructor.
903 class CXXConstructExpr : public Expr {
904 public:
905 enum ConstructionKind {
906 CK_Complete,
907 CK_NonVirtualBase,
908 CK_VirtualBase,
909 CK_Delegating
910 };
911
912 private:
913 CXXConstructorDecl *Constructor;
914
915 SourceLocation Loc;
916 SourceRange ParenRange;
917 unsigned NumArgs : 16;
918 bool Elidable : 1;
919 bool HadMultipleCandidates : 1;
920 bool ListInitialization : 1;
921 bool ZeroInitialization : 1;
922 unsigned ConstructKind : 2;
923 Stmt **Args;
924
925 protected:
926 CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
927 SourceLocation Loc,
928 CXXConstructorDecl *d, bool elidable,
929 ArrayRef<Expr *> Args,
930 bool HadMultipleCandidates,
931 bool ListInitialization,
932 bool ZeroInitialization,
933 ConstructionKind ConstructKind,
934 SourceRange ParenRange);
935
936 /// \brief Construct an empty C++ construction expression.
CXXConstructExpr(StmtClass SC,EmptyShell Empty)937 CXXConstructExpr(StmtClass SC, EmptyShell Empty)
938 : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
939 HadMultipleCandidates(false), ListInitialization(false),
940 ZeroInitialization(false), ConstructKind(0), Args(0)
941 { }
942
943 public:
944 /// \brief Construct an empty C++ construction expression.
CXXConstructExpr(EmptyShell Empty)945 explicit CXXConstructExpr(EmptyShell Empty)
946 : Expr(CXXConstructExprClass, Empty), Constructor(0),
947 NumArgs(0), Elidable(false), HadMultipleCandidates(false),
948 ListInitialization(false), ZeroInitialization(false),
949 ConstructKind(0), Args(0)
950 { }
951
952 static CXXConstructExpr *Create(ASTContext &C, QualType T,
953 SourceLocation Loc,
954 CXXConstructorDecl *D, bool Elidable,
955 ArrayRef<Expr *> Args,
956 bool HadMultipleCandidates,
957 bool ListInitialization,
958 bool ZeroInitialization,
959 ConstructionKind ConstructKind,
960 SourceRange ParenRange);
961
getConstructor()962 CXXConstructorDecl* getConstructor() const { return Constructor; }
setConstructor(CXXConstructorDecl * C)963 void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
964
getLocation()965 SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation Loc)966 void setLocation(SourceLocation Loc) { this->Loc = Loc; }
967
968 /// \brief Whether this construction is elidable.
isElidable()969 bool isElidable() const { return Elidable; }
setElidable(bool E)970 void setElidable(bool E) { Elidable = E; }
971
972 /// \brief Whether the referred constructor was resolved from
973 /// an overloaded set having size greater than 1.
hadMultipleCandidates()974 bool hadMultipleCandidates() const { return HadMultipleCandidates; }
setHadMultipleCandidates(bool V)975 void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
976
977 /// \brief Whether this constructor call was written as list-initialization.
isListInitialization()978 bool isListInitialization() const { return ListInitialization; }
setListInitialization(bool V)979 void setListInitialization(bool V) { ListInitialization = V; }
980
981 /// \brief Whether this construction first requires
982 /// zero-initialization before the initializer is called.
requiresZeroInitialization()983 bool requiresZeroInitialization() const { return ZeroInitialization; }
setRequiresZeroInitialization(bool ZeroInit)984 void setRequiresZeroInitialization(bool ZeroInit) {
985 ZeroInitialization = ZeroInit;
986 }
987
988 /// \brief Determines whether this constructor is actually constructing
989 /// a base class (rather than a complete object).
getConstructionKind()990 ConstructionKind getConstructionKind() const {
991 return (ConstructionKind)ConstructKind;
992 }
setConstructionKind(ConstructionKind CK)993 void setConstructionKind(ConstructionKind CK) {
994 ConstructKind = CK;
995 }
996
997 typedef ExprIterator arg_iterator;
998 typedef ConstExprIterator const_arg_iterator;
999
arg_begin()1000 arg_iterator arg_begin() { return Args; }
arg_end()1001 arg_iterator arg_end() { return Args + NumArgs; }
arg_begin()1002 const_arg_iterator arg_begin() const { return Args; }
arg_end()1003 const_arg_iterator arg_end() const { return Args + NumArgs; }
1004
getArgs()1005 Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
getNumArgs()1006 unsigned getNumArgs() const { return NumArgs; }
1007
1008 /// getArg - Return the specified argument.
getArg(unsigned Arg)1009 Expr *getArg(unsigned Arg) {
1010 assert(Arg < NumArgs && "Arg access out of range!");
1011 return cast<Expr>(Args[Arg]);
1012 }
getArg(unsigned Arg)1013 const Expr *getArg(unsigned Arg) const {
1014 assert(Arg < NumArgs && "Arg access out of range!");
1015 return cast<Expr>(Args[Arg]);
1016 }
1017
1018 /// setArg - Set the specified argument.
setArg(unsigned Arg,Expr * ArgExpr)1019 void setArg(unsigned Arg, Expr *ArgExpr) {
1020 assert(Arg < NumArgs && "Arg access out of range!");
1021 Args[Arg] = ArgExpr;
1022 }
1023
1024 SourceLocation getLocStart() const LLVM_READONLY;
1025 SourceLocation getLocEnd() const LLVM_READONLY;
getParenRange()1026 SourceRange getParenRange() const { return ParenRange; }
setParenRange(SourceRange Range)1027 void setParenRange(SourceRange Range) { ParenRange = Range; }
1028
classof(const Stmt * T)1029 static bool classof(const Stmt *T) {
1030 return T->getStmtClass() == CXXConstructExprClass ||
1031 T->getStmtClass() == CXXTemporaryObjectExprClass;
1032 }
1033
1034 // Iterators
children()1035 child_range children() {
1036 return child_range(&Args[0], &Args[0]+NumArgs);
1037 }
1038
1039 friend class ASTStmtReader;
1040 };
1041
1042 /// \brief Represents an explicit C++ type conversion that uses "functional"
1043 /// notation (C++ [expr.type.conv]).
1044 ///
1045 /// Example:
1046 /// @code
1047 /// x = int(0.5);
1048 /// @endcode
1049 class CXXFunctionalCastExpr : public ExplicitCastExpr {
1050 SourceLocation TyBeginLoc;
1051 SourceLocation RParenLoc;
1052
CXXFunctionalCastExpr(QualType ty,ExprValueKind VK,TypeSourceInfo * writtenTy,SourceLocation tyBeginLoc,CastKind kind,Expr * castExpr,unsigned pathSize,SourceLocation rParenLoc)1053 CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1054 TypeSourceInfo *writtenTy,
1055 SourceLocation tyBeginLoc, CastKind kind,
1056 Expr *castExpr, unsigned pathSize,
1057 SourceLocation rParenLoc)
1058 : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1059 castExpr, pathSize, writtenTy),
1060 TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
1061
CXXFunctionalCastExpr(EmptyShell Shell,unsigned PathSize)1062 explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1063 : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1064
1065 public:
1066 static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
1067 ExprValueKind VK,
1068 TypeSourceInfo *Written,
1069 SourceLocation TyBeginLoc,
1070 CastKind Kind, Expr *Op,
1071 const CXXCastPath *Path,
1072 SourceLocation RPLoc);
1073 static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
1074 unsigned PathSize);
1075
getTypeBeginLoc()1076 SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
setTypeBeginLoc(SourceLocation L)1077 void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
getRParenLoc()1078 SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)1079 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1080
getLocStart()1081 SourceLocation getLocStart() const LLVM_READONLY { return TyBeginLoc; }
getLocEnd()1082 SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1083
classof(const Stmt * T)1084 static bool classof(const Stmt *T) {
1085 return T->getStmtClass() == CXXFunctionalCastExprClass;
1086 }
1087 };
1088
1089 /// @brief Represents a C++ functional cast expression that builds a
1090 /// temporary object.
1091 ///
1092 /// This expression type represents a C++ "functional" cast
1093 /// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1094 /// constructor to build a temporary object. With N == 1 arguments the
1095 /// functional cast expression will be represented by CXXFunctionalCastExpr.
1096 /// Example:
1097 /// @code
1098 /// struct X { X(int, float); }
1099 ///
1100 /// X create_X() {
1101 /// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1102 /// };
1103 /// @endcode
1104 class CXXTemporaryObjectExpr : public CXXConstructExpr {
1105 TypeSourceInfo *Type;
1106
1107 public:
1108 CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1109 TypeSourceInfo *Type,
1110 ArrayRef<Expr *> Args,
1111 SourceRange parenRange,
1112 bool HadMultipleCandidates,
1113 bool ListInitialization,
1114 bool ZeroInitialization);
CXXTemporaryObjectExpr(EmptyShell Empty)1115 explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1116 : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1117
getTypeSourceInfo()1118 TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1119
1120 SourceLocation getLocStart() const LLVM_READONLY;
1121 SourceLocation getLocEnd() const LLVM_READONLY;
1122
classof(const Stmt * T)1123 static bool classof(const Stmt *T) {
1124 return T->getStmtClass() == CXXTemporaryObjectExprClass;
1125 }
1126
1127 friend class ASTStmtReader;
1128 };
1129
1130 /// \brief A C++ lambda expression, which produces a function object
1131 /// (of unspecified type) that can be invoked later.
1132 ///
1133 /// Example:
1134 /// \code
1135 /// void low_pass_filter(std::vector<double> &values, double cutoff) {
1136 /// values.erase(std::remove_if(values.begin(), values.end(),
1137 /// [=](double value) { return value > cutoff; });
1138 /// }
1139 /// \endcode
1140 ///
1141 /// Lambda expressions can capture local variables, either by copying
1142 /// the values of those local variables at the time the function
1143 /// object is constructed (not when it is called!) or by holding a
1144 /// reference to the local variable. These captures can occur either
1145 /// implicitly or can be written explicitly between the square
1146 /// brackets ([...]) that start the lambda expression.
1147 class LambdaExpr : public Expr {
1148 enum {
1149 /// \brief Flag used by the Capture class to indicate that the given
1150 /// capture was implicit.
1151 Capture_Implicit = 0x01,
1152
1153 /// \brief Flag used by the Capture class to indciate that the
1154 /// given capture was by-copy.
1155 Capture_ByCopy = 0x02
1156 };
1157
1158 /// \brief The source range that covers the lambda introducer ([...]).
1159 SourceRange IntroducerRange;
1160
1161 /// \brief The number of captures.
1162 unsigned NumCaptures : 16;
1163
1164 /// \brief The default capture kind, which is a value of type
1165 /// LambdaCaptureDefault.
1166 unsigned CaptureDefault : 2;
1167
1168 /// \brief Whether this lambda had an explicit parameter list vs. an
1169 /// implicit (and empty) parameter list.
1170 unsigned ExplicitParams : 1;
1171
1172 /// \brief Whether this lambda had the result type explicitly specified.
1173 unsigned ExplicitResultType : 1;
1174
1175 /// \brief Whether there are any array index variables stored at the end of
1176 /// this lambda expression.
1177 unsigned HasArrayIndexVars : 1;
1178
1179 /// \brief The location of the closing brace ('}') that completes
1180 /// the lambda.
1181 ///
1182 /// The location of the brace is also available by looking up the
1183 /// function call operator in the lambda class. However, it is
1184 /// stored here to improve the performance of getSourceRange(), and
1185 /// to avoid having to deserialize the function call operator from a
1186 /// module file just to determine the source range.
1187 SourceLocation ClosingBrace;
1188
1189 // Note: The capture initializers are stored directly after the lambda
1190 // expression, along with the index variables used to initialize by-copy
1191 // array captures.
1192
1193 public:
1194 /// \brief Describes the capture of either a variable or 'this'.
1195 class Capture {
1196 llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1197 SourceLocation Loc;
1198 SourceLocation EllipsisLoc;
1199
1200 friend class ASTStmtReader;
1201 friend class ASTStmtWriter;
1202
1203 public:
1204 /// \brief Create a new capture.
1205 ///
1206 /// \param Loc The source location associated with this capture.
1207 ///
1208 /// \param Kind The kind of capture (this, byref, bycopy).
1209 ///
1210 /// \param Implicit Whether the capture was implicit or explicit.
1211 ///
1212 /// \param Var The local variable being captured, or null if capturing this.
1213 ///
1214 /// \param EllipsisLoc The location of the ellipsis (...) for a
1215 /// capture that is a pack expansion, or an invalid source
1216 /// location to indicate that this is not a pack expansion.
1217 Capture(SourceLocation Loc, bool Implicit,
1218 LambdaCaptureKind Kind, VarDecl *Var = 0,
1219 SourceLocation EllipsisLoc = SourceLocation());
1220
1221 /// \brief Determine the kind of capture.
1222 LambdaCaptureKind getCaptureKind() const;
1223
1224 /// \brief Determine whether this capture handles the C++ 'this'
1225 /// pointer.
capturesThis()1226 bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1227
1228 /// \brief Determine whether this capture handles a variable.
capturesVariable()1229 bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1230
1231 /// \brief Retrieve the declaration of the local variable being
1232 /// captured.
1233 ///
1234 /// This operation is only valid if this capture does not capture
1235 /// 'this'.
getCapturedVar()1236 VarDecl *getCapturedVar() const {
1237 assert(!capturesThis() && "No variable available for 'this' capture");
1238 return VarAndBits.getPointer();
1239 }
1240
1241 /// \brief Determine whether this was an implicit capture (not
1242 /// written between the square brackets introducing the lambda).
isImplicit()1243 bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1244
1245 /// \brief Determine whether this was an explicit capture, written
1246 /// between the square brackets introducing the lambda.
isExplicit()1247 bool isExplicit() const { return !isImplicit(); }
1248
1249 /// \brief Retrieve the source location of the capture.
