• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 //  * A success/failure flag indicating whether constant folding was successful.
15 //    This is the 'bool' return value used by most of the code in this file. A
16 //    'false' return value indicates that constant folding has failed, and any
17 //    appropriate diagnostic has already been produced.
18 //
19 //  * An evaluated result, valid only if constant folding has not failed.
20 //
21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 //    where it is possible to determine the evaluated result regardless.
24 //
25 //  * A set of notes indicating why the evaluation was not a constant expression
26 //    (under the C++11 rules only, at the moment), or, if folding failed too,
27 //    why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/CharUnits.h"
40 #include "clang/AST/Expr.h"
41 #include "clang/AST/RecordLayout.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/TypeLoc.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50 
51 using namespace clang;
52 using llvm::APSInt;
53 using llvm::APFloat;
54 
55 static bool IsGlobalLValue(APValue::LValueBase B);
56 
57 namespace {
58   struct LValue;
59   struct CallStackFrame;
60   struct EvalInfo;
61 
getType(APValue::LValueBase B)62   static QualType getType(APValue::LValueBase B) {
63     if (!B) return QualType();
64     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65       return D->getType();
66     return B.get<const Expr*>()->getType();
67   }
68 
69   /// Get an LValue path entry, which is known to not be an array index, as a
70   /// field or base class.
71   static
getAsBaseOrMember(APValue::LValuePathEntry E)72   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
73     APValue::BaseOrMemberType Value;
74     Value.setFromOpaqueValue(E.BaseOrMember);
75     return Value;
76   }
77 
78   /// Get an LValue path entry, which is known to not be an array index, as a
79   /// field declaration.
getAsField(APValue::LValuePathEntry E)80   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
81     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
82   }
83   /// Get an LValue path entry, which is known to not be an array index, as a
84   /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)85   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
86     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
87   }
88   /// Determine whether this LValue path entry for a base class names a virtual
89   /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)90   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
91     return getAsBaseOrMember(E).getInt();
92   }
93 
94   /// Find the path length and type of the most-derived subobject in the given
95   /// path, and find the size of the containing array, if any.
96   static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type)97   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
98                                     ArrayRef<APValue::LValuePathEntry> Path,
99                                     uint64_t &ArraySize, QualType &Type) {
100     unsigned MostDerivedLength = 0;
101     Type = Base;
102     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
103       if (Type->isArrayType()) {
104         const ConstantArrayType *CAT =
105           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
106         Type = CAT->getElementType();
107         ArraySize = CAT->getSize().getZExtValue();
108         MostDerivedLength = I + 1;
109       } else if (Type->isAnyComplexType()) {
110         const ComplexType *CT = Type->castAs<ComplexType>();
111         Type = CT->getElementType();
112         ArraySize = 2;
113         MostDerivedLength = I + 1;
114       } else if (const FieldDecl *FD = getAsField(Path[I])) {
115         Type = FD->getType();
116         ArraySize = 0;
117         MostDerivedLength = I + 1;
118       } else {
119         // Path[I] describes a base class.
120         ArraySize = 0;
121       }
122     }
123     return MostDerivedLength;
124   }
125 
126   // The order of this enum is important for diagnostics.
127   enum CheckSubobjectKind {
128     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
129     CSK_This, CSK_Real, CSK_Imag
130   };
131 
132   /// A path from a glvalue to a subobject of that glvalue.
133   struct SubobjectDesignator {
134     /// True if the subobject was named in a manner not supported by C++11. Such
135     /// lvalues can still be folded, but they are not core constant expressions
136     /// and we cannot perform lvalue-to-rvalue conversions on them.
137     bool Invalid : 1;
138 
139     /// Is this a pointer one past the end of an object?
140     bool IsOnePastTheEnd : 1;
141 
142     /// The length of the path to the most-derived object of which this is a
143     /// subobject.
144     unsigned MostDerivedPathLength : 30;
145 
146     /// The size of the array of which the most-derived object is an element, or
147     /// 0 if the most-derived object is not an array element.
148     uint64_t MostDerivedArraySize;
149 
150     /// The type of the most derived object referred to by this address.
151     QualType MostDerivedType;
152 
153     typedef APValue::LValuePathEntry PathEntry;
154 
155     /// The entries on the path from the glvalue to the designated subobject.
156     SmallVector<PathEntry, 8> Entries;
157 
SubobjectDesignator__anon0c5100020111::SubobjectDesignator158     SubobjectDesignator() : Invalid(true) {}
159 
SubobjectDesignator__anon0c5100020111::SubobjectDesignator160     explicit SubobjectDesignator(QualType T)
161       : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
162         MostDerivedArraySize(0), MostDerivedType(T) {}
163 
SubobjectDesignator__anon0c5100020111::SubobjectDesignator164     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
165       : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
166         MostDerivedPathLength(0), MostDerivedArraySize(0) {
167       if (!Invalid) {
168         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
169         ArrayRef<PathEntry> VEntries = V.getLValuePath();
170         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
171         if (V.getLValueBase())
172           MostDerivedPathLength =
173               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
174                                        V.getLValuePath(), MostDerivedArraySize,
175                                        MostDerivedType);
176       }
177     }
178 
setInvalid__anon0c5100020111::SubobjectDesignator179     void setInvalid() {
180       Invalid = true;
181       Entries.clear();
182     }
183 
184     /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon0c5100020111::SubobjectDesignator185     bool isOnePastTheEnd() const {
186       if (IsOnePastTheEnd)
187         return true;
188       if (MostDerivedArraySize &&
189           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
190         return true;
191       return false;
192     }
193 
194     /// Check that this refers to a valid subobject.
isValidSubobject__anon0c5100020111::SubobjectDesignator195     bool isValidSubobject() const {
196       if (Invalid)
197         return false;
198       return !isOnePastTheEnd();
199     }
200     /// Check that this refers to a valid subobject, and if not, produce a
201     /// relevant diagnostic and set the designator as invalid.
202     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
203 
204     /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon0c5100020111::SubobjectDesignator205     void addArrayUnchecked(const ConstantArrayType *CAT) {
206       PathEntry Entry;
207       Entry.ArrayIndex = 0;
208       Entries.push_back(Entry);
209 
210       // This is a most-derived object.
211       MostDerivedType = CAT->getElementType();
212       MostDerivedArraySize = CAT->getSize().getZExtValue();
213       MostDerivedPathLength = Entries.size();
214     }
215     /// Update this designator to refer to the given base or member of this
216     /// object.
addDeclUnchecked__anon0c5100020111::SubobjectDesignator217     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
218       PathEntry Entry;
219       APValue::BaseOrMemberType Value(D, Virtual);
220       Entry.BaseOrMember = Value.getOpaqueValue();
221       Entries.push_back(Entry);
222 
223       // If this isn't a base class, it's a new most-derived object.
224       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
225         MostDerivedType = FD->getType();
226         MostDerivedArraySize = 0;
227         MostDerivedPathLength = Entries.size();
228       }
229     }
230     /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon0c5100020111::SubobjectDesignator231     void addComplexUnchecked(QualType EltTy, bool Imag) {
232       PathEntry Entry;
233       Entry.ArrayIndex = Imag;
234       Entries.push_back(Entry);
235 
236       // This is technically a most-derived object, though in practice this
237       // is unlikely to matter.
238       MostDerivedType = EltTy;
239       MostDerivedArraySize = 2;
240       MostDerivedPathLength = Entries.size();
241     }
242     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
243     /// Add N to the address of this subobject.
adjustIndex__anon0c5100020111::SubobjectDesignator244     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
245       if (Invalid) return;
246       if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
247         Entries.back().ArrayIndex += N;
248         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
249           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
250           setInvalid();
251         }
252         return;
253       }
254       // [expr.add]p4: For the purposes of these operators, a pointer to a
255       // nonarray object behaves the same as a pointer to the first element of
256       // an array of length one with the type of the object as its element type.
257       if (IsOnePastTheEnd && N == (uint64_t)-1)
258         IsOnePastTheEnd = false;
259       else if (!IsOnePastTheEnd && N == 1)
260         IsOnePastTheEnd = true;
261       else if (N != 0) {
262         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
263         setInvalid();
264       }
265     }
266   };
267 
268   /// A stack frame in the constexpr call stack.
269   struct CallStackFrame {
270     EvalInfo &Info;
271 
272     /// Parent - The caller of this stack frame.
273     CallStackFrame *Caller;
274 
275     /// CallLoc - The location of the call expression for this call.
276     SourceLocation CallLoc;
277 
278     /// Callee - The function which was called.
279     const FunctionDecl *Callee;
280 
281     /// Index - The call index of this call.
282     unsigned Index;
283 
284     /// This - The binding for the this pointer in this call, if any.
285     const LValue *This;
286 
287     /// ParmBindings - Parameter bindings for this function call, indexed by
288     /// parameters' function scope indices.
289     const APValue *Arguments;
290 
291     // Note that we intentionally use std::map here so that references to
292     // values are stable.
293     typedef std::map<const Expr*, APValue> MapTy;
294     typedef MapTy::const_iterator temp_iterator;
295     /// Temporaries - Temporary lvalues materialized within this stack frame.
296     MapTy Temporaries;
297 
298     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
299                    const FunctionDecl *Callee, const LValue *This,
300                    const APValue *Arguments);
301     ~CallStackFrame();
302   };
303 
304   /// A partial diagnostic which we might know in advance that we are not going
305   /// to emit.
306   class OptionalDiagnostic {
307     PartialDiagnostic *Diag;
308 
309   public:
OptionalDiagnostic(PartialDiagnostic * Diag=0)310     explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
311 
312     template<typename T>
operator <<(const T & v)313     OptionalDiagnostic &operator<<(const T &v) {
314       if (Diag)
315         *Diag << v;
316       return *this;
317     }
318 
operator <<(const APSInt & I)319     OptionalDiagnostic &operator<<(const APSInt &I) {
320       if (Diag) {
321         SmallVector<char, 32> Buffer;
322         I.toString(Buffer);
323         *Diag << StringRef(Buffer.data(), Buffer.size());
324       }
325       return *this;
326     }
327 
operator <<(const APFloat & F)328     OptionalDiagnostic &operator<<(const APFloat &F) {
329       if (Diag) {
330         SmallVector<char, 32> Buffer;
331         F.toString(Buffer);
332         *Diag << StringRef(Buffer.data(), Buffer.size());
333       }
334       return *this;
335     }
336   };
337 
338   /// EvalInfo - This is a private struct used by the evaluator to capture
339   /// information about a subexpression as it is folded.  It retains information
340   /// about the AST context, but also maintains information about the folded
341   /// expression.
342   ///
343   /// If an expression could be evaluated, it is still possible it is not a C
344   /// "integer constant expression" or constant expression.  If not, this struct
345   /// captures information about how and why not.
346   ///
347   /// One bit of information passed *into* the request for constant folding
348   /// indicates whether the subexpression is "evaluated" or not according to C
349   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
350   /// evaluate the expression regardless of what the RHS is, but C only allows
351   /// certain things in certain situations.
352   struct EvalInfo {
353     ASTContext &Ctx;
354 
355     /// EvalStatus - Contains information about the evaluation.
356     Expr::EvalStatus &EvalStatus;
357 
358     /// CurrentCall - The top of the constexpr call stack.
359     CallStackFrame *CurrentCall;
360 
361     /// CallStackDepth - The number of calls in the call stack right now.
362     unsigned CallStackDepth;
363 
364     /// NextCallIndex - The next call index to assign.
