Searched refs:sum_ (Results 1 – 8 of 8) sorted by relevance
/external/chromium/chrome/browser/net/ |
D | url_info.cc | 213 : sum_(0), square_sum_(0), count_(0), in MinMaxAverage() 219 sum_ += value; in sample() 228 int average() const { return static_cast<int>(sum_/count_); } in average() 229 int sum() const { return static_cast<int>(sum_); } in sum() 232 double average = static_cast<float>(sum_) / count_; in standard_deviation() 239 int64 sum_; member in chrome_browser_net::MinMaxAverage
|
/external/ceres-solver/docs/ |
D | nnlsq.tex | 9 \arg \min_x \frac{1}{2} \sum_{i=1}^k \|f_i(x)\|^2. 17 \arg\min_{m,c} \sum_{i=1}^k (y_i - m x_i - c)^2. 21 \arg\min_{m,c} \sum_{i=1}^k \left(y_i - e^{m x_i + c}\right)^2.
|
D | reference-overview.tex | 6 \frac{1}{2}\sum_{i=1} \rho_i\left(\left\|f_i\left(x_{i_1},\hdots,x_{i_k}\right)\right\|^2\right).
|
/external/eigen/unsupported/Eigen/ |
D | Polynomials | 77 \f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, 78 \f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$ 87 \f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, 88 \f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
|
D | MatrixFunctions | 118 \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
|
/external/chromium/base/metrics/ |
D | histogram.cc | 667 sum_(0), in SampleSet() 687 sum_ += count * value; in Accumulate() 690 DCHECK_GE(sum_, 0); in Accumulate() 706 sum_ += other.sum_; in Add() 717 sum_ -= other.sum_; in Subtract() 726 pickle->WriteInt64(sum_); in Serialize() 739 DCHECK_EQ(sum_, 0); in Deserialize() 744 if (!pickle.ReadInt64(iter, &sum_) || in Deserialize()
|
D | histogram.h | 340 int64 sum() const { return sum_; } in sum() 357 int64 sum_; // sum of samples. variable
|
/external/dropbear/libtommath/ |
D | bn.tex | 1067 $f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are sai…
|