1250 ///
1251 /// For an explicit capture, this returns the location of the
1252 /// explicit capture in the source. For an implicit capture, this
1253 /// returns the location at which the variable or 'this' was first
1254 /// used.
getLocation()1255 SourceLocation getLocation() const { return Loc; }
1256
1257 /// \brief Determine whether this capture is a pack expansion,
1258 /// which captures a function parameter pack.
isPackExpansion()1259 bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1260
1261 /// \brief Retrieve the location of the ellipsis for a capture
1262 /// that is a pack expansion.
getEllipsisLoc()1263 SourceLocation getEllipsisLoc() const {
1264 assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1265 return EllipsisLoc;
1266 }
1267 };
1268
1269 private:
1270 /// \brief Construct a lambda expression.
1271 LambdaExpr(QualType T, SourceRange IntroducerRange,
1272 LambdaCaptureDefault CaptureDefault,
1273 ArrayRef<Capture> Captures,
1274 bool ExplicitParams,
1275 bool ExplicitResultType,
1276 ArrayRef<Expr *> CaptureInits,
1277 ArrayRef<VarDecl *> ArrayIndexVars,
1278 ArrayRef<unsigned> ArrayIndexStarts,
1279 SourceLocation ClosingBrace,
1280 bool ContainsUnexpandedParameterPack);
1281
1282 /// \brief Construct an empty lambda expression.
LambdaExpr(EmptyShell Empty,unsigned NumCaptures,bool HasArrayIndexVars)1283 LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1284 : Expr(LambdaExprClass, Empty),
1285 NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1286 ExplicitResultType(false), HasArrayIndexVars(true) {
1287 getStoredStmts()[NumCaptures] = 0;
1288 }
1289
getStoredStmts()1290 Stmt **getStoredStmts() const {
1291 return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1292 }
1293
1294 /// \brief Retrieve the mapping from captures to the first array index
1295 /// variable.
getArrayIndexStarts()1296 unsigned *getArrayIndexStarts() const {
1297 return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1298 }
1299
1300 /// \brief Retrieve the complete set of array-index variables.
getArrayIndexVars()1301 VarDecl **getArrayIndexVars() const {
1302 unsigned ArrayIndexSize =
1303 llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1304 llvm::alignOf<VarDecl*>());
1305 return reinterpret_cast<VarDecl **>(
1306 reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1307 }
1308
1309 public:
1310 /// \brief Construct a new lambda expression.
1311 static LambdaExpr *Create(ASTContext &C,
1312 CXXRecordDecl *Class,
1313 SourceRange IntroducerRange,
1314 LambdaCaptureDefault CaptureDefault,
1315 ArrayRef<Capture> Captures,
1316 bool ExplicitParams,
1317 bool ExplicitResultType,
1318 ArrayRef<Expr *> CaptureInits,
1319 ArrayRef<VarDecl *> ArrayIndexVars,
1320 ArrayRef<unsigned> ArrayIndexStarts,
1321 SourceLocation ClosingBrace,
1322 bool ContainsUnexpandedParameterPack);
1323
1324 /// \brief Construct a new lambda expression that will be deserialized from
1325 /// an external source.
1326 static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1327 unsigned NumArrayIndexVars);
1328
1329 /// \brief Determine the default capture kind for this lambda.
getCaptureDefault()1330 LambdaCaptureDefault getCaptureDefault() const {
1331 return static_cast<LambdaCaptureDefault>(CaptureDefault);
1332 }
1333
1334 /// \brief An iterator that walks over the captures of the lambda,
1335 /// both implicit and explicit.
1336 typedef const Capture *capture_iterator;
1337
1338 /// \brief Retrieve an iterator pointing to the first lambda capture.
1339 capture_iterator capture_begin() const;
1340
1341 /// \brief Retrieve an iterator pointing past the end of the
1342 /// sequence of lambda captures.
1343 capture_iterator capture_end() const;
1344
1345 /// \brief Determine the number of captures in this lambda.
capture_size()1346 unsigned capture_size() const { return NumCaptures; }
1347
1348 /// \brief Retrieve an iterator pointing to the first explicit
1349 /// lambda capture.
1350 capture_iterator explicit_capture_begin() const;
1351
1352 /// \brief Retrieve an iterator pointing past the end of the sequence of
1353 /// explicit lambda captures.
1354 capture_iterator explicit_capture_end() const;
1355
1356 /// \brief Retrieve an iterator pointing to the first implicit
1357 /// lambda capture.
1358 capture_iterator implicit_capture_begin() const;
1359
1360 /// \brief Retrieve an iterator pointing past the end of the sequence of
1361 /// implicit lambda captures.
1362 capture_iterator implicit_capture_end() const;
1363
1364 /// \brief Iterator that walks over the capture initialization
1365 /// arguments.
1366 typedef Expr **capture_init_iterator;
1367
1368 /// \brief Retrieve the first initialization argument for this
1369 /// lambda expression (which initializes the first capture field).
capture_init_begin()1370 capture_init_iterator capture_init_begin() const {
1371 return reinterpret_cast<Expr **>(getStoredStmts());
1372 }
1373
1374 /// \brief Retrieve the iterator pointing one past the last
1375 /// initialization argument for this lambda expression.
capture_init_end()1376 capture_init_iterator capture_init_end() const {
1377 return capture_init_begin() + NumCaptures;
1378 }
1379
1380 /// \brief Retrieve the set of index variables used in the capture
1381 /// initializer of an array captured by copy.
1382 ///
1383 /// \param Iter The iterator that points at the capture initializer for
1384 /// which we are extracting the corresponding index variables.
1385 ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1386
1387 /// \brief Retrieve the source range covering the lambda introducer,
1388 /// which contains the explicit capture list surrounded by square
1389 /// brackets ([...]).
getIntroducerRange()1390 SourceRange getIntroducerRange() const { return IntroducerRange; }
1391
1392 /// \brief Retrieve the class that corresponds to the lambda, which
1393 /// stores the captures in its fields and provides the various
1394 /// operations permitted on a lambda (copying, calling).
1395 CXXRecordDecl *getLambdaClass() const;
1396
1397 /// \brief Retrieve the function call operator associated with this
1398 /// lambda expression.
1399 CXXMethodDecl *getCallOperator() const;
1400
1401 /// \brief Retrieve the body of the lambda.
1402 CompoundStmt *getBody() const;
1403
1404 /// \brief Determine whether the lambda is mutable, meaning that any
1405 /// captures values can be modified.
1406 bool isMutable() const;
1407
1408 /// \brief Determine whether this lambda has an explicit parameter
1409 /// list vs. an implicit (empty) parameter list.
hasExplicitParameters()1410 bool hasExplicitParameters() const { return ExplicitParams; }
1411
1412 /// \brief Whether this lambda had its result type explicitly specified.
hasExplicitResultType()1413 bool hasExplicitResultType() const { return ExplicitResultType; }
1414
classof(const Stmt * T)1415 static bool classof(const Stmt *T) {
1416 return T->getStmtClass() == LambdaExprClass;
1417 }
1418
getLocStart()1419 SourceLocation getLocStart() const LLVM_READONLY {
1420 return IntroducerRange.getBegin();
1421 }
getLocEnd()1422 SourceLocation getLocEnd() const LLVM_READONLY { return ClosingBrace; }
1423
children()1424 child_range children() {
1425 return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1426 }
1427
1428 friend class ASTStmtReader;
1429 friend class ASTStmtWriter;
1430 };
1431
1432 /// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1433 /// Expression "T()" which creates a value-initialized rvalue of type
1434 /// T, which is a non-class type.
1435 ///
1436 class CXXScalarValueInitExpr : public Expr {
1437 SourceLocation RParenLoc;
1438 TypeSourceInfo *TypeInfo;
1439
1440 friend class ASTStmtReader;
1441
1442 public:
1443 /// \brief Create an explicitly-written scalar-value initialization
1444 /// expression.
CXXScalarValueInitExpr(QualType Type,TypeSourceInfo * TypeInfo,SourceLocation rParenLoc)1445 CXXScalarValueInitExpr(QualType Type,
1446 TypeSourceInfo *TypeInfo,
1447 SourceLocation rParenLoc ) :
1448 Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1449 false, false, Type->isInstantiationDependentType(), false),
1450 RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1451
CXXScalarValueInitExpr(EmptyShell Shell)1452 explicit CXXScalarValueInitExpr(EmptyShell Shell)
1453 : Expr(CXXScalarValueInitExprClass, Shell) { }
1454
getTypeSourceInfo()1455 TypeSourceInfo *getTypeSourceInfo() const {
1456 return TypeInfo;
1457 }
1458
getRParenLoc()1459 SourceLocation getRParenLoc() const { return RParenLoc; }
1460
1461 SourceLocation getLocStart() const LLVM_READONLY;
getLocEnd()1462 SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1463
classof(const Stmt * T)1464 static bool classof(const Stmt *T) {
1465 return T->getStmtClass() == CXXScalarValueInitExprClass;
1466 }
1467
1468 // Iterators
children()1469 child_range children() { return child_range(); }
1470 };
1471
1472 /// @brief Represents a new-expression for memory allocation and constructor
1473 // calls, e.g: "new CXXNewExpr(foo)".
1474 class CXXNewExpr : public Expr {
1475 // Contains an optional array size expression, an optional initialization
1476 // expression, and any number of optional placement arguments, in that order.
1477 Stmt **SubExprs;
1478 /// \brief Points to the allocation function used.
1479 FunctionDecl *OperatorNew;
1480 /// \brief Points to the deallocation function used in case of error. May be
1481 /// null.
1482 FunctionDecl *OperatorDelete;
1483
1484 /// \brief The allocated type-source information, as written in the source.
1485 TypeSourceInfo *AllocatedTypeInfo;
1486
1487 /// \brief If the allocated type was expressed as a parenthesized type-id,
1488 /// the source range covering the parenthesized type-id.
1489 SourceRange TypeIdParens;
1490
1491 /// \brief Range of the entire new expression.
1492 SourceRange Range;
1493
1494 /// \brief Source-range of a paren-delimited initializer.
1495 SourceRange DirectInitRange;
1496
1497 // Was the usage ::new, i.e. is the global new to be used?
1498 bool GlobalNew : 1;
1499 // Do we allocate an array? If so, the first SubExpr is the size expression.
1500 bool Array : 1;
1501 // If this is an array allocation, does the usual deallocation
1502 // function for the allocated type want to know the allocated size?
1503 bool UsualArrayDeleteWantsSize : 1;
1504 // The number of placement new arguments.
1505 unsigned NumPlacementArgs : 13;
1506 // What kind of initializer do we have? Could be none, parens, or braces.
1507 // In storage, we distinguish between "none, and no initializer expr", and
1508 // "none, but an implicit initializer expr".
1509 unsigned StoredInitializationStyle : 2;
1510
1511 friend class ASTStmtReader;
1512 friend class ASTStmtWriter;
1513 public:
1514 enum InitializationStyle {
1515 NoInit, ///< New-expression has no initializer as written.
1516 CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1517 ListInit ///< New-expression has a C++11 list-initializer.
1518 };
1519
1520 CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1521 FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1522 ArrayRef<Expr*> placementArgs,
1523 SourceRange typeIdParens, Expr *arraySize,
1524 InitializationStyle initializationStyle, Expr *initializer,
1525 QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1526 SourceRange Range, SourceRange directInitRange);
CXXNewExpr(EmptyShell Shell)1527 explicit CXXNewExpr(EmptyShell Shell)
1528 : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1529
1530 void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1531 bool hasInitializer);
1532
getAllocatedType()1533 QualType getAllocatedType() const {
1534 assert(getType()->isPointerType());
1535 return getType()->getAs<PointerType>()->getPointeeType();
1536 }
1537
getAllocatedTypeSourceInfo()1538 TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1539 return AllocatedTypeInfo;
1540 }
1541
1542 /// \brief True if the allocation result needs to be null-checked.
1543 /// C++0x [expr.new]p13:
1544 /// If the allocation function returns null, initialization shall
1545 /// not be done, the deallocation function shall not be called,
1546 /// and the value of the new-expression shall be null.
1547 /// An allocation function is not allowed to return null unless it
1548 /// has a non-throwing exception-specification. The '03 rule is
1549 /// identical except that the definition of a non-throwing
1550 /// exception specification is just "is it throw()?".