365     unsigned NextCallIndex;
366 
367     /// BottomFrame - The frame in which evaluation started. This must be
368     /// initialized after CurrentCall and CallStackDepth.
369     CallStackFrame BottomFrame;
370 
371     /// EvaluatingDecl - This is the declaration whose initializer is being
372     /// evaluated, if any.
373     const VarDecl *EvaluatingDecl;
374 
375     /// EvaluatingDeclValue - This is the value being constructed for the
376     /// declaration whose initializer is being evaluated, if any.
377     APValue *EvaluatingDeclValue;
378 
379     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
380     /// notes attached to it will also be stored, otherwise they will not be.
381     bool HasActiveDiagnostic;
382 
383     /// CheckingPotentialConstantExpression - Are we checking whether the
384     /// expression is a potential constant expression? If so, some diagnostics
385     /// are suppressed.
386     bool CheckingPotentialConstantExpression;
387 
388     bool IntOverflowCheckMode;
389 
EvalInfo__anon0c5100020111::EvalInfo390     EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
391              bool OverflowCheckMode=false)
392       : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
393         CallStackDepth(0), NextCallIndex(1),
394         BottomFrame(*this, SourceLocation(), 0, 0, 0),
395         EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
396         CheckingPotentialConstantExpression(false),
397         IntOverflowCheckMode(OverflowCheckMode) {}
398 
setEvaluatingDecl__anon0c5100020111::EvalInfo399     void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
400       EvaluatingDecl = VD;
401       EvaluatingDeclValue = &Value;
402     }
403 
getLangOpts__anon0c5100020111::EvalInfo404     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
405 
CheckCallLimit__anon0c5100020111::EvalInfo406     bool CheckCallLimit(SourceLocation Loc) {
407       // Don't perform any constexpr calls (other than the call we're checking)
408       // when checking a potential constant expression.
409       if (CheckingPotentialConstantExpression && CallStackDepth > 1)
410         return false;
411       if (NextCallIndex == 0) {
412         // NextCallIndex has wrapped around.
413         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
414         return false;
415       }
416       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
417         return true;
418       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
419         << getLangOpts().ConstexprCallDepth;
420       return false;
421     }
422 
getCallFrame__anon0c5100020111::EvalInfo423     CallStackFrame *getCallFrame(unsigned CallIndex) {
424       assert(CallIndex && "no call index in getCallFrame");
425       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
426       // be null in this loop.
427       CallStackFrame *Frame = CurrentCall;
428       while (Frame->Index > CallIndex)
429         Frame = Frame->Caller;
430       return (Frame->Index == CallIndex) ? Frame : 0;
431     }
432 
433   private:
434     /// Add a diagnostic to the diagnostics list.
addDiag__anon0c5100020111::EvalInfo435     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
436       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
437       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
438       return EvalStatus.Diag->back().second;
439     }
440 
441     /// Add notes containing a call stack to the current point of evaluation.
442     void addCallStack(unsigned Limit);
443 
444   public:
445     /// Diagnose that the evaluation cannot be folded.
Diag__anon0c5100020111::EvalInfo446     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
447                               = diag::note_invalid_subexpr_in_const_expr,
448                             unsigned ExtraNotes = 0) {
449       // If we have a prior diagnostic, it will be noting that the expression
450       // isn't a constant expression. This diagnostic is more important.
451       // FIXME: We might want to show both diagnostics to the user.
452       if (EvalStatus.Diag) {
453         unsigned CallStackNotes = CallStackDepth - 1;
454         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
455         if (Limit)
456           CallStackNotes = std::min(CallStackNotes, Limit + 1);
457         if (CheckingPotentialConstantExpression)
458           CallStackNotes = 0;
459 
460         HasActiveDiagnostic = true;
461         EvalStatus.Diag->clear();
462         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
463         addDiag(Loc, DiagId);
464         if (!CheckingPotentialConstantExpression)
465           addCallStack(Limit);
466         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
467       }
468       HasActiveDiagnostic = false;
469       return OptionalDiagnostic();
470     }
471 
Diag__anon0c5100020111::EvalInfo472     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
473                               = diag::note_invalid_subexpr_in_const_expr,
474                             unsigned ExtraNotes = 0) {
475       if (EvalStatus.Diag)
476         return Diag(E->getExprLoc(), DiagId, ExtraNotes);
477       HasActiveDiagnostic = false;
478       return OptionalDiagnostic();
479     }
480 
getIntOverflowCheckMode__anon0c5100020111::EvalInfo481     bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
482 
483     /// Diagnose that the evaluation does not produce a C++11 core constant
484     /// expression.
485     template<typename LocArg>
CCEDiag__anon0c5100020111::EvalInfo486     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
487                                  = diag::note_invalid_subexpr_in_const_expr,
488                                unsigned ExtraNotes = 0) {
489       // Don't override a previous diagnostic.
490       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
491         HasActiveDiagnostic = false;
492         return OptionalDiagnostic();
493       }
494       return Diag(Loc, DiagId, ExtraNotes);
495     }
496 
497     /// Add a note to a prior diagnostic.
Note__anon0c5100020111::EvalInfo498     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
499       if (!HasActiveDiagnostic)
500         return OptionalDiagnostic();
501       return OptionalDiagnostic(&addDiag(Loc, DiagId));
502     }
503 
504     /// Add a stack of notes to a prior diagnostic.
addNotes__anon0c5100020111::EvalInfo505     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
506       if (HasActiveDiagnostic) {
507         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
508                                 Diags.begin(), Diags.end());
509       }
510     }
511 
512     /// Should we continue evaluation as much as possible after encountering a
513     /// construct which can't be folded?
keepEvaluatingAfterFailure__anon0c5100020111::EvalInfo514     bool keepEvaluatingAfterFailure() {
515       // Should return true in IntOverflowCheckMode, so that we check for
516       // overflow even if some subexpressions can't be evaluated as constants.
517       return IntOverflowCheckMode ||
518              (CheckingPotentialConstantExpression &&
519               EvalStatus.Diag && EvalStatus.Diag->empty());
520     }
521   };
522 
523   /// Object used to treat all foldable expressions as constant expressions.
524   struct FoldConstant {
525     bool Enabled;
526 
FoldConstant__anon0c5100020111::FoldConstant527     explicit FoldConstant(EvalInfo &Info)
528       : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
529                 !Info.EvalStatus.HasSideEffects) {
530     }
531     // Treat the value we've computed since this object was created as constant.
Fold__anon0c5100020111::FoldConstant532     void Fold(EvalInfo &Info) {
533       if (Enabled && !Info.EvalStatus.Diag->empty() &&
534           !Info.EvalStatus.HasSideEffects)
535         Info.EvalStatus.Diag->clear();
536     }
537   };
538 
539   /// RAII object used to suppress diagnostics and side-effects from a
540   /// speculative evaluation.
541   class SpeculativeEvaluationRAII {
542     EvalInfo &Info;
543     Expr::EvalStatus Old;
544 
545   public:
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=0)546     SpeculativeEvaluationRAII(EvalInfo &Info,
547                               SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
548       : Info(Info), Old(Info.EvalStatus) {
549       Info.EvalStatus.Diag = NewDiag;
550     }
~SpeculativeEvaluationRAII()551     ~SpeculativeEvaluationRAII() {
552       Info.EvalStatus = Old;
553     }
554   };
555 }
556 
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)557 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
558                                          CheckSubobjectKind CSK) {
559   if (Invalid)
560     return false;
561   if (isOnePastTheEnd()) {
562     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
563       << CSK;
564     setInvalid();
565     return false;
566   }
567   return true;
568 }
569 
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)570 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
571                                                     const Expr *E, uint64_t N) {
572   if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
573     Info.CCEDiag(E, diag::note_constexpr_array_index)
574       << static_cast<int>(N) << /*array*/ 0
575       << static_cast<unsigned>(MostDerivedArraySize);
576   else
577     Info.CCEDiag(E, diag::note_constexpr_array_index)
578       << static_cast<int>(N) << /*non-array*/ 1;
579   setInvalid();
580 }
581 
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,const APValue * Arguments)582 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
583                                const FunctionDecl *Callee, const LValue *This,
584                                const APValue *Arguments)
585     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
586       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
587   Info.CurrentCall = this;
588   ++Info.CallStackDepth;
589 }
590 
~CallStackFrame()591 CallStackFrame::~CallStackFrame() {
592   assert(Info.CurrentCall == this && "calls retired out of order");
593   --Info.CallStackDepth;
594   Info.CurrentCall = Caller;
595 }
596 
597 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)598 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
599   unsigned ArgIndex = 0;
600   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
601                       !isa<CXXConstructorDecl>(Frame->Callee) &&
602                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
603 
604   if (!IsMemberCall)
605     Out << *Frame->Callee << '(';
606 
607   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
608        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
609     if (ArgIndex > (unsigned)IsMemberCall)
610       Out << ", ";
611 
612     const ParmVarDecl *Param = *I;
613     const APValue &Arg = Frame->Arguments[ArgIndex];
614     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
615 
616     if (ArgIndex == 0 && IsMemberCall)
617       Out << "->" << *Frame->Callee << '(';
618   }
619 
620   Out << ')';
621 }
622 
addCallStack(unsigned Limit)623 void EvalInfo::addCallStack(unsigned Limit) {
624   // Determine which calls to skip, if any.
625   unsigned ActiveCalls = CallStackDepth - 1;
626   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
627   if (Limit && Limit < ActiveCalls) {
628     SkipStart = Limit / 2 + Limit % 2;
629     SkipEnd = ActiveCalls - Limit / 2;
630   }
631 
632   // Walk the call stack and add the diagnostics.
633   unsigned CallIdx = 0;
634   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
635        Frame = Frame->Caller, ++CallIdx) {
636     // Skip this call?
637     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
638       if (CallIdx == SkipStart) {
639         // Note that we're skipping calls.
640         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
641           << unsigned(ActiveCalls - Limit);
642       }
643       continue;
644     }
645 
646     SmallVector<char, 128> Buffer;
647     llvm::raw_svector_ostream Out(Buffer);
648     describeCall(Frame, Out);
649     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
650   }
651 }
652 
653 namespace {
654   struct ComplexValue {
655   private:
656     bool IsInt;
657 
658   public:
659     APSInt IntReal, IntImag;
660     APFloat FloatReal, FloatImag;
661 
ComplexValue__anon0c5100020211::ComplexValue662     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
663 
makeComplexFloat__anon0c5100020211::ComplexValue664     void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon0c5100020211::ComplexValue665     bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon0c5100020211::ComplexValue666     APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon0c5100020211::ComplexValue667     APFloat &getComplexFloatImag() { return FloatImag; }
668 
makeComplexInt__anon0c5100020211::ComplexValue669     void makeComplexInt() { IsInt = true; }
isComplexInt__anon0c5100020211::ComplexValue670     bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon0c5100020211::ComplexValue671     APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon0c5100020211::ComplexValue672     APSInt &getComplexIntImag() { return IntImag; }
673 
moveInto__anon0c5100020211::ComplexValue674     void moveInto(APValue &v) const {
675       if (isComplexFloat())
676         v = APValue(FloatReal, FloatImag);
677       else
678         v = APValue(IntReal, IntImag);
679     }
setFrom__anon0c5100020211::ComplexValue680     void setFrom(const APValue &v) {
681       assert(v.isComplexFloat() || v.isComplexInt());
682       if (v.isComplexFloat()) {
683         makeComplexFloat();
684         FloatReal = v.getComplexFloatReal();
685         FloatImag = v.getComplexFloatImag();
686       } else {
687         makeComplexInt();
688         IntReal = v.getComplexIntReal();
689         IntImag = v.getComplexIntImag();
690       }
691     }
692   };
693 
694   struct LValue {
695     APValue::LValueBase Base;
696     CharUnits Offset;
697     unsigned CallIndex;
698     SubobjectDesignator Designator;
699 
getLValueBase__anon0c5100020211::LValue700     const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon0c5100020211::LValue701     CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon0c5100020211::LValue702     const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon0c5100020211::LValue703     unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon0c5100020211::LValue704     SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon0c5100020211::LValue705     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
706 
moveInto__anon0c5100020211::LValue707     void moveInto(APValue &V) const {
708       if (Designator.Invalid)
709         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
710       else
711         V = APValue(Base, Offset, Designator.Entries,
712                     Designator.IsOnePastTheEnd, CallIndex);
713     }
setFrom__anon0c5100020211::LValue714     void setFrom(ASTContext &Ctx, const APValue &V) {
715       assert(V.isLValue());
716       Base = V.getLValueBase();
717       Offset = V.getLValueOffset();
718       CallIndex = V.getLValueCallIndex();
719       Designator = SubobjectDesignator(Ctx, V);
720     }
721 
set__anon0c5100020211::LValue722     void set(APValue::LValueBase B, unsigned I = 0) {
723       Base = B;
724       Offset = CharUnits::Zero();
725       CallIndex = I;
726       Designator = SubobjectDesignator(getType(B));
727     }
728 
729     // Check that this LValue is not based on a null pointer. If it is, produce
730     // a diagnostic and mark the designator as invalid.
checkNullPointer__anon0c5100020211::LValue731     bool checkNullPointer(EvalInfo &Info, const Expr *E,
732                           CheckSubobjectKind CSK) {
733       if (Designator.Invalid)
734         return false;
735       if (!Base) {
736         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
737           << CSK;
738         Designator.setInvalid();
739         return false;
740       }
741       return true;
742     }
743 
744     // Check this LValue refers to an object. If not, set the designator to be
745     // invalid and emit a diagnostic.
checkSubobject__anon0c5100020211::LValue746     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
747       // Outside C++11, do not build a designator referring to a subobject of
748       // any object: we won't use such a designator for anything.
749       if (!Info.getLangOpts().CPlusPlus11)
750         Designator.setInvalid();
751       return checkNullPointer(Info, E, CSK) &&
752              Designator.checkSubobject(Info, E, CSK);
753     }
754 
addDecl__anon0c5100020211::LValue755     void addDecl(EvalInfo &Info, const Expr *E,
756                  const Decl *D, bool Virtual = false) {
757       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
758         Designator.addDeclUnchecked(D, Virtual);
759     }
addArray__anon0c5100020211::LValue760     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
761       if (checkSubobject(Info, E, CSK_ArrayToPointer))
762         Designator.addArrayUnchecked(CAT);
763     }
addComplex__anon0c5100020211::LValue764     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
765       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
766         Designator.addComplexUnchecked(EltTy, Imag);
767     }
adjustIndex__anon0c5100020211::LValue768     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
769       if (checkNullPointer(Info, E, CSK_ArrayIndex))
770         Designator.adjustIndex(Info, E, N);
771     }
772   };
773 
774   struct MemberPtr {
MemberPtr__anon0c5100020211::MemberPtr775     MemberPtr() {}
MemberPtr__anon0c5100020211::MemberPtr776     explicit MemberPtr(const ValueDecl *Decl) :
777       DeclAndIsDerivedMember(Decl, false), Path() {}
778 
779     /// The member or (direct or indirect) field referred to by this member
780     /// pointer, or 0 if this is a null member pointer.
getDecl__anon0c5100020211::MemberPtr781     const ValueDecl *getDecl() const {
782       return DeclAndIsDerivedMember.getPointer();
783     }
784     /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon0c5100020211::MemberPtr785     bool isDerivedMember() const {
786       return DeclAndIsDerivedMember.getInt();
787     }
788     /// Get the class which the declaration actually lives in.
getContainingRecord__anon0c5100020211::MemberPtr789     const CXXRecordDecl *getContainingRecord() const {
790       return cast<CXXRecordDecl>(
791           DeclAndIsDerivedMember.getPointer()->getDeclContext());
792     }
793 
moveInto__anon0c5100020211::MemberPtr794     void moveInto(APValue &V) const {
795       V = APValue(getDecl(), isDerivedMember(), Path);
796     }
setFrom__anon0c5100020211::MemberPtr797     void setFrom(const APValue &V) {
798       assert(V.isMemberPointer());
799       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
800       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
801       Path.clear();
802       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
803       Path.insert(Path.end(), P.begin(), P.end());
804     }
805 
806     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
807     /// whether the member is a member of some class derived from the class type
808     /// of the member pointer.
809     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
810     /// Path - The path of base/derived classes from the member declaration's
811     /// class (exclusive) to the class type of the member pointer (inclusive).
812     SmallVector<const CXXRecordDecl*, 4> Path;
813 
814     /// Perform a cast towards the class of the Decl (either up or down the
815     /// hierarchy).
castBack__anon0c5100020211::MemberPtr816     bool castBack(const CXXRecordDecl *Class) {
817       assert(!Path.empty());
818       const CXXRecordDecl *Expected;
819       if (Path.size() >= 2)
820         Expected = Path[Path.size() - 2];
821       else
822         Expected = getContainingRecord();
823       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
824         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
825         // if B does not contain the original member and is not a base or
826         // derived class of the class containing the original member, the result
827         // of the cast is undefined.
828         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
829         // (D::*). We consider that to be a language defect.
830         return false;
831       }
832       Path.pop_back();
833       return true;
834     }
835     /// Perform a base-to-derived member pointer cast.
castToDerived__anon0c5100020211::MemberPtr836     bool castToDerived(const CXXRecordDecl *Derived) {
837       if (!getDecl())
838         return true;
839       if (!isDerivedMember()) {
840         Path.push_back(Derived);
841         return true;
842       }
843       if (!castBack(Derived))
844         return false;
845       if (Path.empty())
846         DeclAndIsDerivedMember.setInt(false);
847       return true;
848     }
849     /// Perform a derived-to-base member pointer cast.
castToBase__anon0c5100020211::MemberPtr850     bool castToBase(const CXXRecordDecl *Base) {
851       if (!getDecl())
852         return true;
853       if (Path.empty())
854         DeclAndIsDerivedMember.setInt(true);
855       if (isDerivedMember()) {
856         Path.push_back(Base);
857         return true;
858       }
859       return castBack(Base);
860     }
861   };
862 
863   /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)864   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
865     if (!LHS.getDecl() || !RHS.getDecl())
866       return !LHS.getDecl() && !RHS.getDecl();
867     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
868       return false;
869     return LHS.Path == RHS.Path;
870   }
871 
872   /// Kinds of constant expression checking, for diagnostics.
873   enum CheckConstantExpressionKind {
874     CCEK_Constant,    ///< A normal constant.
875     CCEK_ReturnValue, ///< A constexpr function return value.
876     CCEK_MemberInit   ///< A constexpr constructor mem-initializer.
877   };
878 }
879 
880 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
881 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
882                             const LValue &This, const Expr *E,
883                             CheckConstantExpressionKind CCEK = CCEK_Constant,
884                             bool AllowNonLiteralTypes = false);
885 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
886 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
887 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
888                                   EvalInfo &Info);
889 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
890 static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
891 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
892                                     EvalInfo &Info);
893 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
894 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
895 
896 //===----------------------------------------------------------------------===//
897 // Misc utilities
898 //===----------------------------------------------------------------------===//
899 
900 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)901 static bool IsStringLiteralCall(const CallExpr *E) {
902   unsigned Builtin = E->isBuiltinCall();
903   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
904           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
905 }
906 
IsGlobalLValue(APValue::LValueBase B)907 static bool IsGlobalLValue(APValue::LValueBase B) {
908   // C++11 [expr.const]p3 An address constant expression is a prvalue core
909   // constant expression of pointer type that evaluates to...
910 
911   // ... a null pointer value, or a prvalue core constant expression of type
912   // std::nullptr_t.
913   if (!B) return true;
914 
915   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
916     // ... the address of an object with static storage duration,
917     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
918       return VD->hasGlobalStorage();
919     // ... the address of a function,
920     return isa<FunctionDecl>(D);
921   }
922 
923   const Expr *E = B.get<const Expr*>();
924   switch (E->getStmtClass()) {
925   default:
926     return false;
927   case Expr::CompoundLiteralExprClass: {
928     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
929     return CLE->isFileScope() && CLE->isLValue();
930   }
931   // A string literal has static storage duration.
932   case Expr::StringLiteralClass:
933   case Expr::PredefinedExprClass:
934   case Expr::ObjCStringLiteralClass:
935   case Expr::ObjCEncodeExprClass:
936   case Expr::CXXTypeidExprClass:
937   case Expr::CXXUuidofExprClass:
938     return true;
939   case Expr::CallExprClass:
940     return IsStringLiteralCall(cast<CallExpr>(E));
941   // For GCC compatibility, &&label has static storage duration.
942   case Expr::AddrLabelExprClass:
943     return true;
944   // A Block literal expression may be used as the initialization value for
945   // Block variables at global or local static scope.
946   case Expr::BlockExprClass:
947     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
948   case Expr::ImplicitValueInitExprClass:
949     // FIXME:
950     // We can never form an lvalue with an implicit value initialization as its
951     // base through expression evaluation, so these only appear in one case: the
952     // implicit variable declaration we invent when checking whether a constexpr
953     // constructor can produce a constant expression. We must assume that such
954     // an expression might be a global lvalue.
955     return true;
956   }
957 }
958 
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)959 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
960   assert(Base && "no location for a null lvalue");
961   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
962   if (VD)
963     Info.Note(VD->getLocation(), diag::note_declared_at);
964   else
965     Info.Note(Base.get<const Expr*>()->getExprLoc(),
966               diag::note_constexpr_temporary_here);
967 }
968 
969 /// Check that this reference or pointer core constant expression is a valid
970 /// value for an address or reference constant expression. Return true if we
971 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)972 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
973                                           QualType Type, const LValue &LVal) {
974   bool IsReferenceType = Type->isReferenceType();
975 
976   APValue::LValueBase Base = LVal.getLValueBase();
977   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
978 
979   // Check that the object is a global. Note that the fake 'this' object we
980   // manufacture when checking potential constant expressions is conservatively
981   // assumed to be global here.
982   if (!IsGlobalLValue(Base)) {
983     if (Info.getLangOpts().CPlusPlus11) {
984       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
985       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
986         << IsReferenceType << !Designator.Entries.empty()
987         << !!VD << VD;
988       NoteLValueLocation(Info, Base);
989     } else {
990       Info.Diag(Loc);
991     }
992     // Don't allow references to temporaries to escape.
993     return false;
994   }
995   assert((Info.CheckingPotentialConstantExpression ||
996           LVal.getLValueCallIndex() == 0) &&
997          "have call index for global lvalue");
998 
999   // Check if this is a thread-local variable.
1000   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1001     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1002       if (Var->isThreadSpecified())
1003         return false;
1004     }
1005   }
1006 
1007   // Allow address constant expressions to be past-the-end pointers. This is
1008   // an extension: the standard requires them to point to an object.