1551 bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1552
getOperatorNew()1553 FunctionDecl *getOperatorNew() const { return OperatorNew; }
setOperatorNew(FunctionDecl * D)1554 void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
getOperatorDelete()1555 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
setOperatorDelete(FunctionDecl * D)1556 void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1557
isArray()1558 bool isArray() const { return Array; }
getArraySize()1559 Expr *getArraySize() {
1560 return Array ? cast<Expr>(SubExprs[0]) : 0;
1561 }
getArraySize()1562 const Expr *getArraySize() const {
1563 return Array ? cast<Expr>(SubExprs[0]) : 0;
1564 }
1565
getNumPlacementArgs()1566 unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
getPlacementArgs()1567 Expr **getPlacementArgs() {
1568 return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1569 }
1570
getPlacementArg(unsigned i)1571 Expr *getPlacementArg(unsigned i) {
1572 assert(i < NumPlacementArgs && "Index out of range");
1573 return getPlacementArgs()[i];
1574 }
getPlacementArg(unsigned i)1575 const Expr *getPlacementArg(unsigned i) const {
1576 assert(i < NumPlacementArgs && "Index out of range");
1577 return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1578 }
1579
isParenTypeId()1580 bool isParenTypeId() const { return TypeIdParens.isValid(); }
getTypeIdParens()1581 SourceRange getTypeIdParens() const { return TypeIdParens; }
1582
isGlobalNew()1583 bool isGlobalNew() const { return GlobalNew; }
1584
1585 /// \brief Whether this new-expression has any initializer at all.
hasInitializer()1586 bool hasInitializer() const { return StoredInitializationStyle > 0; }
1587
1588 /// \brief The kind of initializer this new-expression has.
getInitializationStyle()1589 InitializationStyle getInitializationStyle() const {
1590 if (StoredInitializationStyle == 0)
1591 return NoInit;
1592 return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1593 }
1594
1595 /// \brief The initializer of this new-expression.
getInitializer()1596 Expr *getInitializer() {
1597 return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1598 }
getInitializer()1599 const Expr *getInitializer() const {
1600 return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1601 }
1602
1603 /// \brief Returns the CXXConstructExpr from this new-expression, or NULL.
getConstructExpr()1604 const CXXConstructExpr* getConstructExpr() const {
1605 return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1606 }
1607
1608 /// Answers whether the usual array deallocation function for the
1609 /// allocated type expects the size of the allocation as a
1610 /// parameter.
doesUsualArrayDeleteWantSize()1611 bool doesUsualArrayDeleteWantSize() const {
1612 return UsualArrayDeleteWantsSize;
1613 }
1614
1615 typedef ExprIterator arg_iterator;
1616 typedef ConstExprIterator const_arg_iterator;
1617
placement_arg_begin()1618 arg_iterator placement_arg_begin() {
1619 return SubExprs + Array + hasInitializer();
1620 }
placement_arg_end()1621 arg_iterator placement_arg_end() {
1622 return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1623 }
placement_arg_begin()1624 const_arg_iterator placement_arg_begin() const {
1625 return SubExprs + Array + hasInitializer();
1626 }
placement_arg_end()1627 const_arg_iterator placement_arg_end() const {
1628 return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1629 }
1630
1631 typedef Stmt **raw_arg_iterator;
raw_arg_begin()1632 raw_arg_iterator raw_arg_begin() { return SubExprs; }
raw_arg_end()1633 raw_arg_iterator raw_arg_end() {
1634 return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1635 }
raw_arg_begin()1636 const_arg_iterator raw_arg_begin() const { return SubExprs; }
raw_arg_end()1637 const_arg_iterator raw_arg_end() const {
1638 return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1639 }
1640
getStartLoc()1641 SourceLocation getStartLoc() const { return Range.getBegin(); }
getEndLoc()1642 SourceLocation getEndLoc() const { return Range.getEnd(); }
1643
getDirectInitRange()1644 SourceRange getDirectInitRange() const { return DirectInitRange; }
1645
getSourceRange()1646 SourceRange getSourceRange() const LLVM_READONLY {
1647 return Range;
1648 }
getLocStart()1649 SourceLocation getLocStart() const LLVM_READONLY { return getStartLoc(); }
getLocEnd()1650 SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1651
classof(const Stmt * T)1652 static bool classof(const Stmt *T) {
1653 return T->getStmtClass() == CXXNewExprClass;
1654 }
1655
1656 // Iterators
children()1657 child_range children() {
1658 return child_range(raw_arg_begin(), raw_arg_end());
1659 }
1660 };
1661
1662 /// \brief Represents a \c delete expression for memory deallocation and
1663 /// destructor calls, e.g. "delete[] pArray".
1664 class CXXDeleteExpr : public Expr {
1665 // Points to the operator delete overload that is used. Could be a member.
1666 FunctionDecl *OperatorDelete;
1667 // The pointer expression to be deleted.
1668 Stmt *Argument;
1669 // Location of the expression.
1670 SourceLocation Loc;
1671 // Is this a forced global delete, i.e. "::delete"?
1672 bool GlobalDelete : 1;
1673 // Is this the array form of delete, i.e. "delete[]"?
1674 bool ArrayForm : 1;
1675 // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1676 // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1677 // will be true).
1678 bool ArrayFormAsWritten : 1;
1679 // Does the usual deallocation function for the element type require
1680 // a size_t argument?
1681 bool UsualArrayDeleteWantsSize : 1;
1682 public:
CXXDeleteExpr(QualType ty,bool globalDelete,bool arrayForm,bool arrayFormAsWritten,bool usualArrayDeleteWantsSize,FunctionDecl * operatorDelete,Expr * arg,SourceLocation loc)1683 CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1684 bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1685 FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1686 : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1687 arg->isInstantiationDependent(),
1688 arg->containsUnexpandedParameterPack()),
1689 OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1690 GlobalDelete(globalDelete),
1691 ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1692 UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
CXXDeleteExpr(EmptyShell Shell)1693 explicit CXXDeleteExpr(EmptyShell Shell)
1694 : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1695
isGlobalDelete()1696 bool isGlobalDelete() const { return GlobalDelete; }
isArrayForm()1697 bool isArrayForm() const { return ArrayForm; }
isArrayFormAsWritten()1698 bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1699
1700 /// Answers whether the usual array deallocation function for the
1701 /// allocated type expects the size of the allocation as a
1702 /// parameter. This can be true even if the actual deallocation
1703 /// function that we're using doesn't want a size.
doesUsualArrayDeleteWantSize()1704 bool doesUsualArrayDeleteWantSize() const {
1705 return UsualArrayDeleteWantsSize;
1706 }
1707
getOperatorDelete()1708 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1709
getArgument()1710 Expr *getArgument() { return cast<Expr>(Argument); }
getArgument()1711 const Expr *getArgument() const { return cast<Expr>(Argument); }
1712
1713 /// \brief Retrieve the type being destroyed. If the type being
1714 /// destroyed is a dependent type which may or may not be a pointer,
1715 /// return an invalid type.
1716 QualType getDestroyedType() const;
1717
getLocStart()1718 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()1719 SourceLocation getLocEnd() const LLVM_READONLY {return Argument->getLocEnd();}
1720
classof(const Stmt * T)1721 static bool classof(const Stmt *T) {
1722 return T->getStmtClass() == CXXDeleteExprClass;
1723 }
1724
1725 // Iterators
children()1726 child_range children() { return child_range(&Argument, &Argument+1); }
1727
1728 friend class ASTStmtReader;
1729 };
1730
1731 /// \brief Stores the type being destroyed by a pseudo-destructor expression.
1732 class PseudoDestructorTypeStorage {
1733 /// \brief Either the type source information or the name of the type, if
1734 /// it couldn't be resolved due to type-dependence.
1735 llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1736
1737 /// \brief The starting source location of the pseudo-destructor type.
1738 SourceLocation Location;
1739
1740 public:
PseudoDestructorTypeStorage()1741 PseudoDestructorTypeStorage() { }
1742
PseudoDestructorTypeStorage(IdentifierInfo * II,SourceLocation Loc)1743 PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1744 : Type(II), Location(Loc) { }
1745
1746 PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1747
getTypeSourceInfo()1748 TypeSourceInfo *getTypeSourceInfo() const {
1749 return Type.dyn_cast<TypeSourceInfo *>();
1750 }
1751
getIdentifier()1752 IdentifierInfo *getIdentifier() const {
1753 return Type.dyn_cast<IdentifierInfo *>();
1754 }
1755
getLocation()1756 SourceLocation getLocation() const { return Location; }
1757 };
1758
1759 /// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1760 ///
1761 /// A pseudo-destructor is an expression that looks like a member access to a
1762 /// destructor of a scalar type, except that scalar types don't have
1763 /// destructors. For example:
1764 ///
1765 /// \code
1766 /// typedef int T;
1767 /// void f(int *p) {
1768 /// p->T::~T();
1769 /// }
1770 /// \endcode
1771 ///
1772 /// Pseudo-destructors typically occur when instantiating templates such as:
1773 ///
1774 /// \code
1775 /// template<typename T>
1776 /// void destroy(T* ptr) {
1777 /// ptr->T::~T();
1778 /// }
1779 /// \endcode
1780 ///
1781 /// for scalar types. A pseudo-destructor expression has no run-time semantics
1782 /// beyond evaluating the base expression.
1783 class CXXPseudoDestructorExpr : public Expr {
1784 /// \brief The base expression (that is being destroyed).
1785 Stmt *Base;
1786
1787 /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1788 /// period ('.').
1789 bool IsArrow : 1;
1790
1791 /// \brief The location of the '.' or '->' operator.
1792 SourceLocation OperatorLoc;
1793
1794 /// \brief The nested-name-specifier that follows the operator, if present.
1795 NestedNameSpecifierLoc QualifierLoc;
1796
1797 /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1798 /// expression.
1799 TypeSourceInfo *ScopeType;
1800
1801 /// \brief The location of the '::' in a qualified pseudo-destructor
1802 /// expression.
1803 SourceLocation ColonColonLoc;
1804
1805 /// \brief The location of the '~'.
1806 SourceLocation TildeLoc;
1807
1808 /// \brief The type being destroyed, or its name if we were unable to
1809 /// resolve the name.
1810 PseudoDestructorTypeStorage DestroyedType;
1811
1812 friend class ASTStmtReader;
1813
1814 public:
1815 CXXPseudoDestructorExpr(ASTContext &Context,
1816 Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1817 NestedNameSpecifierLoc QualifierLoc,
1818 TypeSourceInfo *ScopeType,
1819 SourceLocation ColonColonLoc,
1820 SourceLocation TildeLoc,
1821 PseudoDestructorTypeStorage DestroyedType);
1822
CXXPseudoDestructorExpr(EmptyShell Shell)1823 explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1824 : Expr(CXXPseudoDestructorExprClass, Shell),
1825 Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1826
getBase()1827 Expr *getBase() const { return cast<Expr>(Base); }
1828
1829 /// \brief Determines whether this member expression actually had
1830 /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1831 /// x->Base::foo.
hasQualifier()1832 bool hasQualifier() const { return QualifierLoc; }
1833
1834 /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1835 /// with source-location information.
getQualifierLoc()1836 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1837
1838 /// \brief If the member name was qualified, retrieves the
1839 /// nested-name-specifier that precedes the member name. Otherwise, returns
1840 /// NULL.
getQualifier()1841 NestedNameSpecifier *getQualifier() const {
1842 return QualifierLoc.getNestedNameSpecifier();
1843 }
1844
1845 /// \brief Determine whether this pseudo-destructor expression was written
1846 /// using an '->' (otherwise, it used a '.').
isArrow()1847 bool isArrow() const { return IsArrow; }
1848
1849 /// \brief Retrieve the location of the '.' or '->' operator.
getOperatorLoc()1850 SourceLocation getOperatorLoc() const { return OperatorLoc; }
1851
1852 /// \brief Retrieve the scope type in a qualified pseudo-destructor
1853 /// expression.
1854 ///
1855 /// Pseudo-destructor expressions can have extra qualification within them
1856 /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1857 /// Here, if the object type of the expression is (or may be) a scalar type,
1858 /// \p T may also be a scalar type and, therefore, cannot be part of a
1859 /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1860 /// destructor expression.
getScopeTypeInfo()1861 TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1862
1863 /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1864 /// expression.
getColonColonLoc()1865 SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1866
1867 /// \brief Retrieve the location of the '~'.
getTildeLoc()1868 SourceLocation getTildeLoc() const { return TildeLoc; }
1869
1870 /// \brief Retrieve the source location information for the type
1871 /// being destroyed.
1872 ///
1873 /// This type-source information is available for non-dependent
1874 /// pseudo-destructor expressions and some dependent pseudo-destructor
1875 /// expressions. Returns NULL if we only have the identifier for a
1876 /// dependent pseudo-destructor expression.
getDestroyedTypeInfo()1877 TypeSourceInfo *getDestroyedTypeInfo() const {
1878 return DestroyedType.getTypeSourceInfo();
1879 }
1880
1881 /// \brief In a dependent pseudo-destructor expression for which we do not
1882 /// have full type information on the destroyed type, provides the name
1883 /// of the destroyed type.
getDestroyedTypeIdentifier()1884 IdentifierInfo *getDestroyedTypeIdentifier() const {
1885 return DestroyedType.getIdentifier();
1886 }
1887
1888 /// \brief Retrieve the type being destroyed.
1889 QualType getDestroyedType() const;
1890
1891 /// \brief Retrieve the starting location of the type being destroyed.
getDestroyedTypeLoc()1892 SourceLocation getDestroyedTypeLoc() const {
1893 return DestroyedType.getLocation();
1894 }
1895
1896 /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1897 /// expression.
setDestroyedType(IdentifierInfo * II,SourceLocation Loc)1898 void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1899 DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1900 }
1901
1902 /// \brief Set the destroyed type.
setDestroyedType(TypeSourceInfo * Info)1903 void setDestroyedType(TypeSourceInfo *Info) {
1904 DestroyedType = PseudoDestructorTypeStorage(Info);
1905 }
1906
getLocStart()1907 SourceLocation getLocStart() const LLVM_READONLY {return Base->getLocStart();}
1908 SourceLocation getLocEnd() const LLVM_READONLY;
1909
classof(const Stmt * T)1910 static bool classof(const Stmt *T) {
1911 return T->getStmtClass() == CXXPseudoDestructorExprClass;
1912 }
1913
1914 // Iterators
children()1915 child_range children() { return child_range(&Base, &Base + 1); }
1916 };
1917
1918 /// \brief Represents a GCC or MS unary type trait, as used in the
1919 /// implementation of TR1/C++11 type trait templates.
1920 ///
1921 /// Example:
1922 /// @code
1923 /// __is_pod(int) == true
1924 /// __is_enum(std::string) == false
1925 /// @endcode
1926 class UnaryTypeTraitExpr : public Expr {
1927 /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1928 unsigned UTT : 31;
1929 /// The value of the type trait. Unspecified if dependent.
1930 bool Value : 1;
1931
1932 /// Loc - The location of the type trait keyword.
1933 SourceLocation Loc;
1934
1935 /// RParen - The location of the closing paren.
1936 SourceLocation RParen;
1937
1938 /// The type being queried.
1939 TypeSourceInfo *QueriedType;
1940
1941 public:
UnaryTypeTraitExpr(SourceLocation loc,UnaryTypeTrait utt,TypeSourceInfo * queried,bool value,SourceLocation rparen,QualType ty)1942 UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1943 TypeSourceInfo *queried, bool value,
1944 SourceLocation rparen, QualType ty)
1945 : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1946 false, queried->getType()->isDependentType(),
1947 queried->getType()->isInstantiationDependentType(),
1948 queried->getType()->containsUnexpandedParameterPack()),
1949 UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1950
UnaryTypeTraitExpr(EmptyShell Empty)1951 explicit UnaryTypeTraitExpr(EmptyShell Empty)
1952 : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1953 QueriedType() { }
1954
getLocStart()1955 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()1956 SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
1957
getTrait()1958 UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1959
getQueriedType()1960 QualType getQueriedType() const { return QueriedType->getType(); }
1961
getQueriedTypeSourceInfo()1962 TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1963
getValue()1964 bool getValue() const { return Value; }
1965
classof(const Stmt * T)1966 static bool classof(const Stmt *T) {
1967 return T->getStmtClass() == UnaryTypeTraitExprClass;
1968 }
1969
1970 // Iterators
children()1971 child_range children() { return child_range(); }
1972
1973 friend class ASTStmtReader;
1974 };
1975
1976 /// \brief Represents a GCC or MS binary type trait, as used in the
1977 /// implementation of TR1/C++11 type trait templates.
1978 ///
1979 /// Example:
1980 /// @code
1981 /// __is_base_of(Base, Derived) == true
1982 /// @endcode
1983 class BinaryTypeTraitExpr : public Expr {
1984 /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1985 unsigned BTT : 8;
1986
1987 /// The value of the type trait. Unspecified if dependent.
1988 bool Value : 1;
1989
1990 /// Loc - The location of the type trait keyword.
1991 SourceLocation Loc;
1992
1993 /// RParen - The location of the closing paren.
1994 SourceLocation RParen;
1995
1996 /// The lhs type being queried.
1997 TypeSourceInfo *LhsType;
1998
1999 /// The rhs type being queried.
2000 TypeSourceInfo *RhsType;
2001
2002 public:
BinaryTypeTraitExpr(SourceLocation loc,BinaryTypeTrait btt,TypeSourceInfo * lhsType,TypeSourceInfo * rhsType,bool value,SourceLocation rparen,QualType ty)2003 BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
2004 TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
2005 bool value, SourceLocation rparen, QualType ty)
2006 : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
2007 lhsType->getType()->isDependentType() ||
2008 rhsType->getType()->isDependentType(),
2009 (lhsType->getType()->isInstantiationDependentType() ||
2010 rhsType->getType()->isInstantiationDependentType()),
2011 (lhsType->getType()->containsUnexpandedParameterPack() ||
2012 rhsType->getType()->containsUnexpandedParameterPack())),
2013 BTT(btt), Value(value), Loc(loc), RParen(rparen),
2014 LhsType(lhsType), RhsType(rhsType) { }
2015
2016
BinaryTypeTraitExpr(EmptyShell Empty)2017 explicit BinaryTypeTraitExpr(EmptyShell Empty)
2018 : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
2019 LhsType(), RhsType() { }
2020
getLocStart()2021 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()2022 SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2023
getTrait()2024 BinaryTypeTrait getTrait() const {
2025 return static_cast<BinaryTypeTrait>(BTT);
2026 }
2027
getLhsType()2028 QualType getLhsType() const { return LhsType->getType(); }
getRhsType()2029 QualType getRhsType() const { return RhsType->getType(); }
2030
getLhsTypeSourceInfo()2031 TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
getRhsTypeSourceInfo()2032 TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2033
getValue()2034 bool getValue() const { assert(!isTypeDependent()); return Value; }
2035
classof(const Stmt * T)2036 static bool classof(const Stmt *T) {
2037 return T->getStmtClass() == BinaryTypeTraitExprClass;
2038 }
2039
2040 // Iterators
children()2041 child_range children() { return child_range(); }
2042
2043 friend class ASTStmtReader;
2044 };
2045
2046 /// \brief A type trait used in the implementation of various C++11 and
2047 /// Library TR1 trait templates.
2048 ///
2049 /// \code
2050 /// __is_trivially_constructible(vector<int>, int*, int*)
2051 /// \endcode
2052 class TypeTraitExpr : public Expr {
2053 /// \brief The location of the type trait keyword.
2054 SourceLocation Loc;
2055
2056 /// \brief The location of the closing parenthesis.
2057 SourceLocation RParenLoc;
2058
2059 // Note: The TypeSourceInfos for the arguments are allocated after the
2060 // TypeTraitExpr.
2061
2062 TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2063 ArrayRef<TypeSourceInfo *> Args,
2064 SourceLocation RParenLoc,
2065 bool Value);
2066
TypeTraitExpr(EmptyShell Empty)2067 TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2068
2069 /// \brief Retrieve the argument types.
getTypeSourceInfos()2070 TypeSourceInfo **getTypeSourceInfos() {
2071 return reinterpret_cast<TypeSourceInfo **>(this+1);
2072 }
2073
2074 /// \brief Retrieve the argument types.
getTypeSourceInfos()2075 TypeSourceInfo * const *getTypeSourceInfos() const {
2076 return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2077 }
2078
2079 public:
2080 /// \brief Create a new type trait expression.
2081 static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
2082 TypeTrait Kind,
2083 ArrayRef<TypeSourceInfo *> Args,
2084 SourceLocation RParenLoc,
2085 bool Value);
2086
2087 static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
2088
2089 /// \brief Determine which type trait this expression uses.
getTrait()2090 TypeTrait getTrait() const {
2091 return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2092 }
2093
getValue()2094 bool getValue() const {
2095 assert(!isValueDependent());
2096 return TypeTraitExprBits.Value;
2097 }
2098
2099 /// \brief Determine the number of arguments to this type trait.
getNumArgs()2100 unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2101
2102 /// \brief Retrieve the Ith argument.
getArg(unsigned I)2103 TypeSourceInfo *getArg(unsigned I) const {
2104 assert(I < getNumArgs() && "Argument out-of-range");
2105 return getArgs()[I];
2106 }
2107
2108 /// \brief Retrieve the argument types.
getArgs()2109 ArrayRef<TypeSourceInfo *> getArgs() const {
2110 return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2111 }
2112
2113 typedef TypeSourceInfo **arg_iterator;
arg_begin()2114 arg_iterator arg_begin() {
2115 return getTypeSourceInfos();
2116 }
arg_end()2117 arg_iterator arg_end() {
2118 return getTypeSourceInfos() + getNumArgs();
2119 }
2120
2121 typedef TypeSourceInfo const * const *arg_const_iterator;
arg_begin()2122 arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
arg_end()2123 arg_const_iterator arg_end() const {
2124 return getTypeSourceInfos() + getNumArgs();
2125 }
2126
getLocStart()2127 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()2128 SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2129
classof(const Stmt * T)2130 static bool classof(const Stmt *T) {
2131 return T->getStmtClass() == TypeTraitExprClass;
2132 }
2133
2134 // Iterators
children()2135 child_range children() { return child_range(); }
2136
2137 friend class ASTStmtReader;
2138 friend class ASTStmtWriter;
2139
2140 };
2141
2142 /// \brief An Embarcadero array type trait, as used in the implementation of
2143 /// __array_rank and __array_extent.
2144 ///
2145 /// Example:
2146 /// @code
2147 /// __array_rank(int[10][20]) == 2
2148 /// __array_extent(int, 1) == 20
2149 /// @endcode
2150 class ArrayTypeTraitExpr : public Expr {
2151 virtual void anchor();
2152
2153 /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2154 unsigned ATT : 2;
2155
2156 /// \brief The value of the type trait. Unspecified if dependent.
2157 uint64_t Value;
2158
2159 /// \brief The array dimension being queried, or -1 if not used.
2160 Expr *Dimension;
2161
2162 /// \brief The location of the type trait keyword.
2163 SourceLocation Loc;
2164
2165 /// \brief The location of the closing paren.
2166 SourceLocation RParen;
2167
2168 /// \brief The type being queried.
2169 TypeSourceInfo *QueriedType;
2170
2171 public:
ArrayTypeTraitExpr(SourceLocation loc,ArrayTypeTrait att,TypeSourceInfo * queried,uint64_t value,Expr * dimension,SourceLocation rparen,QualType ty)2172 ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2173 TypeSourceInfo *queried, uint64_t value,
2174 Expr *dimension, SourceLocation rparen, QualType ty)
2175 : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2176 false, queried->getType()->isDependentType(),
2177 (queried->getType()->isInstantiationDependentType() ||
2178 (dimension && dimension->isInstantiationDependent())),
2179 queried->getType()->containsUnexpandedParameterPack()),
2180 ATT(att), Value(value), Dimension(dimension),
2181 Loc(loc), RParen(rparen), QueriedType(queried) { }
2182
2183
ArrayTypeTraitExpr(EmptyShell Empty)2184 explicit ArrayTypeTraitExpr(EmptyShell Empty)
2185 : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2186 QueriedType() { }
2187
~ArrayTypeTraitExpr()2188 virtual ~ArrayTypeTraitExpr() { }
2189
getLocStart()2190 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()2191 SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2192
getTrait()2193 ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2194
getQueriedType()2195 QualType getQueriedType() const { return QueriedType->getType(); }
2196
getQueriedTypeSourceInfo()2197 TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2198
getValue()2199 uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2200
getDimensionExpression()2201 Expr *getDimensionExpression() const { return Dimension; }
2202
classof(const Stmt * T)2203 static bool classof(const Stmt *T) {
2204 return T->getStmtClass() == ArrayTypeTraitExprClass;
2205 }
2206
2207 // Iterators
children()2208 child_range children() { return child_range(); }
2209
2210 friend class ASTStmtReader;
2211 };
2212
2213 /// \brief An expression trait intrinsic.
2214 ///
2215 /// Example:
2216 /// @code
2217 /// __is_lvalue_expr(std::cout) == true
2218 /// __is_lvalue_expr(1) == false
2219 /// @endcode
2220 class ExpressionTraitExpr : public Expr {
2221 /// \brief The trait. A ExpressionTrait enum in MSVC compat unsigned.
2222 unsigned ET : 31;
2223 /// \brief The value of the type trait. Unspecified if dependent.
2224 bool Value : 1;
2225
2226 /// \brief The location of the type trait keyword.
2227 SourceLocation Loc;
2228
2229 /// \brief The location of the closing paren.
2230 SourceLocation RParen;
2231
2232 /// \brief The expression being queried.
2233 Expr* QueriedExpression;
2234 public:
ExpressionTraitExpr(SourceLocation loc,ExpressionTrait et,Expr * queried,bool value,SourceLocation rparen,QualType resultType)2235 ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2236 Expr *queried, bool value,
2237 SourceLocation rparen, QualType resultType)
2238 : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2239 false, // Not type-dependent
2240 // Value-dependent if the argument is type-dependent.
2241 queried->isTypeDependent(),
2242 queried->isInstantiationDependent(),
2243 queried->containsUnexpandedParameterPack()),
2244 ET(et), Value(value), Loc(loc), RParen(rparen),
2245 QueriedExpression(queried) { }
2246
ExpressionTraitExpr(EmptyShell Empty)2247 explicit ExpressionTraitExpr(EmptyShell Empty)
2248 : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2249 QueriedExpression() { }
2250
getLocStart()2251 SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
getLocEnd()2252 SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2253
getTrait()2254 ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2255
getQueriedExpression()2256 Expr *getQueriedExpression() const { return QueriedExpression; }
2257
getValue()2258 bool getValue() const { return Value; }
2259
classof(const Stmt * T)2260 static bool classof(const Stmt *T) {
2261 return T->getStmtClass() == ExpressionTraitExprClass;
2262 }
2263
2264 // Iterators
children()2265 child_range children() { return child_range(); }
2266
2267 friend class ASTStmtReader;
2268 };
2269
2270
2271 /// \brief A reference to an overloaded function set, either an
2272 /// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2273 class OverloadExpr : public Expr {
2274 /// \brief The common name of these declarations.
2275 DeclarationNameInfo NameInfo;
2276
2277 /// \brief The nested-name-specifier that qualifies the name, if any.
2278 NestedNameSpecifierLoc QualifierLoc;
2279
2280 /// The results. These are undesugared, which is to say, they may
2281 /// include UsingShadowDecls. Access is relative to the naming
2282 /// class.
2283 // FIXME: Allocate this data after the OverloadExpr subclass.
2284 DeclAccessPair *Results;
2285 unsigned NumResults;
2286
2287 protected:
2288 /// \brief Whether the name includes info for explicit template
2289 /// keyword and arguments.
2290 bool HasTemplateKWAndArgsInfo;
2291
2292 /// \brief Return the optional template keyword and arguments info.
2293 ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2294
2295 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2296 const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2297 return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2298 }
2299
2300 OverloadExpr(StmtClass K, ASTContext &C,
2301 NestedNameSpecifierLoc QualifierLoc,
2302 SourceLocation TemplateKWLoc,
2303 const DeclarationNameInfo &NameInfo,
2304 const TemplateArgumentListInfo *TemplateArgs,
2305 UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2306 bool KnownDependent,
2307 bool KnownInstantiationDependent,
2308 bool KnownContainsUnexpandedParameterPack);
2309
OverloadExpr(StmtClass K,EmptyShell Empty)2310 OverloadExpr(StmtClass K, EmptyShell Empty)
2311 : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2312 HasTemplateKWAndArgsInfo(false) { }
2313
2314 void initializeResults(ASTContext &C,
2315 UnresolvedSetIterator Begin,
2316 UnresolvedSetIterator End);
2317
2318 public:
2319 struct FindResult {
2320 OverloadExpr *Expression;
2321 bool IsAddressOfOperand;
2322 bool HasFormOfMemberPointer;
2323 };
2324
2325 /// Finds the overloaded expression in the given expression of
2326 /// OverloadTy.