1009   if (!IsReferenceType)
1010     return true;
1011 
1012   // A reference constant expression must refer to an object.
1013   if (!Base) {
1014     // FIXME: diagnostic
1015     Info.CCEDiag(Loc);
1016     return true;
1017   }
1018 
1019   // Does this refer one past the end of some object?
1020   if (Designator.isOnePastTheEnd()) {
1021     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1022     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1023       << !Designator.Entries.empty() << !!VD << VD;
1024     NoteLValueLocation(Info, Base);
1025   }
1026 
1027   return true;
1028 }
1029 
1030 /// Check that this core constant expression is of literal type, and if not,
1031 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E)1032 static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
1033   if (!E->isRValue() || E->getType()->isLiteralType())
1034     return true;
1035 
1036   // Prvalue constant expressions must be of literal types.
1037   if (Info.getLangOpts().CPlusPlus11)
1038     Info.Diag(E, diag::note_constexpr_nonliteral)
1039       << E->getType();
1040   else
1041     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1042   return false;
1043 }
1044 
1045 /// Check that this core constant expression value is a valid value for a
1046 /// constant expression. If not, report an appropriate diagnostic. Does not
1047 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1048 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1049                                     QualType Type, const APValue &Value) {
1050   // Core issue 1454: For a literal constant expression of array or class type,
1051   // each subobject of its value shall have been initialized by a constant
1052   // expression.
1053   if (Value.isArray()) {
1054     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1055     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1056       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1057                                    Value.getArrayInitializedElt(I)))
1058         return false;
1059     }
1060     if (!Value.hasArrayFiller())
1061       return true;
1062     return CheckConstantExpression(Info, DiagLoc, EltTy,
1063                                    Value.getArrayFiller());
1064   }
1065   if (Value.isUnion() && Value.getUnionField()) {
1066     return CheckConstantExpression(Info, DiagLoc,
1067                                    Value.getUnionField()->getType(),
1068                                    Value.getUnionValue());
1069   }
1070   if (Value.isStruct()) {
1071     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1072     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1073       unsigned BaseIndex = 0;
1074       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1075              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1076         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1077                                      Value.getStructBase(BaseIndex)))
1078           return false;
1079       }
1080     }
1081     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1082          I != E; ++I) {
1083       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1084                                    Value.getStructField(I->getFieldIndex())))
1085         return false;
1086     }
1087   }
1088 
1089   if (Value.isLValue()) {
1090     LValue LVal;
1091     LVal.setFrom(Info.Ctx, Value);
1092     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1093   }
1094 
1095   // Everything else is fine.
1096   return true;
1097 }
1098 
GetLValueBaseDecl(const LValue & LVal)1099 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1100   return LVal.Base.dyn_cast<const ValueDecl*>();
1101 }
1102 
IsLiteralLValue(const LValue & Value)1103 static bool IsLiteralLValue(const LValue &Value) {
1104   return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
1105 }
1106 
IsWeakLValue(const LValue & Value)1107 static bool IsWeakLValue(const LValue &Value) {
1108   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1109   return Decl && Decl->isWeak();
1110 }
1111 
EvalPointerValueAsBool(const APValue & Value,bool & Result)1112 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1113   // A null base expression indicates a null pointer.  These are always
1114   // evaluatable, and they are false unless the offset is zero.
1115   if (!Value.getLValueBase()) {
1116     Result = !Value.getLValueOffset().isZero();
1117     return true;
1118   }
1119 
1120   // We have a non-null base.  These are generally known to be true, but if it's
1121   // a weak declaration it can be null at runtime.
1122   Result = true;
1123   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1124   return !Decl || !Decl->isWeak();
1125 }
1126 
HandleConversionToBool(const APValue & Val,bool & Result)1127 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1128   switch (Val.getKind()) {
1129   case APValue::Uninitialized:
1130     return false;
1131   case APValue::Int:
1132     Result = Val.getInt().getBoolValue();
1133     return true;
1134   case APValue::Float:
1135     Result = !Val.getFloat().isZero();
1136     return true;
1137   case APValue::ComplexInt:
1138     Result = Val.getComplexIntReal().getBoolValue() ||
1139              Val.getComplexIntImag().getBoolValue();
1140     return true;
1141   case APValue::ComplexFloat:
1142     Result = !Val.getComplexFloatReal().isZero() ||
1143              !Val.getComplexFloatImag().isZero();
1144     return true;
1145   case APValue::LValue:
1146     return EvalPointerValueAsBool(Val, Result);
1147   case APValue::MemberPointer:
1148     Result = Val.getMemberPointerDecl();
1149     return true;
1150   case APValue::Vector:
1151   case APValue::Array:
1152   case APValue::Struct:
1153   case APValue::Union:
1154   case APValue::AddrLabelDiff:
1155     return false;
1156   }
1157 
1158   llvm_unreachable("unknown APValue kind");
1159 }
1160 
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1161 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1162                                        EvalInfo &Info) {
1163   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1164   APValue Val;
1165   if (!Evaluate(Val, Info, E))
1166     return false;
1167   return HandleConversionToBool(Val, Result);
1168 }
1169 
1170 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1171 static void HandleOverflow(EvalInfo &Info, const Expr *E,
1172                            const T &SrcValue, QualType DestType) {
1173   Info.CCEDiag(E, diag::note_constexpr_overflow)
1174     << SrcValue << DestType;
1175 }
1176 
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1177 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1178                                  QualType SrcType, const APFloat &Value,
1179                                  QualType DestType, APSInt &Result) {
1180   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1181   // Determine whether we are converting to unsigned or signed.
1182   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1183 
1184   Result = APSInt(DestWidth, !DestSigned);
1185   bool ignored;
1186   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1187       & APFloat::opInvalidOp)
1188     HandleOverflow(Info, E, Value, DestType);
1189   return true;
1190 }
1191 
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1192 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1193                                    QualType SrcType, QualType DestType,
1194                                    APFloat &Result) {
1195   APFloat Value = Result;
1196   bool ignored;
1197   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1198                      APFloat::rmNearestTiesToEven, &ignored)
1199       & APFloat::opOverflow)
1200     HandleOverflow(Info, E, Value, DestType);
1201   return true;
1202 }
1203 
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,APSInt & Value)1204 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1205                                  QualType DestType, QualType SrcType,
1206                                  APSInt &Value) {
1207   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1208   APSInt Result = Value;
1209   // Figure out if this is a truncate, extend or noop cast.
1210   // If the input is signed, do a sign extend, noop, or truncate.
1211   Result = Result.extOrTrunc(DestWidth);
1212   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1213   return Result;
1214 }
1215 
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1216 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1217                                  QualType SrcType, const APSInt &Value,
1218                                  QualType DestType, APFloat &Result) {
1219   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1220   if (Result.convertFromAPInt(Value, Value.isSigned(),
1221                               APFloat::rmNearestTiesToEven)
1222       & APFloat::opOverflow)
1223     HandleOverflow(Info, E, Value, DestType);
1224   return true;
1225 }
1226 
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1227 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1228                                   llvm::APInt &Res) {
1229   APValue SVal;
1230   if (!Evaluate(SVal, Info, E))
1231     return false;
1232   if (SVal.isInt()) {
1233     Res = SVal.getInt();
1234     return true;
1235   }
1236   if (SVal.isFloat()) {
1237     Res = SVal.getFloat().bitcastToAPInt();
1238     return true;
1239   }
1240   if (SVal.isVector()) {
1241     QualType VecTy = E->getType();
1242     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1243     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1244     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1245     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1246     Res = llvm::APInt::getNullValue(VecSize);
1247     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1248       APValue &Elt = SVal.getVectorElt(i);
1249       llvm::APInt EltAsInt;
1250       if (Elt.isInt()) {
1251         EltAsInt = Elt.getInt();
1252       } else if (Elt.isFloat()) {
1253         EltAsInt = Elt.getFloat().bitcastToAPInt();
1254       } else {
1255         // Don't try to handle vectors of anything other than int or float
1256         // (not sure if it's possible to hit this case).
1257         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1258         return false;
1259       }
1260       unsigned BaseEltSize = EltAsInt.getBitWidth();
1261       if (BigEndian)
1262         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1263       else
1264         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1265     }
1266     return true;
1267   }
1268   // Give up if the input isn't an int, float, or vector.  For example, we
1269   // reject "(v4i16)(intptr_t)&a".
1270   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1271   return false;
1272 }
1273 
1274 /// Cast an lvalue referring to a base subobject to a derived class, by
1275 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1276 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1277                                const RecordDecl *TruncatedType,
1278                                unsigned TruncatedElements) {
1279   SubobjectDesignator &D = Result.Designator;
1280 
1281   // Check we actually point to a derived class object.
1282   if (TruncatedElements == D.Entries.size())
1283     return true;
1284   assert(TruncatedElements >= D.MostDerivedPathLength &&
1285          "not casting to a derived class");
1286   if (!Result.checkSubobject(Info, E, CSK_Derived))
1287     return false;
1288 
1289   // Truncate the path to the subobject, and remove any derived-to-base offsets.
1290   const RecordDecl *RD = TruncatedType;
1291   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1292     if (RD->isInvalidDecl()) return false;
1293     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1294     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1295     if (isVirtualBaseClass(D.Entries[I]))
1296       Result.Offset -= Layout.getVBaseClassOffset(Base);
1297     else
1298       Result.Offset -= Layout.getBaseClassOffset(Base);
1299     RD = Base;
1300   }
1301   D.Entries.resize(TruncatedElements);
1302   return true;
1303 }
1304 
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=0)1305 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1306                                    const CXXRecordDecl *Derived,
1307                                    const CXXRecordDecl *Base,
1308                                    const ASTRecordLayout *RL = 0) {
1309   if (!RL) {
1310     if (Derived->isInvalidDecl()) return false;
1311     RL = &Info.Ctx.getASTRecordLayout(Derived);
1312   }
1313 
1314   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1315   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1316   return true;
1317 }
1318 
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1319 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1320                              const CXXRecordDecl *DerivedDecl,
1321                              const CXXBaseSpecifier *Base) {
1322   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1323 
1324   if (!Base->isVirtual())
1325     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1326 
1327   SubobjectDesignator &D = Obj.Designator;
1328   if (D.Invalid)
1329     return false;
1330 
1331   // Extract most-derived object and corresponding type.
1332   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1333   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1334     return false;
1335 
1336   // Find the virtual base class.
1337   if (DerivedDecl->isInvalidDecl()) return false;
1338   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1339   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1340   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1341   return true;
1342 }
1343 
1344 /// Update LVal to refer to the given field, which must be a member of the type
1345 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=0)1346 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1347                                const FieldDecl *FD,
1348                                const ASTRecordLayout *RL = 0) {
1349   if (!RL) {
1350     if (FD->getParent()->isInvalidDecl()) return false;
1351     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1352   }
1353 
1354   unsigned I = FD->getFieldIndex();
1355   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1356   LVal.addDecl(Info, E, FD);
1357   return true;
1358 }
1359 
1360 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)1361 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1362                                        LValue &LVal,
1363                                        const IndirectFieldDecl *IFD) {
1364   for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1365                                          CE = IFD->chain_end(); C != CE; ++C)
1366     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1367       return false;
1368   return true;
1369 }
1370 
1371 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)1372 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1373                          QualType Type, CharUnits &Size) {
1374   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1375   // extension.