2327 ///
2328 /// \return the expression (which must be there) and true if it has
2329 /// the particular form of a member pointer expression
find(Expr * E)2330 static FindResult find(Expr *E) {
2331 assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2332
2333 FindResult Result;
2334
2335 E = E->IgnoreParens();
2336 if (isa<UnaryOperator>(E)) {
2337 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2338 E = cast<UnaryOperator>(E)->getSubExpr();
2339 OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2340
2341 Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2342 Result.IsAddressOfOperand = true;
2343 Result.Expression = Ovl;
2344 } else {
2345 Result.HasFormOfMemberPointer = false;
2346 Result.IsAddressOfOperand = false;
2347 Result.Expression = cast<OverloadExpr>(E);
2348 }
2349
2350 return Result;
2351 }
2352
2353 /// \brief Gets the naming class of this lookup, if any.
2354 CXXRecordDecl *getNamingClass() const;
2355
2356 typedef UnresolvedSetImpl::iterator decls_iterator;
decls_begin()2357 decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
decls_end()2358 decls_iterator decls_end() const {
2359 return UnresolvedSetIterator(Results + NumResults);
2360 }
2361
2362 /// \brief Gets the number of declarations in the unresolved set.
getNumDecls()2363 unsigned getNumDecls() const { return NumResults; }
2364
2365 /// \brief Gets the full name info.
getNameInfo()2366 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2367
2368 /// \brief Gets the name looked up.
getName()2369 DeclarationName getName() const { return NameInfo.getName(); }
2370
2371 /// \brief Gets the location of the name.
getNameLoc()2372 SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2373
2374 /// \brief Fetches the nested-name qualifier, if one was given.
getQualifier()2375 NestedNameSpecifier *getQualifier() const {
2376 return QualifierLoc.getNestedNameSpecifier();
2377 }
2378
2379 /// \brief Fetches the nested-name qualifier with source-location
2380 /// information, if one was given.
getQualifierLoc()2381 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2382
2383 /// \brief Retrieve the location of the template keyword preceding
2384 /// this name, if any.
getTemplateKeywordLoc()2385 SourceLocation getTemplateKeywordLoc() const {
2386 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2387 return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2388 }
2389
2390 /// \brief Retrieve the location of the left angle bracket starting the
2391 /// explicit template argument list following the name, if any.
getLAngleLoc()2392 SourceLocation getLAngleLoc() const {
2393 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2394 return getTemplateKWAndArgsInfo()->LAngleLoc;
2395 }
2396
2397 /// \brief Retrieve the location of the right angle bracket ending the
2398 /// explicit template argument list following the name, if any.
getRAngleLoc()2399 SourceLocation getRAngleLoc() const {
2400 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2401 return getTemplateKWAndArgsInfo()->RAngleLoc;
2402 }
2403
2404 /// \brief Determines whether the name was preceded by the template keyword.
hasTemplateKeyword()2405 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2406
2407 /// \brief Determines whether this expression had explicit template arguments.
hasExplicitTemplateArgs()2408 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2409
2410 // Note that, inconsistently with the explicit-template-argument AST
2411 // nodes, users are *forbidden* from calling these methods on objects
2412 // without explicit template arguments.
2413
getExplicitTemplateArgs()2414 ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2415 assert(hasExplicitTemplateArgs());
2416 return *getTemplateKWAndArgsInfo();
2417 }
2418
getExplicitTemplateArgs()2419 const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2420 return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2421 }
2422
getTemplateArgs()2423 TemplateArgumentLoc const *getTemplateArgs() const {
2424 return getExplicitTemplateArgs().getTemplateArgs();
2425 }
2426
getNumTemplateArgs()2427 unsigned getNumTemplateArgs() const {
2428 return getExplicitTemplateArgs().NumTemplateArgs;
2429 }
2430
2431 /// \brief Copies the template arguments into the given structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)2432 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2433 getExplicitTemplateArgs().copyInto(List);
2434 }
2435
2436 /// \brief Retrieves the optional explicit template arguments.
2437 ///
2438 /// This points to the same data as getExplicitTemplateArgs(), but
2439 /// returns null if there are no explicit template arguments.
getOptionalExplicitTemplateArgs()2440 const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2441 if (!hasExplicitTemplateArgs()) return 0;
2442 return &getExplicitTemplateArgs();
2443 }
2444
classof(const Stmt * T)2445 static bool classof(const Stmt *T) {
2446 return T->getStmtClass() == UnresolvedLookupExprClass ||
2447 T->getStmtClass() == UnresolvedMemberExprClass;
2448 }
2449
2450 friend class ASTStmtReader;
2451 friend class ASTStmtWriter;
2452 };
2453
2454 /// \brief A reference to a name which we were able to look up during
2455 /// parsing but could not resolve to a specific declaration.
2456 ///
2457 /// This arises in several ways:
2458 /// * we might be waiting for argument-dependent lookup
2459 /// * the name might resolve to an overloaded function
2460 /// and eventually:
2461 /// * the lookup might have included a function template
2462 /// These never include UnresolvedUsingValueDecls, which are always class
2463 /// members and therefore appear only in UnresolvedMemberLookupExprs.
2464 class UnresolvedLookupExpr : public OverloadExpr {
2465 /// True if these lookup results should be extended by
2466 /// argument-dependent lookup if this is the operand of a function
2467 /// call.
2468 bool RequiresADL;
2469
2470 /// True if these lookup results are overloaded. This is pretty
2471 /// trivially rederivable if we urgently need to kill this field.
2472 bool Overloaded;
2473
2474 /// The naming class (C++ [class.access.base]p5) of the lookup, if
2475 /// any. This can generally be recalculated from the context chain,
2476 /// but that can be fairly expensive for unqualified lookups. If we
2477 /// want to improve memory use here, this could go in a union
2478 /// against the qualified-lookup bits.
2479 CXXRecordDecl *NamingClass;
2480
UnresolvedLookupExpr(ASTContext & C,CXXRecordDecl * NamingClass,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool RequiresADL,bool Overloaded,const TemplateArgumentListInfo * TemplateArgs,UnresolvedSetIterator Begin,UnresolvedSetIterator End)2481 UnresolvedLookupExpr(ASTContext &C,
2482 CXXRecordDecl *NamingClass,
2483 NestedNameSpecifierLoc QualifierLoc,
2484 SourceLocation TemplateKWLoc,
2485 const DeclarationNameInfo &NameInfo,
2486 bool RequiresADL, bool Overloaded,
2487 const TemplateArgumentListInfo *TemplateArgs,
2488 UnresolvedSetIterator Begin, UnresolvedSetIterator End)
2489 : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2490 NameInfo, TemplateArgs, Begin, End, false, false, false),
2491 RequiresADL(RequiresADL),
2492 Overloaded(Overloaded), NamingClass(NamingClass)
2493 {}
2494
UnresolvedLookupExpr(EmptyShell Empty)2495 UnresolvedLookupExpr(EmptyShell Empty)
2496 : OverloadExpr(UnresolvedLookupExprClass, Empty),
2497 RequiresADL(false), Overloaded(false), NamingClass(0)
2498 {}
2499
2500 friend class ASTStmtReader;
2501
2502 public:
Create(ASTContext & C,CXXRecordDecl * NamingClass,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool ADL,bool Overloaded,UnresolvedSetIterator Begin,UnresolvedSetIterator End)2503 static UnresolvedLookupExpr *Create(ASTContext &C,
2504 CXXRecordDecl *NamingClass,
2505 NestedNameSpecifierLoc QualifierLoc,
2506 const DeclarationNameInfo &NameInfo,
2507 bool ADL, bool Overloaded,
2508 UnresolvedSetIterator Begin,
2509 UnresolvedSetIterator End) {
2510 return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2511 SourceLocation(), NameInfo,
2512 ADL, Overloaded, 0, Begin, End);
2513 }
2514
2515 static UnresolvedLookupExpr *Create(ASTContext &C,
2516 CXXRecordDecl *NamingClass,
2517 NestedNameSpecifierLoc QualifierLoc,
2518 SourceLocation TemplateKWLoc,
2519 const DeclarationNameInfo &NameInfo,
2520 bool ADL,
2521 const TemplateArgumentListInfo *Args,
2522 UnresolvedSetIterator Begin,
2523 UnresolvedSetIterator End);
2524
2525 static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2526 bool HasTemplateKWAndArgsInfo,
2527 unsigned NumTemplateArgs);
2528
2529 /// True if this declaration should be extended by
2530 /// argument-dependent lookup.
requiresADL()2531 bool requiresADL() const { return RequiresADL; }
2532
2533 /// True if this lookup is overloaded.
isOverloaded()2534 bool isOverloaded() const { return Overloaded; }
2535
2536 /// Gets the 'naming class' (in the sense of C++0x
2537 /// [class.access.base]p5) of the lookup. This is the scope
2538 /// that was looked in to find these results.
getNamingClass()2539 CXXRecordDecl *getNamingClass() const { return NamingClass; }
2540
getLocStart()2541 SourceLocation getLocStart() const LLVM_READONLY {
2542 if (NestedNameSpecifierLoc l = getQualifierLoc())
2543 return l.getBeginLoc();
2544 return getNameInfo().getLocStart();
2545 }
getLocEnd()2546 SourceLocation getLocEnd() const LLVM_READONLY {
2547 if (hasExplicitTemplateArgs())
2548 return getRAngleLoc();
2549 return getNameInfo().getLocEnd();
2550 }
2551
children()2552 child_range children() { return child_range(); }
2553
classof(const Stmt * T)2554 static bool classof(const Stmt *T) {
2555 return T->getStmtClass() == UnresolvedLookupExprClass;
2556 }
2557 };
2558
2559 /// \brief A qualified reference to a name whose declaration cannot
2560 /// yet be resolved.
2561 ///
2562 /// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2563 /// it expresses a reference to a declaration such as
2564 /// X<T>::value. The difference, however, is that an
2565 /// DependentScopeDeclRefExpr node is used only within C++ templates when
2566 /// the qualification (e.g., X<T>::) refers to a dependent type. In
2567 /// this case, X<T>::value cannot resolve to a declaration because the
2568 /// declaration will differ from on instantiation of X<T> to the
2569 /// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2570 /// qualifier (X<T>::) and the name of the entity being referenced
2571 /// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2572 /// declaration can be found.
2573 class DependentScopeDeclRefExpr : public Expr {
2574 /// \brief The nested-name-specifier that qualifies this unresolved
2575 /// declaration name.
2576 NestedNameSpecifierLoc QualifierLoc;
2577
2578 /// The name of the entity we will be referencing.
2579 DeclarationNameInfo NameInfo;
2580
2581 /// \brief Whether the name includes info for explicit template
2582 /// keyword and arguments.
2583 bool HasTemplateKWAndArgsInfo;
2584
2585 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2586 ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2587 if (!HasTemplateKWAndArgsInfo) return 0;
2588 return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2589 }
2590 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2591 const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2592 return const_cast<DependentScopeDeclRefExpr*>(this)
2593 ->getTemplateKWAndArgsInfo();
2594 }
2595
2596 DependentScopeDeclRefExpr(QualType T,
2597 NestedNameSpecifierLoc QualifierLoc,
2598 SourceLocation TemplateKWLoc,
2599 const DeclarationNameInfo &NameInfo,
2600 const TemplateArgumentListInfo *Args);
2601
2602 public:
2603 static DependentScopeDeclRefExpr *Create(ASTContext &C,
2604 NestedNameSpecifierLoc QualifierLoc,
2605 SourceLocation TemplateKWLoc,
2606 const DeclarationNameInfo &NameInfo,
2607 const TemplateArgumentListInfo *TemplateArgs);
2608
2609 static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2610 bool HasTemplateKWAndArgsInfo,
2611 unsigned NumTemplateArgs);
2612
2613 /// \brief Retrieve the name that this expression refers to.
getNameInfo()2614 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2615
2616 /// \brief Retrieve the name that this expression refers to.
getDeclName()2617 DeclarationName getDeclName() const { return NameInfo.getName(); }
2618
2619 /// \brief Retrieve the location of the name within the expression.
getLocation()2620 SourceLocation getLocation() const { return NameInfo.getLoc(); }
2621
2622 /// \brief Retrieve the nested-name-specifier that qualifies the
2623 /// name, with source location information.
getQualifierLoc()2624 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2625
2626
2627 /// \brief Retrieve the nested-name-specifier that qualifies this
2628 /// declaration.
getQualifier()2629 NestedNameSpecifier *getQualifier() const {
2630 return QualifierLoc.getNestedNameSpecifier();
2631 }
2632
2633 /// \brief Retrieve the location of the template keyword preceding
2634 /// this name, if any.
getTemplateKeywordLoc()2635 SourceLocation getTemplateKeywordLoc() const {
2636 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2637 return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2638 }
2639
2640 /// \brief Retrieve the location of the left angle bracket starting the
2641 /// explicit template argument list following the name, if any.
getLAngleLoc()2642 SourceLocation getLAngleLoc() const {
2643 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2644 return getTemplateKWAndArgsInfo()->LAngleLoc;
2645 }
2646
2647 /// \brief Retrieve the location of the right angle bracket ending the
2648 /// explicit template argument list following the name, if any.
getRAngleLoc()2649 SourceLocation getRAngleLoc() const {
2650 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2651 return getTemplateKWAndArgsInfo()->RAngleLoc;
2652 }
2653
2654 /// Determines whether the name was preceded by the template keyword.
hasTemplateKeyword()2655 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2656
2657 /// Determines whether this lookup had explicit template arguments.
hasExplicitTemplateArgs()2658 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2659
2660 // Note that, inconsistently with the explicit-template-argument AST
2661 // nodes, users are *forbidden* from calling these methods on objects
2662 // without explicit template arguments.