1376   if (Type->isVoidType() || Type->isFunctionType()) {
1377     Size = CharUnits::One();
1378     return true;
1379   }
1380 
1381   if (!Type->isConstantSizeType()) {
1382     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1383     // FIXME: Better diagnostic.
1384     Info.Diag(Loc);
1385     return false;
1386   }
1387 
1388   Size = Info.Ctx.getTypeSizeInChars(Type);
1389   return true;
1390 }
1391 
1392 /// Update a pointer value to model pointer arithmetic.
1393 /// \param Info - Information about the ongoing evaluation.
1394 /// \param E - The expression being evaluated, for diagnostic purposes.
1395 /// \param LVal - The pointer value to be updated.
1396 /// \param EltTy - The pointee type represented by LVal.
1397 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)1398 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1399                                         LValue &LVal, QualType EltTy,
1400                                         int64_t Adjustment) {
1401   CharUnits SizeOfPointee;
1402   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1403     return false;
1404 
1405   // Compute the new offset in the appropriate width.
1406   LVal.Offset += Adjustment * SizeOfPointee;
1407   LVal.adjustIndex(Info, E, Adjustment);
1408   return true;
1409 }
1410 
1411 /// Update an lvalue to refer to a component of a complex number.
1412 /// \param Info - Information about the ongoing evaluation.
1413 /// \param LVal - The lvalue to be updated.
1414 /// \param EltTy - The complex number's component type.
1415 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)1416 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1417                                        LValue &LVal, QualType EltTy,
1418                                        bool Imag) {
1419   if (Imag) {
1420     CharUnits SizeOfComponent;
1421     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1422       return false;
1423     LVal.Offset += SizeOfComponent;
1424   }
1425   LVal.addComplex(Info, E, EltTy, Imag);
1426   return true;
1427 }
1428 
1429 /// Try to evaluate the initializer for a variable declaration.
EvaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue & Result)1430 static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1431                                 const VarDecl *VD,
1432                                 CallStackFrame *Frame, APValue &Result) {
1433   // If this is a parameter to an active constexpr function call, perform
1434   // argument substitution.
1435   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1436     // Assume arguments of a potential constant expression are unknown
1437     // constant expressions.
1438     if (Info.CheckingPotentialConstantExpression)
1439       return false;
1440     if (!Frame || !Frame->Arguments) {
1441       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1442       return false;
1443     }
1444     Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
1445     return true;
1446   }
1447 
1448   // Dig out the initializer, and use the declaration which it's attached to.
1449   const Expr *Init = VD->getAnyInitializer(VD);
1450   if (!Init || Init->isValueDependent()) {
1451     // If we're checking a potential constant expression, the variable could be
1452     // initialized later.
1453     if (!Info.CheckingPotentialConstantExpression)
1454       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1455     return false;
1456   }
1457 
1458   // If we're currently evaluating the initializer of this declaration, use that
1459   // in-flight value.
1460   if (Info.EvaluatingDecl == VD) {
1461     Result = *Info.EvaluatingDeclValue;
1462     return !Result.isUninit();
1463   }
1464 
1465   // Never evaluate the initializer of a weak variable. We can't be sure that
1466   // this is the definition which will be used.
1467   if (VD->isWeak()) {
1468     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1469     return false;
1470   }
1471 
1472   // Check that we can fold the initializer. In C++, we will have already done
1473   // this in the cases where it matters for conformance.
1474   SmallVector<PartialDiagnosticAt, 8> Notes;
1475   if (!VD->evaluateValue(Notes)) {
1476     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1477               Notes.size() + 1) << VD;
1478     Info.Note(VD->getLocation(), diag::note_declared_at);
1479     Info.addNotes(Notes);
1480     return false;
1481   } else if (!VD->checkInitIsICE()) {
1482     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1483                  Notes.size() + 1) << VD;
1484     Info.Note(VD->getLocation(), diag::note_declared_at);
1485     Info.addNotes(Notes);
1486   }
1487 
1488   Result = *VD->getEvaluatedValue();
1489   return true;
1490 }
1491 
IsConstNonVolatile(QualType T)1492 static bool IsConstNonVolatile(QualType T) {
1493   Qualifiers Quals = T.getQualifiers();
1494   return Quals.hasConst() && !Quals.hasVolatile();
1495 }
1496 
1497 /// Get the base index of the given base class within an APValue representing
1498 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)1499 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1500                              const CXXRecordDecl *Base) {
1501   Base = Base->getCanonicalDecl();
1502   unsigned Index = 0;
1503   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1504          E = Derived->bases_end(); I != E; ++I, ++Index) {
1505     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1506       return Index;
1507   }
1508 
1509   llvm_unreachable("base class missing from derived class's bases list");
1510 }
1511 
1512 /// Extract the value of a character from a string literal. CharType is used to
1513 /// determine the expected signedness of the result -- a string literal used to
1514 /// initialize an array of 'signed char' or 'unsigned char' might contain chars
1515 /// of the wrong signedness.
ExtractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index,QualType CharType)1516 static APSInt ExtractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1517                                             uint64_t Index, QualType CharType) {
1518   // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1519   const StringLiteral *S = dyn_cast<StringLiteral>(Lit);
1520   assert(S && "unexpected string literal expression kind");
1521   assert(CharType->isIntegerType() && "unexpected character type");
1522 
1523   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1524                CharType->isUnsignedIntegerType());
1525   if (Index < S->getLength())
1526     Value = S->getCodeUnit(Index);
1527   return Value;
1528 }
1529 
1530 /// Extract the designated sub-object of an rvalue.
ExtractSubobject(EvalInfo & Info,const Expr * E,APValue & Obj,QualType ObjType,const SubobjectDesignator & Sub,QualType SubType)1531 static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
1532                              APValue &Obj, QualType ObjType,
1533                              const SubobjectDesignator &Sub, QualType SubType) {
1534   if (Sub.Invalid)
1535     // A diagnostic will have already been produced.
1536     return false;
1537   if (Sub.isOnePastTheEnd()) {
1538     Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
1539                 (unsigned)diag::note_constexpr_read_past_end :
1540                 (unsigned)diag::note_invalid_subexpr_in_const_expr);
1541     return false;
1542   }
1543   if (Sub.Entries.empty())
1544     return true;
1545   if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
1546     // This object might be initialized later.
1547     return false;
1548 
1549   APValue *O = &Obj;
1550   // Walk the designator's path to find the subobject.
1551   for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
1552     if (ObjType->isArrayType()) {
1553       // Next subobject is an array element.
1554       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
1555       assert(CAT && "vla in literal type?");
1556       uint64_t Index = Sub.Entries[I].ArrayIndex;
1557       if (CAT->getSize().ule(Index)) {
1558         // Note, it should not be possible to form a pointer with a valid
1559         // designator which points more than one past the end of the array.
1560         Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
1561                     (unsigned)diag::note_constexpr_read_past_end :
1562                     (unsigned)diag::note_invalid_subexpr_in_const_expr);
1563         return false;
1564       }
1565       // An array object is represented as either an Array APValue or as an
1566       // LValue which refers to a string literal.
1567       if (O->isLValue()) {
1568         assert(I == N - 1 && "extracting subobject of character?");
1569         assert(!O->hasLValuePath() || O->getLValuePath().empty());
1570         Obj = APValue(ExtractStringLiteralCharacter(
1571           Info, O->getLValueBase().get<const Expr*>(), Index, SubType));
1572         return true;
1573       } else if (O->getArrayInitializedElts() > Index)
1574         O = &O->getArrayInitializedElt(Index);
1575       else
1576         O = &O->getArrayFiller();
1577       ObjType = CAT->getElementType();
1578     } else if (ObjType->isAnyComplexType()) {
1579       // Next subobject is a complex number.
1580       uint64_t Index = Sub.Entries[I].ArrayIndex;
1581       if (Index > 1) {
1582         Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
1583                     (unsigned)diag::note_constexpr_read_past_end :
1584                     (unsigned)diag::note_invalid_subexpr_in_const_expr);
1585         return false;
1586       }
1587       assert(I == N - 1 && "extracting subobject of scalar?");
1588       if (O->isComplexInt()) {
1589         Obj = APValue(Index ? O->getComplexIntImag()
1590                             : O->getComplexIntReal());
1591       } else {
1592         assert(O->isComplexFloat());
1593         Obj = APValue(Index ? O->getComplexFloatImag()
1594                             : O->getComplexFloatReal());
1595       }
1596       return true;
1597     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
1598       if (Field->isMutable()) {
1599         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
1600           << Field;
1601         Info.Note(Field->getLocation(), diag::note_declared_at);
1602         return false;
1603       }
1604 
1605       // Next subobject is a class, struct or union field.
1606       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
1607       if (RD->isUnion()) {
1608         const FieldDecl *UnionField = O->getUnionField();
1609         if (!UnionField ||
1610             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
1611           Info.Diag(E, diag::note_constexpr_read_inactive_union_member)
1612             << Field << !UnionField << UnionField;
1613           return false;
1614         }
1615         O = &O->getUnionValue();
1616       } else
1617         O = &O->getStructField(Field->getFieldIndex());
1618       ObjType = Field->getType();
1619 
1620       if (ObjType.isVolatileQualified()) {
1621         if (Info.getLangOpts().CPlusPlus) {
1622           // FIXME: Include a description of the path to the volatile subobject.
1623           Info.Diag(E, diag::note_constexpr_ltor_volatile_obj, 1)
1624             << 2 << Field;
1625           Info.Note(Field->getLocation(), diag::note_declared_at);
1626         } else {
1627           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1628         }
1629         return false;
1630       }
1631     } else {
1632       // Next subobject is a base class.
1633       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
1634       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
1635       O = &O->getStructBase(getBaseIndex(Derived, Base));
1636       ObjType = Info.Ctx.getRecordType(Base);
1637     }
1638 
1639     if (O->isUninit()) {
1640       if (!Info.CheckingPotentialConstantExpression)
1641         Info.Diag(E, diag::note_constexpr_read_uninit);
1642       return false;
1643     }
1644   }
1645 
1646   // This may look super-stupid, but it serves an important purpose: if we just
1647   // swapped Obj and *O, we'd create an object which had itself as a subobject.
1648   // To avoid the leak, we ensure that Tmp ends up owning the original complete
1649   // object, which is destroyed by Tmp's destructor.
1650   APValue Tmp;
1651   O->swap(Tmp);
1652   Obj.swap(Tmp);
1653   return true;
1654 }
1655 
1656 /// Find the position where two subobject designators diverge, or equivalently
1657 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)1658 static unsigned FindDesignatorMismatch(QualType ObjType,
1659                                        const SubobjectDesignator &A,
1660                                        const SubobjectDesignator &B,
1661                                        bool &WasArrayIndex) {
1662   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
1663   for (/**/; I != N; ++I) {
1664     if (!ObjType.isNull() &&
1665         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
1666       // Next subobject is an array element.
1667       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
1668         WasArrayIndex = true;
1669         return I;
1670       }
1671       if (ObjType->isAnyComplexType())
1672         ObjType = ObjType->castAs<ComplexType>()->getElementType();
1673       else
1674         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
1675     } else {
1676       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
1677         WasArrayIndex = false;
1678         return I;
1679       }
1680       if (const FieldDecl *FD = getAsField(A.Entries[I]))
1681         // Next subobject is a field.
1682         ObjType = FD->getType();
1683       else
1684         // Next subobject is a base class.