2663
getExplicitTemplateArgs()2664 ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2665 assert(hasExplicitTemplateArgs());
2666 return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2667 }
2668
2669 /// Gets a reference to the explicit template argument list.
getExplicitTemplateArgs()2670 const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2671 assert(hasExplicitTemplateArgs());
2672 return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2673 }
2674
2675 /// \brief Retrieves the optional explicit template arguments.
2676 /// This points to the same data as getExplicitTemplateArgs(), but
2677 /// returns null if there are no explicit template arguments.
getOptionalExplicitTemplateArgs()2678 const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2679 if (!hasExplicitTemplateArgs()) return 0;
2680 return &getExplicitTemplateArgs();
2681 }
2682
2683 /// \brief Copies the template arguments (if present) into the given
2684 /// structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)2685 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2686 getExplicitTemplateArgs().copyInto(List);
2687 }
2688
getTemplateArgs()2689 TemplateArgumentLoc const *getTemplateArgs() const {
2690 return getExplicitTemplateArgs().getTemplateArgs();
2691 }
2692
getNumTemplateArgs()2693 unsigned getNumTemplateArgs() const {
2694 return getExplicitTemplateArgs().NumTemplateArgs;
2695 }
2696
getLocStart()2697 SourceLocation getLocStart() const LLVM_READONLY {
2698 return QualifierLoc.getBeginLoc();
2699 }
getLocEnd()2700 SourceLocation getLocEnd() const LLVM_READONLY {
2701 if (hasExplicitTemplateArgs())
2702 return getRAngleLoc();
2703 return getLocation();
2704 }
2705
classof(const Stmt * T)2706 static bool classof(const Stmt *T) {
2707 return T->getStmtClass() == DependentScopeDeclRefExprClass;
2708 }
2709
children()2710 child_range children() { return child_range(); }
2711
2712 friend class ASTStmtReader;
2713 friend class ASTStmtWriter;
2714 };
2715
2716 /// Represents an expression --- generally a full-expression --- which
2717 /// introduces cleanups to be run at the end of the sub-expression's
2718 /// evaluation. The most common source of expression-introduced
2719 /// cleanups is temporary objects in C++, but several other kinds of
2720 /// expressions can create cleanups, including basically every
2721 /// call in ARC that returns an Objective-C pointer.
2722 ///
2723 /// This expression also tracks whether the sub-expression contains a
2724 /// potentially-evaluated block literal. The lifetime of a block
2725 /// literal is the extent of the enclosing scope.
2726 class ExprWithCleanups : public Expr {
2727 public:
2728 /// The type of objects that are kept in the cleanup.
2729 /// It's useful to remember the set of blocks; we could also
2730 /// remember the set of temporaries, but there's currently
2731 /// no need.
2732 typedef BlockDecl *CleanupObject;
2733
2734 private:
2735 Stmt *SubExpr;
2736
2737 ExprWithCleanups(EmptyShell, unsigned NumObjects);
2738 ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2739
getObjectsBuffer()2740 CleanupObject *getObjectsBuffer() {
2741 return reinterpret_cast<CleanupObject*>(this + 1);
2742 }
getObjectsBuffer()2743 const CleanupObject *getObjectsBuffer() const {
2744 return reinterpret_cast<const CleanupObject*>(this + 1);
2745 }
2746 friend class ASTStmtReader;
2747
2748 public:
2749 static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2750 unsigned numObjects);
2751
2752 static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2753 ArrayRef<CleanupObject> objects);
2754
getObjects()2755 ArrayRef<CleanupObject> getObjects() const {
2756 return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2757 }
2758
getNumObjects()2759 unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2760
getObject(unsigned i)2761 CleanupObject getObject(unsigned i) const {
2762 assert(i < getNumObjects() && "Index out of range");
2763 return getObjects()[i];
2764 }
2765
getSubExpr()2766 Expr *getSubExpr() { return cast<Expr>(SubExpr); }
getSubExpr()2767 const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2768
2769 /// setSubExpr - As with any mutator of the AST, be very careful
2770 /// when modifying an existing AST to preserve its invariants.
setSubExpr(Expr * E)2771 void setSubExpr(Expr *E) { SubExpr = E; }
2772
getLocStart()2773 SourceLocation getLocStart() const LLVM_READONLY {
2774 return SubExpr->getLocStart();
2775 }
getLocEnd()2776 SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
2777
2778 // Implement isa/cast/dyncast/etc.
classof(const Stmt * T)2779 static bool classof(const Stmt *T) {
2780 return T->getStmtClass() == ExprWithCleanupsClass;
2781 }
2782
2783 // Iterators
children()2784 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2785 };
2786
2787 /// \brief Describes an explicit type conversion that uses functional
2788 /// notion but could not be resolved because one or more arguments are
2789 /// type-dependent.
2790 ///
2791 /// The explicit type conversions expressed by
2792 /// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
2793 /// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
2794 /// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
2795 /// type-dependent. For example, this would occur in a template such
2796 /// as:
2797 ///
2798 /// \code
2799 /// template<typename T, typename A1>
2800 /// inline T make_a(const A1& a1) {
2801 /// return T(a1);
2802 /// }
2803 /// \endcode
2804 ///
2805 /// When the returned expression is instantiated, it may resolve to a
2806 /// constructor call, conversion function call, or some kind of type
2807 /// conversion.
2808 class CXXUnresolvedConstructExpr : public Expr {
2809 /// \brief The type being constructed.
2810 TypeSourceInfo *Type;
2811
2812 /// \brief The location of the left parentheses ('(').
2813 SourceLocation LParenLoc;
2814
2815 /// \brief The location of the right parentheses (')').
2816 SourceLocation RParenLoc;
2817
2818 /// \brief The number of arguments used to construct the type.
2819 unsigned NumArgs;
2820
2821 CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2822 SourceLocation LParenLoc,
2823 ArrayRef<Expr*> Args,
2824 SourceLocation RParenLoc);
2825
CXXUnresolvedConstructExpr(EmptyShell Empty,unsigned NumArgs)2826 CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2827 : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2828
2829 friend class ASTStmtReader;
2830
2831 public:
2832 static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2833 TypeSourceInfo *Type,
2834 SourceLocation LParenLoc,
2835 ArrayRef<Expr*> Args,
2836 SourceLocation RParenLoc);
2837
2838 static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2839 unsigned NumArgs);
2840
2841 /// \brief Retrieve the type that is being constructed, as specified
2842 /// in the source code.
getTypeAsWritten()2843 QualType getTypeAsWritten() const { return Type->getType(); }
2844
2845 /// \brief Retrieve the type source information for the type being
2846 /// constructed.
getTypeSourceInfo()2847 TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2848
2849 /// \brief Retrieve the location of the left parentheses ('(') that
2850 /// precedes the argument list.
getLParenLoc()2851 SourceLocation getLParenLoc() const { return LParenLoc; }
setLParenLoc(SourceLocation L)2852 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2853
2854 /// \brief Retrieve the location of the right parentheses (')') that
2855 /// follows the argument list.
getRParenLoc()2856 SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)2857 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2858
2859 /// \brief Retrieve the number of arguments.
arg_size()2860 unsigned arg_size() const { return NumArgs; }
2861
2862 typedef Expr** arg_iterator;
arg_begin()2863 arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
arg_end()2864 arg_iterator arg_end() { return arg_begin() + NumArgs; }
2865
2866 typedef const Expr* const * const_arg_iterator;
arg_begin()2867 const_arg_iterator arg_begin() const {
2868 return reinterpret_cast<const Expr* const *>(this + 1);
2869 }
arg_end()2870 const_arg_iterator arg_end() const {
2871 return arg_begin() + NumArgs;
2872 }
2873
getArg(unsigned I)2874 Expr *getArg(unsigned I) {
2875 assert(I < NumArgs && "Argument index out-of-range");
2876 return *(arg_begin() + I);
2877 }
2878
getArg(unsigned I)2879 const Expr *getArg(unsigned I) const {
2880 assert(I < NumArgs && "Argument index out-of-range");
2881 return *(arg_begin() + I);
2882 }
2883
setArg(unsigned I,Expr * E)2884 void setArg(unsigned I, Expr *E) {
2885 assert(I < NumArgs && "Argument index out-of-range");
2886 *(arg_begin() + I) = E;
2887 }
2888
2889 SourceLocation getLocStart() const LLVM_READONLY;
getLocEnd()2890 SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2891
classof(const Stmt * T)2892 static bool classof(const Stmt *T) {
2893 return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2894 }
2895
2896 // Iterators
children()2897 child_range children() {
2898 Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2899 return child_range(begin, begin + NumArgs);
2900 }
2901 };
2902
2903 /// \brief Represents a C++ member access expression where the actual
2904 /// member referenced could not be resolved because the base
2905 /// expression or the member name was dependent.
2906 ///
2907 /// Like UnresolvedMemberExprs, these can be either implicit or
2908 /// explicit accesses. It is only possible to get one of these with
2909 /// an implicit access if a qualifier is provided.
2910 class CXXDependentScopeMemberExpr : public Expr {
2911 /// \brief The expression for the base pointer or class reference,
2912 /// e.g., the \c x in x.f. Can be null in implicit accesses.
2913 Stmt *Base;
2914
2915 /// \brief The type of the base expression. Never null, even for
2916 /// implicit accesses.
2917 QualType BaseType;
2918
2919 /// \brief Whether this member expression used the '->' operator or
2920 /// the '.' operator.
2921 bool IsArrow : 1;
2922
2923 /// \brief Whether this member expression has info for explicit template
2924 /// keyword and arguments.
2925 bool HasTemplateKWAndArgsInfo : 1;
2926
2927 /// \brief The location of the '->' or '.' operator.
2928 SourceLocation OperatorLoc;
2929
2930 /// \brief The nested-name-specifier that precedes the member name, if any.
2931 NestedNameSpecifierLoc QualifierLoc;
2932
2933 /// \brief In a qualified member access expression such as t->Base::f, this
2934 /// member stores the resolves of name lookup in the context of the member
2935 /// access expression, to be used at instantiation time.
2936 ///
2937 /// FIXME: This member, along with the QualifierLoc, could
2938 /// be stuck into a structure that is optionally allocated at the end of
2939 /// the CXXDependentScopeMemberExpr, to save space in the common case.
2940 NamedDecl *FirstQualifierFoundInScope;
2941
2942 /// \brief The member to which this member expression refers, which
2943 /// can be name, overloaded operator, or destructor.
2944 /// FIXME: could also be a template-id
2945 DeclarationNameInfo MemberNameInfo;
2946
2947 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2948 ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2949 if (!HasTemplateKWAndArgsInfo) return 0;
2950 return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2951 }
2952 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2953 const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2954 return const_cast<CXXDependentScopeMemberExpr*>(this)
2955 ->getTemplateKWAndArgsInfo();
2956 }
2957
2958 CXXDependentScopeMemberExpr(ASTContext &C,
2959 Expr *Base, QualType BaseType, bool IsArrow,
2960 SourceLocation OperatorLoc,
2961 NestedNameSpecifierLoc QualifierLoc,
2962 SourceLocation TemplateKWLoc,
2963 NamedDecl *FirstQualifierFoundInScope,
2964 DeclarationNameInfo MemberNameInfo,
2965 const TemplateArgumentListInfo *TemplateArgs);
2966
2967 public:
2968 CXXDependentScopeMemberExpr(ASTContext &C,
2969 Expr *Base, QualType BaseType,
2970 bool IsArrow,
2971 SourceLocation OperatorLoc,
2972 NestedNameSpecifierLoc QualifierLoc,
2973 NamedDecl *FirstQualifierFoundInScope,
2974 DeclarationNameInfo MemberNameInfo);
2975
2976 static CXXDependentScopeMemberExpr *
2977 Create(ASTContext &C,
2978 Expr *Base, QualType BaseType, bool IsArrow,
2979 SourceLocation OperatorLoc,
2980 NestedNameSpecifierLoc QualifierLoc,
2981 SourceLocation TemplateKWLoc,
2982 NamedDecl *FirstQualifierFoundInScope,
2983 DeclarationNameInfo MemberNameInfo,
2984 const TemplateArgumentListInfo *TemplateArgs);
2985
2986 static CXXDependentScopeMemberExpr *
2987 CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2988 unsigned NumTemplateArgs);
2989
2990 /// \brief True if this is an implicit access, i.e. one in which the
2991 /// member being accessed was not written in the source. The source
2992 /// location of the operator is invalid in this case.
2993 bool isImplicitAccess() const;
2994
2995 /// \brief Retrieve the base object of this member expressions,
2996 /// e.g., the \c x in \c x.m.
getBase()2997 Expr *getBase() const {
2998 assert(!isImplicitAccess());
2999 return cast<Expr>(Base);
3000 }
3001
getBaseType()3002 QualType getBaseType() const { return BaseType; }
3003
3004 /// \brief Determine whether this member expression used the '->'
3005 /// operator; otherwise, it used the '.' operator.
isArrow()3006 bool isArrow() const { return IsArrow; }
3007
3008 /// \brief Retrieve the location of the '->' or '.' operator.
getOperatorLoc()3009 SourceLocation getOperatorLoc() const { return OperatorLoc; }
3010
3011 /// \brief Retrieve the nested-name-specifier that qualifies the member
3012 /// name.
getQualifier()3013 NestedNameSpecifier *getQualifier() const {
3014 return QualifierLoc.getNestedNameSpecifier();
3015 }
3016
3017 /// \brief Retrieve the nested-name-specifier that qualifies the member
3018 /// name, with source location information.
getQualifierLoc()3019 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3020
3021
3022 /// \brief Retrieve the first part of the nested-name-specifier that was
3023 /// found in the scope of the member access expression when the member access
3024 /// was initially parsed.