1685         ObjType = QualType();
1686     }
1687   }
1688   WasArrayIndex = false;
1689   return I;
1690 }
1691 
1692 /// Determine whether the given subobject designators refer to elements of the
1693 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)1694 static bool AreElementsOfSameArray(QualType ObjType,
1695                                    const SubobjectDesignator &A,
1696                                    const SubobjectDesignator &B) {
1697   if (A.Entries.size() != B.Entries.size())
1698     return false;
1699 
1700   bool IsArray = A.MostDerivedArraySize != 0;
1701   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
1702     // A is a subobject of the array element.
1703     return false;
1704 
1705   // If A (and B) designates an array element, the last entry will be the array
1706   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
1707   // of length 1' case, and the entire path must match.
1708   bool WasArrayIndex;
1709   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
1710   return CommonLength >= A.Entries.size() - IsArray;
1711 }
1712 
1713 /// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
1714 /// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
1715 /// for looking up the glvalue referred to by an entity of reference type.
1716 ///
1717 /// \param Info - Information about the ongoing evaluation.
1718 /// \param Conv - The expression for which we are performing the conversion.
1719 ///               Used for diagnostics.
1720 /// \param Type - The type we expect this conversion to produce, before
1721 ///               stripping cv-qualifiers in the case of a non-clas type.
1722 /// \param LVal - The glvalue on which we are attempting to perform this action.
1723 /// \param RVal - The produced value will be placed here.
HandleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)1724 static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
1725                                            QualType Type,
1726                                            const LValue &LVal, APValue &RVal) {
1727   if (LVal.Designator.Invalid)
1728     // A diagnostic will have already been produced.
1729     return false;
1730 
1731   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
1732 
1733   if (!LVal.Base) {
1734     // FIXME: Indirection through a null pointer deserves a specific diagnostic.
1735     Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1736     return false;
1737   }
1738 
1739   CallStackFrame *Frame = 0;
1740   if (LVal.CallIndex) {
1741     Frame = Info.getCallFrame(LVal.CallIndex);
1742     if (!Frame) {
1743       Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1744       NoteLValueLocation(Info, LVal.Base);
1745       return false;
1746     }
1747   }
1748 
1749   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
1750   // is not a constant expression (even if the object is non-volatile). We also
1751   // apply this rule to C++98, in order to conform to the expected 'volatile'
1752   // semantics.
1753   if (Type.isVolatileQualified()) {
1754     if (Info.getLangOpts().CPlusPlus)
1755       Info.Diag(Conv, diag::note_constexpr_ltor_volatile_type) << Type;
1756     else
1757       Info.Diag(Conv);
1758     return false;
1759   }
1760 
1761   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
1762     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
1763     // In C++11, constexpr, non-volatile variables initialized with constant
1764     // expressions are constant expressions too. Inside constexpr functions,
1765     // parameters are constant expressions even if they're non-const.
1766     // In C, such things can also be folded, although they are not ICEs.
1767     const VarDecl *VD = dyn_cast<VarDecl>(D);
1768     if (VD) {
1769       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
1770         VD = VDef;
1771     }
1772     if (!VD || VD->isInvalidDecl()) {
1773       Info.Diag(Conv);
1774       return false;
1775     }
1776 
1777     // DR1313: If the object is volatile-qualified but the glvalue was not,
1778     // behavior is undefined so the result is not a constant expression.
1779     QualType VT = VD->getType();
1780     if (VT.isVolatileQualified()) {
1781       if (Info.getLangOpts().CPlusPlus) {
1782         Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 1 << VD;
1783         Info.Note(VD->getLocation(), diag::note_declared_at);
1784       } else {
1785         Info.Diag(Conv);
1786       }
1787       return false;
1788     }
1789 
1790     if (!isa<ParmVarDecl>(VD)) {
1791       if (VD->isConstexpr()) {
1792         // OK, we can read this variable.
1793       } else if (VT->isIntegralOrEnumerationType()) {
1794         if (!VT.isConstQualified()) {
1795           if (Info.getLangOpts().CPlusPlus) {
1796             Info.Diag(Conv, diag::note_constexpr_ltor_non_const_int, 1) << VD;
1797             Info.Note(VD->getLocation(), diag::note_declared_at);
1798           } else {
1799             Info.Diag(Conv);
1800           }
1801           return false;
1802         }
1803       } else if (VT->isFloatingType() && VT.isConstQualified()) {
1804         // We support folding of const floating-point types, in order to make
1805         // static const data members of such types (supported as an extension)
1806         // more useful.
1807         if (Info.getLangOpts().CPlusPlus11) {
1808           Info.CCEDiag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1809           Info.Note(VD->getLocation(), diag::note_declared_at);
1810         } else {
1811           Info.CCEDiag(Conv);
1812         }
1813       } else {
1814         // FIXME: Allow folding of values of any literal type in all languages.
1815         if (Info.getLangOpts().CPlusPlus11) {
1816           Info.Diag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1817           Info.Note(VD->getLocation(), diag::note_declared_at);
1818         } else {
1819           Info.Diag(Conv);
1820         }
1821         return false;
1822       }
1823     }
1824 
1825     if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
1826       return false;
1827 
1828     if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
1829       return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);
1830 
1831     // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
1832     // conversion. This happens when the declaration and the lvalue should be
1833     // considered synonymous, for instance when initializing an array of char
1834     // from a string literal. Continue as if the initializer lvalue was the
1835     // value we were originally given.
1836     assert(RVal.getLValueOffset().isZero() &&
1837            "offset for lvalue init of non-reference");
1838     Base = RVal.getLValueBase().get<const Expr*>();
1839 
1840     if (unsigned CallIndex = RVal.getLValueCallIndex()) {
1841       Frame = Info.getCallFrame(CallIndex);
1842       if (!Frame) {
1843         Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1844         NoteLValueLocation(Info, RVal.getLValueBase());
1845         return false;
1846       }
1847     } else {
1848       Frame = 0;
1849     }
1850   }
1851 
1852   // Volatile temporary objects cannot be read in constant expressions.
1853   if (Base->getType().isVolatileQualified()) {
1854     if (Info.getLangOpts().CPlusPlus) {
1855       Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 0;
1856       Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
1857     } else {
1858       Info.Diag(Conv);
1859     }
1860     return false;
1861   }
1862 
1863   if (Frame) {
1864     // If this is a temporary expression with a nontrivial initializer, grab the
1865     // value from the relevant stack frame.
1866     RVal = Frame->Temporaries[Base];
1867   } else if (const CompoundLiteralExpr *CLE
1868              = dyn_cast<CompoundLiteralExpr>(Base)) {
1869     // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
1870     // initializer until now for such expressions. Such an expression can't be
1871     // an ICE in C, so this only matters for fold.
1872     assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
1873     if (!Evaluate(RVal, Info, CLE->getInitializer()))
1874       return false;
1875   } else if (isa<StringLiteral>(Base)) {
1876     // We represent a string literal array as an lvalue pointing at the
1877     // corresponding expression, rather than building an array of chars.
1878     // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1879     RVal = APValue(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
1880   } else {
1881     Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1882     return false;
1883   }
1884 
1885   return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
1886                           Type);
1887 }
1888 
1889 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)1890 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
1891                                    LValue &This) {
1892   if (Object->getType()->isPointerType())
1893     return EvaluatePointer(Object, This, Info);
1894 
1895   if (Object->isGLValue())
1896     return EvaluateLValue(Object, This, Info);
1897 
1898   if (Object->getType()->isLiteralType())
1899     return EvaluateTemporary(Object, This, Info);
1900 
1901   return false;
1902 }
1903 
1904 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
1905 /// lvalue referring to the result.
1906 ///
1907 /// \param Info - Information about the ongoing evaluation.
1908 /// \param BO - The member pointer access operation.
1909 /// \param LV - Filled in with a reference to the resulting object.
1910 /// \param IncludeMember - Specifies whether the member itself is included in
1911 ///        the resulting LValue subobject designator. This is not possible when
1912 ///        creating a bound member function.
1913 /// \return The field or method declaration to which the member pointer refers,
1914 ///         or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)1915 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
1916                                                   const BinaryOperator *BO,
1917                                                   LValue &LV,
1918                                                   bool IncludeMember = true) {
1919   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
1920 
1921   bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
1922   if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
1923     return 0;
1924 
1925   MemberPtr MemPtr;
1926   if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
1927     return 0;
1928 
1929   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
1930   // member value, the behavior is undefined.
1931   if (!MemPtr.getDecl())
1932     return 0;
1933 
1934   if (!EvalObjOK)
1935     return 0;
1936 
1937   if (MemPtr.isDerivedMember()) {
1938     // This is a member of some derived class. Truncate LV appropriately.
1939     // The end of the derived-to-base path for the base object must match the
1940     // derived-to-base path for the member pointer.
1941     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
1942         LV.Designator.Entries.size())
1943       return 0;
1944     unsigned PathLengthToMember =
1945         LV.Designator.Entries.size() - MemPtr.Path.size();
1946     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
1947       const CXXRecordDecl *LVDecl = getAsBaseClass(
1948           LV.Designator.Entries[PathLengthToMember + I]);
1949       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
1950       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
1951         return 0;
1952     }
1953 
1954     // Truncate the lvalue to the appropriate derived class.
1955     if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
1956                             PathLengthToMember))
1957       return 0;
1958   } else if (!MemPtr.Path.empty()) {
1959     // Extend the LValue path with the member pointer's path.
1960     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
1961                                   MemPtr.Path.size() + IncludeMember);
1962 
1963     // Walk down to the appropriate base class.
1964     QualType LVType = BO->getLHS()->getType();
1965     if (const PointerType *PT = LVType->getAs<PointerType>())
1966       LVType = PT->getPointeeType();
1967     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
1968     assert(RD && "member pointer access on non-class-type expression");
1969     // The first class in the path is that of the lvalue.
1970     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
1971       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
1972       if (!HandleLValueDirectBase(Info, BO, LV, RD, Base))
1973         return 0;
1974       RD = Base;
1975     }
1976     // Finally cast to the class containing the member.
1977     if (!HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord()))
1978       return 0;
1979   }
1980 
1981   // Add the member. Note that we cannot build bound member functions here.
1982   if (IncludeMember) {
1983     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
1984       if (!HandleLValueMember(Info, BO, LV, FD))
1985         return 0;
1986     } else if (const IndirectFieldDecl *IFD =
1987                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
1988       if (!HandleLValueIndirectMember(Info, BO, LV, IFD))
1989         return 0;
1990     } else {
1991       llvm_unreachable("can't construct reference to bound member function");
1992     }
1993   }
1994 
1995   return MemPtr.getDecl();
1996 }
1997 
1998 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
1999 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)2000 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
2001                                     LValue &Result) {
2002   SubobjectDesignator &D = Result.Designator;
2003   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
2004     return false;
2005 
2006   QualType TargetQT = E->getType();
2007   if (const PointerType *PT = TargetQT->getAs<PointerType>())
2008     TargetQT = PT->getPointeeType();
2009 
2010   // Check this cast lands within the final derived-to-base subobject path.
2011   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
2012     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2013       << D.MostDerivedType << TargetQT;
2014     return false;
2015   }
2016 
2017   // Check the type of the final cast. We don't need to check the path,
2018   // since a cast can only be formed if the path is unique.
2019   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
2020   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
2021   const CXXRecordDecl *FinalType;
2022   if (NewEntriesSize == D.MostDerivedPathLength)
2023     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2024   else
2025     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2026   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2027     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2028       << D.MostDerivedType << TargetQT;
2029     return false;
2030   }
2031 
2032   // Truncate the lvalue to the appropriate derived class.