3025 ///
3026 /// This function only returns a useful result when member access expression
3027 /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3028 /// returned by this function describes what was found by unqualified name
3029 /// lookup for the identifier "Base" within the scope of the member access
3030 /// expression itself. At template instantiation time, this information is
3031 /// combined with the results of name lookup into the type of the object
3032 /// expression itself (the class type of x).
getFirstQualifierFoundInScope()3033 NamedDecl *getFirstQualifierFoundInScope() const {
3034 return FirstQualifierFoundInScope;
3035 }
3036
3037 /// \brief Retrieve the name of the member that this expression
3038 /// refers to.
getMemberNameInfo()3039 const DeclarationNameInfo &getMemberNameInfo() const {
3040 return MemberNameInfo;
3041 }
3042
3043 /// \brief Retrieve the name of the member that this expression
3044 /// refers to.
getMember()3045 DeclarationName getMember() const { return MemberNameInfo.getName(); }
3046
3047 // \brief Retrieve the location of the name of the member that this
3048 // expression refers to.
getMemberLoc()3049 SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3050
3051 /// \brief Retrieve the location of the template keyword preceding the
3052 /// member name, if any.
getTemplateKeywordLoc()3053 SourceLocation getTemplateKeywordLoc() const {
3054 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3055 return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3056 }
3057
3058 /// \brief Retrieve the location of the left angle bracket starting the
3059 /// explicit template argument list following the member name, if any.
getLAngleLoc()3060 SourceLocation getLAngleLoc() const {
3061 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3062 return getTemplateKWAndArgsInfo()->LAngleLoc;
3063 }
3064
3065 /// \brief Retrieve the location of the right angle bracket ending the
3066 /// explicit template argument list following the member name, if any.
getRAngleLoc()3067 SourceLocation getRAngleLoc() const {
3068 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3069 return getTemplateKWAndArgsInfo()->RAngleLoc;
3070 }
3071
3072 /// Determines whether the member name was preceded by the template keyword.
hasTemplateKeyword()3073 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3074
3075 /// \brief Determines whether this member expression actually had a C++
3076 /// template argument list explicitly specified, e.g., x.f<int>.
hasExplicitTemplateArgs()3077 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3078
3079 /// \brief Retrieve the explicit template argument list that followed the
3080 /// member template name, if any.
getExplicitTemplateArgs()3081 ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3082 assert(hasExplicitTemplateArgs());
3083 return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3084 }
3085
3086 /// \brief Retrieve the explicit template argument list that followed the
3087 /// member template name, if any.
getExplicitTemplateArgs()3088 const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3089 return const_cast<CXXDependentScopeMemberExpr *>(this)
3090 ->getExplicitTemplateArgs();
3091 }
3092
3093 /// \brief Retrieves the optional explicit template arguments.
3094 /// This points to the same data as getExplicitTemplateArgs(), but
3095 /// returns null if there are no explicit template arguments.
getOptionalExplicitTemplateArgs()3096 const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
3097 if (!hasExplicitTemplateArgs()) return 0;
3098 return &getExplicitTemplateArgs();
3099 }
3100
3101 /// \brief Copies the template arguments (if present) into the given
3102 /// structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)3103 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3104 getExplicitTemplateArgs().copyInto(List);
3105 }
3106
3107 /// \brief Initializes the template arguments using the given structure.
initializeTemplateArgumentsFrom(const TemplateArgumentListInfo & List)3108 void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3109 getExplicitTemplateArgs().initializeFrom(List);
3110 }
3111
3112 /// \brief Retrieve the template arguments provided as part of this
3113 /// template-id.
getTemplateArgs()3114 const TemplateArgumentLoc *getTemplateArgs() const {
3115 return getExplicitTemplateArgs().getTemplateArgs();
3116 }
3117
3118 /// \brief Retrieve the number of template arguments provided as part of this
3119 /// template-id.
getNumTemplateArgs()3120 unsigned getNumTemplateArgs() const {
3121 return getExplicitTemplateArgs().NumTemplateArgs;
3122 }
3123
getLocStart()3124 SourceLocation getLocStart() const LLVM_READONLY {
3125 if (!isImplicitAccess())
3126 return Base->getLocStart();
3127 if (getQualifier())
3128 return getQualifierLoc().getBeginLoc();
3129 return MemberNameInfo.getBeginLoc();
3130
3131 }
getLocEnd()3132 SourceLocation getLocEnd() const LLVM_READONLY {
3133 if (hasExplicitTemplateArgs())
3134 return getRAngleLoc();
3135 return MemberNameInfo.getEndLoc();
3136 }
3137
classof(const Stmt * T)3138 static bool classof(const Stmt *T) {
3139 return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3140 }
3141
3142 // Iterators
children()3143 child_range children() {
3144 if (isImplicitAccess()) return child_range();
3145 return child_range(&Base, &Base + 1);
3146 }
3147
3148 friend class ASTStmtReader;
3149 friend class ASTStmtWriter;
3150 };
3151
3152 /// \brief Represents a C++ member access expression for which lookup
3153 /// produced a set of overloaded functions.
3154 ///
3155 /// The member access may be explicit or implicit:
3156 /// struct A {
3157 /// int a, b;
3158 /// int explicitAccess() { return this->a + this->A::b; }
3159 /// int implicitAccess() { return a + A::b; }
3160 /// };
3161 ///
3162 /// In the final AST, an explicit access always becomes a MemberExpr.
3163 /// An implicit access may become either a MemberExpr or a
3164 /// DeclRefExpr, depending on whether the member is static.
3165 class UnresolvedMemberExpr : public OverloadExpr {
3166 /// \brief Whether this member expression used the '->' operator or
3167 /// the '.' operator.
3168 bool IsArrow : 1;
3169
3170 /// \brief Whether the lookup results contain an unresolved using
3171 /// declaration.
3172 bool HasUnresolvedUsing : 1;
3173
3174 /// \brief The expression for the base pointer or class reference,
3175 /// e.g., the \c x in x.f. This can be null if this is an 'unbased'
3176 /// member expression
3177 Stmt *Base;
3178
3179 /// \brief The type of the base expression; never null.
3180 QualType BaseType;
3181
3182 /// \brief The location of the '->' or '.' operator.
3183 SourceLocation OperatorLoc;
3184
3185 UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3186 Expr *Base, QualType BaseType, bool IsArrow,
3187 SourceLocation OperatorLoc,
3188 NestedNameSpecifierLoc QualifierLoc,
3189 SourceLocation TemplateKWLoc,
3190 const DeclarationNameInfo &MemberNameInfo,
3191 const TemplateArgumentListInfo *TemplateArgs,
3192 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3193
UnresolvedMemberExpr(EmptyShell Empty)3194 UnresolvedMemberExpr(EmptyShell Empty)
3195 : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3196 HasUnresolvedUsing(false), Base(0) { }
3197
3198 friend class ASTStmtReader;
3199
3200 public:
3201 static UnresolvedMemberExpr *
3202 Create(ASTContext &C, bool HasUnresolvedUsing,
3203 Expr *Base, QualType BaseType, bool IsArrow,
3204 SourceLocation OperatorLoc,
3205 NestedNameSpecifierLoc QualifierLoc,
3206 SourceLocation TemplateKWLoc,
3207 const DeclarationNameInfo &MemberNameInfo,
3208 const TemplateArgumentListInfo *TemplateArgs,
3209 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3210
3211 static UnresolvedMemberExpr *
3212 CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3213 unsigned NumTemplateArgs);
3214
3215 /// \brief True if this is an implicit access, i.e. one in which the
3216 /// member being accessed was not written in the source. The source
3217 /// location of the operator is invalid in this case.
3218 bool isImplicitAccess() const;
3219
3220 /// \brief Retrieve the base object of this member expressions,
3221 /// e.g., the \c x in \c x.m.
getBase()3222 Expr *getBase() {
3223 assert(!isImplicitAccess());
3224 return cast<Expr>(Base);
3225 }
getBase()3226 const Expr *getBase() const {
3227 assert(!isImplicitAccess());
3228 return cast<Expr>(Base);
3229 }
3230
getBaseType()3231 QualType getBaseType() const { return BaseType; }
3232
3233 /// \brief Determine whether the lookup results contain an unresolved using
3234 /// declaration.
hasUnresolvedUsing()3235 bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3236
3237 /// \brief Determine whether this member expression used the '->'
3238 /// operator; otherwise, it used the '.' operator.
isArrow()3239 bool isArrow() const { return IsArrow; }
3240
3241 /// \brief Retrieve the location of the '->' or '.' operator.
getOperatorLoc()3242 SourceLocation getOperatorLoc() const { return OperatorLoc; }
3243
3244 /// \brief Retrieves the naming class of this lookup.
3245 CXXRecordDecl *getNamingClass() const;
3246
3247 /// \brief Retrieve the full name info for the member that this expression
3248 /// refers to.
getMemberNameInfo()3249 const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3250
3251 /// \brief Retrieve the name of the member that this expression
3252 /// refers to.
getMemberName()3253 DeclarationName getMemberName() const { return getName(); }
3254
3255 // \brief Retrieve the location of the name of the member that this
3256 // expression refers to.
getMemberLoc()3257 SourceLocation getMemberLoc() const { return getNameLoc(); }
3258
getLocStart()3259 SourceLocation getLocStart() const LLVM_READONLY {
3260 if (!isImplicitAccess())
3261 return Base->getLocStart();
3262 if (NestedNameSpecifierLoc l = getQualifierLoc())
3263 return l.getBeginLoc();
3264 return getMemberNameInfo().getLocStart();
3265 }
getLocEnd()3266 SourceLocation getLocEnd() const LLVM_READONLY {
3267 if (hasExplicitTemplateArgs())
3268 return getRAngleLoc();
3269 return getMemberNameInfo().getLocEnd();
3270 }
3271
classof(const Stmt * T)3272 static bool classof(const Stmt *T) {
3273 return T->getStmtClass() == UnresolvedMemberExprClass;
3274 }
3275
3276 // Iterators
children()3277 child_range children() {
3278 if (isImplicitAccess()) return child_range();
3279 return child_range(&Base, &Base + 1);
3280 }
3281 };
3282
3283 /// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3284 ///
3285 /// The noexcept expression tests whether a given expression might throw. Its
3286 /// result is a boolean constant.
3287 class CXXNoexceptExpr : public Expr {
3288 bool Value : 1;
3289 Stmt *Operand;
3290 SourceRange Range;
3291
3292 friend class ASTStmtReader;
3293
3294 public:
CXXNoexceptExpr(QualType Ty,Expr * Operand,CanThrowResult Val,SourceLocation Keyword,SourceLocation RParen)3295 CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3296 SourceLocation Keyword, SourceLocation RParen)
3297 : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3298 /*TypeDependent*/false,
3299 /*ValueDependent*/Val == CT_Dependent,
3300 Val == CT_Dependent || Operand->isInstantiationDependent(),
3301 Operand->containsUnexpandedParameterPack()),
3302 Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3303 { }
3304
CXXNoexceptExpr(EmptyShell Empty)3305 CXXNoexceptExpr(EmptyShell Empty)
3306 : Expr(CXXNoexceptExprClass, Empty)
3307 { }
3308
getOperand()3309 Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3310
getLocStart()3311 SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
getLocEnd()3312 SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
getSourceRange()3313 SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3314
getValue()3315 bool getValue() const { return Value; }
3316
classof(const Stmt * T)3317 static bool classof(const Stmt *T) {
3318 return T->getStmtClass() == CXXNoexceptExprClass;
3319 }
3320
3321 // Iterators
children()3322 child_range children() { return child_range(&Operand, &Operand + 1); }
3323 };
3324
3325 /// \brief Represents a C++0x pack expansion that produces a sequence of
3326 /// expressions.
3327 ///
3328 /// A pack expansion expression contains a pattern (which itself is an
3329 /// expression) followed by an ellipsis. For example:
3330 ///
3331 /// \code
3332 /// template<typename F, typename ...Types>
3333 /// void forward(F f, Types &&...args) {
3334 /// f(static_cast<Types&&>(args)...);
3335 /// }
3336 /// \endcode
3337 ///
3338 /// Here, the argument to the function object \c f is a pack expansion whose
3339 /// pattern is \c static_cast<Types&&>(args). When the \c forward function
3340 /// template is instantiated, the pack expansion will instantiate to zero or
3341 /// or more function arguments to the function object \c f.
3342 class PackExpansionExpr : public Expr {
3343 SourceLocation EllipsisLoc;
3344
3345 /// \brief The number of expansions that will be produced by this pack
3346 /// expansion expression, if known.
3347 ///
3348 /// When zero, the number of expansions is not known. Otherwise, this value
3349 /// is the number of expansions + 1.
3350 unsigned NumExpansions;
3351
3352 Stmt *Pattern;
3353
3354 friend class ASTStmtReader;
3355 friend class ASTStmtWriter;
3356
3357 public:
PackExpansionExpr(QualType T,Expr * Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)3358 PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3359 Optional<unsigned> NumExpansions)
3360 : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3361 Pattern->getObjectKind(), /*TypeDependent=*/true,
3362 /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3363 /*ContainsUnexpandedParameterPack=*/false),
3364 EllipsisLoc(EllipsisLoc),
3365 NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3366 Pattern(Pattern) { }
3367
PackExpansionExpr(EmptyShell Empty)3368 PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3369
3370 /// \brief Retrieve the pattern of the pack expansion.
getPattern()3371 Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3372
3373 /// \brief Retrieve the pattern of the pack expansion.
getPattern()3374 const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3375
3376 /// \brief Retrieve the location of the ellipsis that describes this pack
3377 /// expansion.
getEllipsisLoc()3378 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3379
3380 /// \brief Determine the number of expansions that will be produced when
3381 /// this pack expansion is instantiated, if already known.
getNumExpansions()3382 Optional<unsigned> getNumExpansions() const {
3383 if (NumExpansions)
3384 return NumExpansions - 1;
3385
3386 return None;
3387 }
3388
getLocStart()3389 SourceLocation getLocStart() const LLVM_READONLY {
3390 return Pattern->getLocStart();
3391 }
getLocEnd()3392 SourceLocation getLocEnd() const LLVM_READONLY { return EllipsisLoc; }
3393
classof(const Stmt * T)3394 static bool classof(const Stmt *T) {
3395 return T->getStmtClass() == PackExpansionExprClass;
3396 }
3397
3398 // Iterators
children()3399 child_range children() {
3400 return child_range(&Pattern, &Pattern + 1);
3401 }
3402 };
3403
getTemplateKWAndArgsInfo()3404 inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3405 if (!HasTemplateKWAndArgsInfo) return 0;
3406 if (isa<UnresolvedLookupExpr>(this))
3407 return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3408 (cast<UnresolvedLookupExpr>(this) + 1);
3409 else
3410 return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3411 (cast<UnresolvedMemberExpr>(this) + 1);
3412 }
3413
3414 /// \brief Represents an expression that computes the length of a parameter
3415 /// pack.
3416 ///
3417 /// \code
3418 /// template<typename ...Types>
3419 /// struct count {
3420 /// static const unsigned value = sizeof...(Types);
3421 /// };
3422 /// \endcode
3423 class SizeOfPackExpr : public Expr {
3424 /// \brief The location of the 'sizeof' keyword.
3425 SourceLocation OperatorLoc;
3426
3427 /// \brief The location of the name of the parameter pack.
3428 SourceLocation PackLoc;
3429
3430 /// \brief The location of the closing parenthesis.
3431 SourceLocation RParenLoc;
3432
3433 /// \brief The length of the parameter pack, if known.
3434 ///
3435 /// When this expression is value-dependent, the length of the parameter pack
3436 /// is unknown. When this expression is not value-dependent, the length is
3437 /// known.
3438 unsigned Length;
3439
3440 /// \brief The parameter pack itself.
3441 NamedDecl *Pack;
3442
3443 friend class ASTStmtReader;
3444 friend class ASTStmtWriter;
3445
3446 public:
3447 /// \brief Creates a value-dependent expression that computes the length of
3448 /// the given parameter pack.
SizeOfPackExpr(QualType SizeType,SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc)3449 SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3450 SourceLocation PackLoc, SourceLocation RParenLoc)
3451 : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3452 /*TypeDependent=*/false, /*ValueDependent=*/true,
3453 /*InstantiationDependent=*/true,
3454 /*ContainsUnexpandedParameterPack=*/false),
3455 OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3456 Length(0), Pack(Pack) { }
3457
3458 /// \brief Creates an expression that computes the length of
3459 /// the given parameter pack, which is already known.
SizeOfPackExpr(QualType SizeType,SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,unsigned Length)3460 SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3461 SourceLocation PackLoc, SourceLocation RParenLoc,
3462 unsigned Length)
3463 : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3464 /*TypeDependent=*/false, /*ValueDependent=*/false,
3465 /*InstantiationDependent=*/false,
3466 /*ContainsUnexpandedParameterPack=*/false),
3467 OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3468 Length(Length), Pack(Pack) { }
3469
3470 /// \brief Create an empty expression.
SizeOfPackExpr(EmptyShell Empty)3471 SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3472
3473 /// \brief Determine the location of the 'sizeof' keyword.
getOperatorLoc()3474 SourceLocation getOperatorLoc() const { return OperatorLoc; }
3475
3476 /// \brief Determine the location of the parameter pack.
getPackLoc()3477 SourceLocation getPackLoc() const { return PackLoc; }
3478
3479 /// \brief Determine the location of the right parenthesis.
getRParenLoc()3480 SourceLocation getRParenLoc() const { return RParenLoc; }
3481
3482 /// \brief Retrieve the parameter pack.
getPack()3483 NamedDecl *getPack() const { return Pack; }
3484
3485 /// \brief Retrieve the length of the parameter pack.
3486 ///
3487 /// This routine may only be invoked when the expression is not
3488 /// value-dependent.
getPackLength()3489 unsigned getPackLength() const {
3490 assert(!isValueDependent() &&
3491 "Cannot get the length of a value-dependent pack size expression");
3492 return Length;
3493 }
3494
getLocStart()3495 SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
getLocEnd()3496 SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3497
classof(const Stmt * T)3498 static bool classof(const Stmt *T) {
3499 return T->getStmtClass() == SizeOfPackExprClass;
3500 }
3501
3502 // Iterators
children()3503 child_range children() { return child_range(); }
3504 };
3505
3506 /// \brief Represents a reference to a non-type template parameter
3507 /// that has been substituted with a template argument.
3508 class SubstNonTypeTemplateParmExpr : public Expr {
3509 /// \brief The replaced parameter.
3510 NonTypeTemplateParmDecl *Param;
3511
3512 /// \brief The replacement expression.
3513 Stmt *Replacement;
3514
3515 /// \brief The location of the non-type template parameter reference.
3516 SourceLocation NameLoc;
3517
3518 friend class ASTReader;
3519 friend class ASTStmtReader;
SubstNonTypeTemplateParmExpr(EmptyShell Empty)3520 explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3521 : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3522
3523 public:
SubstNonTypeTemplateParmExpr(QualType type,ExprValueKind valueKind,SourceLocation loc,NonTypeTemplateParmDecl * param,Expr * replacement)3524 SubstNonTypeTemplateParmExpr(QualType type,
3525 ExprValueKind valueKind,
3526 SourceLocation loc,
3527 NonTypeTemplateParmDecl *param,
3528 Expr *replacement)
3529 : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3530 replacement->isTypeDependent(), replacement->isValueDependent(),
3531 replacement->isInstantiationDependent(),
3532 replacement->containsUnexpandedParameterPack()),
3533 Param(param), Replacement(replacement), NameLoc(loc) {}
3534
getNameLoc()3535 SourceLocation getNameLoc() const { return NameLoc; }
getLocStart()3536 SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
getLocEnd()3537 SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3538
getReplacement()3539 Expr *getReplacement() const { return cast<Expr>(Replacement); }
3540
getParameter()3541 NonTypeTemplateParmDecl *getParameter() const { return Param; }
3542
classof(const Stmt * s)3543 static bool classof(const Stmt *s) {
3544 return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3545 }
3546
3547 // Iterators
children()3548 child_range children() { return child_range(&Replacement, &Replacement+1); }
3549 };
3550
3551 /// \brief Represents a reference to a non-type template parameter pack that
3552 /// has been substituted with a non-template argument pack.
3553 ///
3554 /// When a pack expansion in the source code contains multiple parameter packs
3555 /// and those parameter packs correspond to different levels of template
3556 /// parameter lists, this node is used to represent a non-type template
3557 /// parameter pack from an outer level, which has already had its argument pack
3558 /// substituted but that still lives within a pack expansion that itself
3559 /// could not be instantiated. When actually performing a substitution into
3560 /// that pack expansion (e.g., when all template parameters have corresponding
3561 /// arguments), this type will be replaced with the appropriate underlying
3562 /// expression at the current pack substitution index.
3563 class SubstNonTypeTemplateParmPackExpr : public Expr {
3564 /// \brief The non-type template parameter pack itself.
3565 NonTypeTemplateParmDecl *Param;
3566
3567 /// \brief A pointer to the set of template arguments that this
3568 /// parameter pack is instantiated with.
3569 const TemplateArgument *Arguments;
3570
3571 /// \brief The number of template arguments in \c Arguments.
3572 unsigned NumArguments;
3573
3574 /// \brief The location of the non-type template parameter pack reference.
3575 SourceLocation NameLoc;
3576
3577 friend class ASTReader;
3578 friend class ASTStmtReader;
SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)3579 explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3580 : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3581
3582 public:
3583 SubstNonTypeTemplateParmPackExpr(QualType T,
3584 NonTypeTemplateParmDecl *Param,
3585 SourceLocation NameLoc,
3586 const TemplateArgument &ArgPack);
3587
3588 /// \brief Retrieve the non-type template parameter pack being substituted.
getParameterPack()3589 NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3590
3591 /// \brief Retrieve the location of the parameter pack name.
getParameterPackLocation()3592 SourceLocation getParameterPackLocation() const { return NameLoc; }
3593
3594 /// \brief Retrieve the template argument pack containing the substituted
3595 /// template arguments.
3596 TemplateArgument getArgumentPack() const;
3597
getLocStart()3598 SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
getLocEnd()3599 SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3600
classof(const Stmt * T)3601 static bool classof(const Stmt *T) {
3602 return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3603 }
3604
3605 // Iterators
children()3606 child_range children() { return child_range(); }
3607 };
3608
3609 /// \brief Represents a reference to a function parameter pack that has been
3610 /// substituted but not yet expanded.
3611 ///
3612 /// When a pack expansion contains multiple parameter packs at different levels,
3613 /// this node is used to represent a function parameter pack at an outer level
3614 /// which we have already substituted to refer to expanded parameters, but where
3615 /// the containing pack expansion cannot yet be expanded.
3616 ///
3617 /// \code
3618 /// template<typename...Ts> struct S {
3619 /// template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
3620 /// };
3621 /// template struct S<int, int>;
3622 /// \endcode
3623 class FunctionParmPackExpr : public Expr {
3624 /// \brief The function parameter pack which was referenced.
3625 ParmVarDecl *ParamPack;
3626
3627 /// \brief The location of the function parameter pack reference.
3628 SourceLocation NameLoc;
3629
3630 /// \brief The number of expansions of this pack.
3631 unsigned NumParameters;
3632
3633 FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
3634 SourceLocation NameLoc, unsigned NumParams,
3635 Decl * const *Params);
3636
3637 friend class ASTReader;
3638 friend class ASTStmtReader;
3639
3640 public:
3641 static FunctionParmPackExpr *Create(ASTContext &Context, QualType T,
3642 ParmVarDecl *ParamPack,
3643 SourceLocation NameLoc,
3644 ArrayRef<Decl *> Params);
3645 static FunctionParmPackExpr *CreateEmpty(ASTContext &Context,
3646 unsigned NumParams);
3647
3648 /// \brief Get the parameter pack which this expression refers to.
getParameterPack()3649 ParmVarDecl *getParameterPack() const { return ParamPack; }
3650
3651 /// \brief Get the location of the parameter pack.
getParameterPackLocation()3652 SourceLocation getParameterPackLocation() const { return NameLoc; }
3653
3654 /// \brief Iterators over the parameters which the parameter pack expanded
3655 /// into.
3656 typedef ParmVarDecl * const *iterator;
begin()3657 iterator begin() const { return reinterpret_cast<iterator>(this+1); }
end()3658 iterator end() const { return begin() + NumParameters; }
3659
3660 /// \brief Get the number of parameters in this parameter pack.
getNumExpansions()3661 unsigned getNumExpansions() const { return NumParameters; }
3662
3663 /// \brief Get an expansion of the parameter pack by index.
getExpansion(unsigned I)3664 ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
3665
getLocStart()3666 SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
getLocEnd()3667 SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3668
classof(const Stmt * T)3669 static bool classof(const Stmt *T) {
3670 return T->getStmtClass() == FunctionParmPackExprClass;
3671 }
3672
children()3673 child_range children() { return child_range(); }
3674 };
3675
3676 /// \brief Represents a prvalue temporary that written into memory so that
3677 /// a reference can bind to it.
3678 ///
3679 /// Prvalue expressions are materialized when they need to have an address
3680 /// in memory for a reference to bind to. This happens when binding a
3681 /// reference to the result of a conversion, e.g.,
3682 ///
3683 /// \code
3684 /// const int &r = 1.0;
3685 /// \endcode
3686 ///
3687 /// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3688 /// then materialized via a \c MaterializeTemporaryExpr, and the reference
3689 /// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3690 /// (either an lvalue or an xvalue, depending on the kind of reference binding
3691 /// to it), maintaining the invariant that references always bind to glvalues.
3692 class MaterializeTemporaryExpr : public Expr {
3693 /// \brief The temporary-generating expression whose value will be
3694 /// materialized.
3695 Stmt *Temporary;
3696
3697 friend class ASTStmtReader;
3698 friend class ASTStmtWriter;
3699
3700 public:
MaterializeTemporaryExpr(QualType T,Expr * Temporary,bool BoundToLvalueReference)3701 MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3702 bool BoundToLvalueReference)
3703 : Expr(MaterializeTemporaryExprClass, T,
3704 BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3705 Temporary->isTypeDependent(), Temporary->isValueDependent(),
3706 Temporary->isInstantiationDependent(),
3707 Temporary->containsUnexpandedParameterPack()),
3708 Temporary(Temporary) { }
3709
MaterializeTemporaryExpr(EmptyShell Empty)3710 MaterializeTemporaryExpr(EmptyShell Empty)
3711 : Expr(MaterializeTemporaryExprClass, Empty) { }
3712
3713 /// \brief Retrieve the temporary-generating subexpression whose value will
3714 /// be materialized into a glvalue.
GetTemporaryExpr()3715 Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3716
3717 /// \brief Determine whether this materialized temporary is bound to an
3718 /// lvalue reference; otherwise, it's bound to an rvalue reference.
isBoundToLvalueReference()3719 bool isBoundToLvalueReference() const {
3720 return getValueKind() == VK_LValue;
3721 }
3722
getLocStart()3723 SourceLocation getLocStart() const LLVM_READONLY {
3724 return Temporary->getLocStart();
3725 }
getLocEnd()3726 SourceLocation getLocEnd() const LLVM_READONLY {
3727 return Temporary->getLocEnd();
3728 }
3729
classof(const Stmt * T)3730 static bool classof(const Stmt *T) {
3731 return T->getStmtClass() == MaterializeTemporaryExprClass;
3732 }
3733
3734 // Iterators
children()3735 child_range children() { return child_range(&Temporary, &Temporary + 1); }
3736 };
3737
3738 } // end namespace clang
3739
3740 #endif
3741