2033   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2034 }
2035 
2036 namespace {
2037 enum EvalStmtResult {
2038   /// Evaluation failed.
2039   ESR_Failed,
2040   /// Hit a 'return' statement.
2041   ESR_Returned,
2042   /// Evaluation succeeded.
2043   ESR_Succeeded
2044 };
2045 }
2046 
2047 // Evaluate a statement.
EvaluateStmt(APValue & Result,EvalInfo & Info,const Stmt * S)2048 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
2049                                    const Stmt *S) {
2050   switch (S->getStmtClass()) {
2051   default:
2052     return ESR_Failed;
2053 
2054   case Stmt::NullStmtClass:
2055   case Stmt::DeclStmtClass:
2056     return ESR_Succeeded;
2057 
2058   case Stmt::ReturnStmtClass: {
2059     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
2060     if (!Evaluate(Result, Info, RetExpr))
2061       return ESR_Failed;
2062     return ESR_Returned;
2063   }
2064 
2065   case Stmt::CompoundStmtClass: {
2066     const CompoundStmt *CS = cast<CompoundStmt>(S);
2067     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
2068            BE = CS->body_end(); BI != BE; ++BI) {
2069       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
2070       if (ESR != ESR_Succeeded)
2071         return ESR;
2072     }
2073     return ESR_Succeeded;
2074   }
2075   }
2076 }
2077 
2078 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
2079 /// default constructor. If so, we'll fold it whether or not it's marked as
2080 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
2081 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)2082 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
2083                                            const CXXConstructorDecl *CD,
2084                                            bool IsValueInitialization) {
2085   if (!CD->isTrivial() || !CD->isDefaultConstructor())
2086     return false;
2087 
2088   // Value-initialization does not call a trivial default constructor, so such a
2089   // call is a core constant expression whether or not the constructor is
2090   // constexpr.
2091   if (!CD->isConstexpr() && !IsValueInitialization) {
2092     if (Info.getLangOpts().CPlusPlus11) {
2093       // FIXME: If DiagDecl is an implicitly-declared special member function,
2094       // we should be much more explicit about why it's not constexpr.
2095       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
2096         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
2097       Info.Note(CD->getLocation(), diag::note_declared_at);
2098     } else {
2099       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
2100     }
2101   }
2102   return true;
2103 }
2104 
2105 /// CheckConstexprFunction - Check that a function can be called in a constant
2106 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition)2107 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
2108                                    const FunctionDecl *Declaration,
2109                                    const FunctionDecl *Definition) {
2110   // Potential constant expressions can contain calls to declared, but not yet
2111   // defined, constexpr functions.
2112   if (Info.CheckingPotentialConstantExpression && !Definition &&
2113       Declaration->isConstexpr())
2114     return false;
2115 
2116   // Can we evaluate this function call?
2117   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
2118     return true;
2119 
2120   if (Info.getLangOpts().CPlusPlus11) {
2121     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
2122     // FIXME: If DiagDecl is an implicitly-declared special member function, we
2123     // should be much more explicit about why it's not constexpr.
2124     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
2125       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
2126       << DiagDecl;
2127     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
2128   } else {
2129     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
2130   }
2131   return false;
2132 }
2133 
2134 namespace {
2135 typedef SmallVector<APValue, 8> ArgVector;
2136 }
2137 
2138 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)2139 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
2140                          EvalInfo &Info) {
2141   bool Success = true;
2142   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
2143        I != E; ++I) {
2144     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
2145       // If we're checking for a potential constant expression, evaluate all
2146       // initializers even if some of them fail.
2147       if (!Info.keepEvaluatingAfterFailure())
2148         return false;
2149       Success = false;
2150     }
2151   }
2152   return Success;
2153 }
2154 
2155 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result)2156 static bool HandleFunctionCall(SourceLocation CallLoc,
2157                                const FunctionDecl *Callee, const LValue *This,
2158                                ArrayRef<const Expr*> Args, const Stmt *Body,
2159                                EvalInfo &Info, APValue &Result) {
2160   ArgVector ArgValues(Args.size());
2161   if (!EvaluateArgs(Args, ArgValues, Info))
2162     return false;
2163 
2164   if (!Info.CheckCallLimit(CallLoc))
2165     return false;
2166 
2167   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
2168   return EvaluateStmt(Result, Info, Body) == ESR_Returned;
2169 }
2170 
2171 /// Evaluate a constructor call.
HandleConstructorCall(SourceLocation CallLoc,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)2172 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
2173                                   ArrayRef<const Expr*> Args,
2174                                   const CXXConstructorDecl *Definition,
2175                                   EvalInfo &Info, APValue &Result) {
2176   ArgVector ArgValues(Args.size());
2177   if (!EvaluateArgs(Args, ArgValues, Info))
2178     return false;
2179 
2180   if (!Info.CheckCallLimit(CallLoc))
2181     return false;
2182 
2183   const CXXRecordDecl *RD = Definition->getParent();
2184   if (RD->getNumVBases()) {
2185     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
2186     return false;
2187   }
2188 
2189   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
2190 
2191   // If it's a delegating constructor, just delegate.
2192   if (Definition->isDelegatingConstructor()) {
2193     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
2194     return EvaluateInPlace(Result, Info, This, (*I)->getInit());
2195   }
2196 
2197   // For a trivial copy or move constructor, perform an APValue copy. This is
2198   // essential for unions, where the operations performed by the constructor
2199   // cannot be represented by ctor-initializers.
2200   if (Definition->isDefaulted() &&
2201       ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
2202        (Definition->isMoveConstructor() && Definition->isTrivial()))) {
2203     LValue RHS;
2204     RHS.setFrom(Info.Ctx, ArgValues[0]);
2205     return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
2206                                           RHS, Result);
2207   }
2208 
2209   // Reserve space for the struct members.
2210   if (!RD->isUnion() && Result.isUninit())
2211     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
2212                      std::distance(RD->field_begin(), RD->field_end()));
2213 
2214   if (RD->isInvalidDecl()) return false;
2215   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2216 
2217   bool Success = true;
2218   unsigned BasesSeen = 0;
2219 #ifndef NDEBUG
2220   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
2221 #endif
2222   for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
2223        E = Definition->init_end(); I != E; ++I) {
2224     LValue Subobject = This;
2225     APValue *Value = &Result;
2226 
2227     // Determine the subobject to initialize.
2228     if ((*I)->isBaseInitializer()) {
2229       QualType BaseType((*I)->getBaseClass(), 0);
2230 #ifndef NDEBUG
2231       // Non-virtual base classes are initialized in the order in the class
2232       // definition. We have already checked for virtual base classes.
2233       assert(!BaseIt->isVirtual() && "virtual base for literal type");
2234       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
2235              "base class initializers not in expected order");
2236       ++BaseIt;
2237 #endif
2238       if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
2239                                   BaseType->getAsCXXRecordDecl(), &Layout))
2240         return false;
2241       Value = &Result.getStructBase(BasesSeen++);
2242     } else if (FieldDecl *FD = (*I)->getMember()) {
2243       if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
2244         return false;
2245       if (RD->isUnion()) {
2246         Result = APValue(FD);
2247         Value = &Result.getUnionValue();
2248       } else {
2249         Value = &Result.getStructField(FD->getFieldIndex());
2250       }
2251     } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
2252       // Walk the indirect field decl's chain to find the object to initialize,
2253       // and make sure we've initialized every step along it.
2254       for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
2255                                              CE = IFD->chain_end();
2256            C != CE; ++C) {
2257         FieldDecl *FD = cast<FieldDecl>(*C);
2258         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
2259         // Switch the union field if it differs. This happens if we had
2260         // preceding zero-initialization, and we're now initializing a union
2261         // subobject other than the first.
2262         // FIXME: In this case, the values of the other subobjects are
2263         // specified, since zero-initialization sets all padding bits to zero.
2264         if (Value->isUninit() ||
2265             (Value->isUnion() && Value->getUnionField() != FD)) {
2266           if (CD->isUnion())
2267             *Value = APValue(FD);
2268           else
2269             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
2270                              std::distance(CD->field_begin(), CD->field_end()));
2271         }
2272         if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
2273           return false;
2274         if (CD->isUnion())
2275           Value = &Value->getUnionValue();
2276         else
2277           Value = &Value->getStructField(FD->getFieldIndex());
2278       }
2279     } else {
2280       llvm_unreachable("unknown base initializer kind");
2281     }
2282 
2283     if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
2284                          (*I)->isBaseInitializer()
2285                                       ? CCEK_Constant : CCEK_MemberInit)) {
2286       // If we're checking for a potential constant expression, evaluate all
2287       // initializers even if some of them fail.
2288       if (!Info.keepEvaluatingAfterFailure())
2289         return false;
2290       Success = false;
2291     }
2292   }
2293 
2294   return Success;
2295 }
2296 
2297 //===----------------------------------------------------------------------===//
2298 // Generic Evaluation
2299 //===----------------------------------------------------------------------===//
2300 namespace {
2301 
2302 // FIXME: RetTy is always bool. Remove it.
2303 template <class Derived, typename RetTy=bool>
2304 class ExprEvaluatorBase
2305   : public ConstStmtVisitor<Derived, RetTy> {
2306 private:
DerivedSuccess(const APValue & V,const Expr * E)2307   RetTy DerivedSuccess(const APValue &V, const Expr *E) {
2308     return static_cast<Derived*>(this)->Success(V, E);
2309   }
DerivedZeroInitialization(const Expr * E)2310   RetTy DerivedZeroInitialization(const Expr *E) {
2311     return static_cast<Derived*>(this)->ZeroInitialization(E);
2312   }
2313 
2314   // Check whether a conditional operator with a non-constant condition is a
2315   // potential constant expression. If neither arm is a potential constant
2316   // expression, then the conditional operator is not either.
2317   template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)2318   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
2319     assert(Info.CheckingPotentialConstantExpression);
2320 
2321     // Speculatively evaluate both arms.
2322     {
2323       SmallVector<PartialDiagnosticAt, 8> Diag;
2324       SpeculativeEvaluationRAII Speculate(Info, &Diag);
2325 
2326       StmtVisitorTy::Visit(E->getFalseExpr());
2327       if (Diag.empty())
2328         return;
2329 
2330       Diag.clear();
2331       StmtVisitorTy::Visit(E->getTrueExpr());
2332       if (Diag.empty())
2333         return;
2334     }
2335 
2336     Error(E, diag::note_constexpr_conditional_never_const);
2337   }
2338 
2339 
2340   template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)2341   bool HandleConditionalOperator(const ConditionalOperator *E) {
2342     bool BoolResult;
2343     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
2344       if (Info.CheckingPotentialConstantExpression)
2345         CheckPotentialConstantConditional(E);
2346       return false;
2347     }
2348 
2349     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
2350     return StmtVisitorTy::Visit(EvalExpr);
2351   }
2352 
2353 protected:
2354   EvalInfo &Info;
2355   typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
2356   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
2357 
CCEDiag(const Expr * E,diag::kind D)2358   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
2359     return Info.CCEDiag(E, D);
2360   }
2361 
ZeroInitialization(const Expr * E)2362   RetTy ZeroInitialization(const Expr *E) { return Error(E); }
2363 
2364 public:
ExprEvaluatorBase(EvalInfo & Info)2365   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
2366 
getEvalInfo()2367   EvalInfo &getEvalInfo() { return Info; }
2368 
2369   /// Report an evaluation error. This should only be called when an error is
2370   /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)2371   bool Error(const Expr *E, diag::kind D) {
2372     Info.Diag(E, D);
2373     return false;
2374   }
Error(const Expr * E)2375   bool Error(const Expr *E) {
2376     return Error(E, diag::note_invalid_subexpr_in_const_expr);
2377   }
2378 
VisitStmt(const Stmt *)2379   RetTy VisitStmt(const Stmt *) {
2380     llvm_unreachable("Expression evaluator should not be called on stmts");
2381   }
VisitExpr(const Expr * E)2382   RetTy VisitExpr(const Expr *E) {
2383     return Error(E);
2384   }
2385 
VisitParenExpr(const ParenExpr * E)2386   RetTy VisitParenExpr(const ParenExpr *E)
2387     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)2388   RetTy VisitUnaryExtension(const UnaryOperator *E)
2389     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)2390   RetTy VisitUnaryPlus(const UnaryOperator *E)
2391     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)2392   RetTy VisitChooseExpr(const ChooseExpr *E)
2393     { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)2394   RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
2395     { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)2396   RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
2397     { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)2398   RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
2399     { return StmtVisitorTy::Visit(E->getExpr()); }
2400   // We cannot create any objects for which cleanups are required, so there is
2401   // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)2402   RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
2403     { return StmtVisitorTy::Visit(E->getSubExpr()); }
2404 
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)2405   RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
2406     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
2407     return static_cast<Derived*>(this)->VisitCastExpr(E);
2408   }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)2409   RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
2410     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
2411     return static_cast<Derived*>(this)->VisitCastExpr(E);
2412   }
2413 
VisitBinaryOperator(const BinaryOperator * E)2414   RetTy VisitBinaryOperator(const BinaryOperator *E) {
2415     switch (E->getOpcode()) {
2416     default:
2417       return Error(E);
2418 
2419     case BO_Comma:
2420       VisitIgnoredValue(E->getLHS());
2421       return StmtVisitorTy::Visit(E->getRHS());
2422 
2423     case BO_PtrMemD:
2424     case BO_PtrMemI: {
2425       LValue Obj;
2426       if (!HandleMemberPointerAccess(Info, E, Obj))
2427         return false;
2428       APValue Result;
2429       if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
2430         return false;
2431       return DerivedSuccess(Result, E);
2432     }
2433     }
2434   }
2435 
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)2436   RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
2437     // Evaluate and cache the common expression. We treat it as a temporary,
2438     // even though it's not quite the same thing.
2439     if (!Evaluate(Info.CurrentCall->Temporaries[E->getOpaqueValue()],
2440                   Info, E->getCommon()))
2441       return false;
2442 
2443     return HandleConditionalOperator(E);
2444   }
2445 
VisitConditionalOperator(const ConditionalOperator * E)2446   RetTy VisitConditionalOperator(const ConditionalOperator *E) {
2447     bool IsBcpCall = false;
2448     // If the condition (ignoring parens) is a __builtin_constant_p call,
2449     // the result is a constant expression if it can be folded without
2450     // side-effects. This is an important GNU extension. See GCC PR38377
2451     // for discussion.
2452     if (const CallExpr *CallCE =
2453           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
2454       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
2455         IsBcpCall = true;
2456 
2457     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
2458     // constant expression; we can't check whether it's potentially foldable.
2459     if (Info.CheckingPotentialConstantExpression && IsBcpCall)
2460       return false;
2461 
2462     FoldConstant Fold(Info);
2463 
2464     if (!HandleConditionalOperator(E))
2465       return false;
2466 
2467     if (IsBcpCall)
2468       Fold.Fold(Info);
2469 
2470     return true;
2471   }
2472 
VisitOpaqueValueExpr(const OpaqueValueExpr * E)2473   RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2474     APValue &Value = Info.CurrentCall->Temporaries[E];
2475     if (Value.isUninit()) {
2476       const Expr *Source = E->getSourceExpr();
2477       if (!Source)
2478         return Error(E);
2479       if (Source == E) { // sanity checking.
2480         assert(0 && "OpaqueValueExpr recursively refers to itself");
2481         return Error(E);
2482       }
2483       return StmtVisitorTy::Visit(Source);
2484     }
2485     return DerivedSuccess(Value, E);
2486   }
2487 
VisitCallExpr(const CallExpr * E)2488   RetTy VisitCallExpr(const CallExpr *E) {
2489     const Expr *Callee = E->getCallee()->IgnoreParens();
2490     QualType CalleeType = Callee->getType();
2491 
2492     const FunctionDecl *FD = 0;
2493     LValue *This = 0, ThisVal;
2494     ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
2495     bool HasQualifier = false;
2496 
2497     // Extract function decl and 'this' pointer from the callee.
2498     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
2499       const ValueDecl *Member = 0;
2500       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
2501         // Explicit bound member calls, such as x.f() or p->g();
2502         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
2503           return false;
2504         Member = ME->getMemberDecl();
2505         This = &ThisVal;
2506         HasQualifier = ME->hasQualifier();
2507       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
2508         // Indirect bound member calls ('.*' or '->*').
2509         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
2510         if (!Member) return false;
2511         This = &ThisVal;
2512       } else
2513         return Error(Callee);
2514 
2515       FD = dyn_cast<FunctionDecl>(Member);
2516       if (!FD)
2517         return Error(Callee);
2518     } else if (CalleeType->isFunctionPointerType()) {
2519       LValue Call;
2520       if (!EvaluatePointer(Callee, Call, Info))
2521         return false;
2522 
2523       if (!Call.getLValueOffset().isZero())
2524         return Error(Callee);
2525       FD = dyn_cast_or_null<FunctionDecl>(
2526                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
2527       if (!FD)
2528         return Error(Callee);
2529 
2530       // Overloaded operator calls to member functions are represented as normal
2531       // calls with '*this' as the first argument.
2532       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
2533       if (MD && !MD->isStatic()) {
2534         // FIXME: When selecting an implicit conversion for an overloaded
2535         // operator delete, we sometimes try to evaluate calls to conversion
2536         // operators without a 'this' parameter!
2537         if (Args.empty())
2538           return Error(E);
2539 
2540         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
2541           return false;
2542         This = &ThisVal;
2543         Args = Args.slice(1);
2544       }
2545 
2546       // Don't call function pointers which have been cast to some other type.
2547       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
2548         return Error(E);
2549     } else
2550       return Error(E);
2551 
2552     if (This && !This->checkSubobject(Info, E, CSK_This))
2553       return false;
2554 
2555     // DR1358 allows virtual constexpr functions in some cases. Don't allow
2556     // calls to such functions in constant expressions.
2557     if (This && !HasQualifier &&
2558         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
2559       return Error(E, diag::note_constexpr_virtual_call);
2560 
2561     const FunctionDecl *Definition = 0;
2562     Stmt *Body = FD->getBody(Definition);
2563     APValue Result;
2564 
2565     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
2566         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
2567                             Info, Result))
2568       return false;
2569 
2570     return DerivedSuccess(Result, E);
2571   }
2572 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)2573   RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2574     return StmtVisitorTy::Visit(E->getInitializer());
2575   }
VisitInitListExpr(const InitListExpr * E)2576   RetTy VisitInitListExpr(const InitListExpr *E) {
2577     if (E->getNumInits() == 0)
2578       return DerivedZeroInitialization(E);
2579     if (E->getNumInits() == 1)
2580       return StmtVisitorTy::Visit(E->getInit(0));
2581     return Error(E);
2582   }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)2583   RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
2584     return DerivedZeroInitialization(E);
2585   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)2586   RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
2587     return DerivedZeroInitialization(E);
2588   }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)2589   RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
2590     return DerivedZeroInitialization(E);
2591   }
2592 
2593   /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)2594   RetTy VisitMemberExpr(const MemberExpr *E) {
2595     assert(!E->isArrow() && "missing call to bound member function?");
2596 
2597     APValue Val;
2598     if (!Evaluate(Val, Info, E->getBase()))
2599       return false;
2600 
2601     QualType BaseTy = E->getBase()->getType();
2602 
2603     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
2604     if (!FD) return Error(E);
2605     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
2606     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2607            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2608 
2609     SubobjectDesignator Designator(BaseTy);
2610     Designator.addDeclUnchecked(FD);
2611 
2612     return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
2613            DerivedSuccess(Val, E);
2614   }
2615 
VisitCastExpr(const CastExpr * E)2616   RetTy VisitCastExpr(const CastExpr *E) {
2617     switch (E->getCastKind()) {
2618     default:
2619       break;
2620 
2621     case CK_AtomicToNonAtomic:
2622     case CK_NonAtomicToAtomic:
2623     case CK_NoOp:
2624     case CK_UserDefinedConversion:
2625       return StmtVisitorTy::Visit(E->getSubExpr());
2626 
2627     case CK_LValueToRValue: {
2628       LValue LVal;
2629       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
2630         return false;
2631       APValue RVal;
2632       // Note, we use the subexpression's type in order to retain cv-qualifiers.
2633       if (!HandleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
2634                                           LVal, RVal))
2635         return false;
2636       return DerivedSuccess(RVal, E);
2637     }
2638     }
2639 
2640     return Error(E);
2641   }
2642 
2643   /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)2644   void VisitIgnoredValue(const Expr *E) {
2645     APValue Scratch;
2646     if (!Evaluate(Scratch, Info, E))
2647       Info.EvalStatus.HasSideEffects = true;
2648   }
2649 };
2650 
2651 }
2652 
2653 //===----------------------------------------------------------------------===//
2654 // Common base class for lvalue and temporary evaluation.
2655 //===----------------------------------------------------------------------===//
2656 namespace {
2657 template<class Derived>
2658 class LValueExprEvaluatorBase
2659   : public ExprEvaluatorBase<Derived, bool> {
2660 protected:
2661   LValue &Result;
2662   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
2663   typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
2664 
Success(APValue::LValueBase B)2665   bool Success(APValue::LValueBase B) {
2666     Result.set(B);
2667     return true;
2668   }
2669 
2670 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)2671   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
2672     ExprEvaluatorBaseTy(Info), Result(Result) {}
2673 
Success(const APValue & V,const Expr * E)2674   bool Success(const APValue &V, const Expr *E) {
2675     Result.setFrom(this->Info.Ctx, V);
2676     return true;
2677   }
2678 
VisitMemberExpr(const MemberExpr * E)2679   bool VisitMemberExpr(const MemberExpr *E) {
2680     // Handle non-static data members.
2681     QualType BaseTy;
2682     if (E->isArrow()) {
2683       if (!EvaluatePointer(E->getBase(), Result, this->Info))
2684         return false;
2685       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
2686     } else if (E->getBase()->isRValue()) {
2687       assert(E->getBase()->getType()->isRecordType());
2688       if (!EvaluateTemporary(E->getBase(), Result, this->Info))
2689         return false;
2690       BaseTy = E->getBase()->getType();
2691     } else {
2692       if (!this->Visit(E->getBase()))
2693         return false;
2694       BaseTy = E->getBase()->getType();
2695     }
2696 
2697     const ValueDecl *MD = E->getMemberDecl();
2698     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
2699       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2700              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2701       (void)BaseTy;
2702       if (!HandleLValueMember(this->Info, E, Result, FD))
2703         return false;
2704     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
2705       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
2706         return false;
2707     } else
2708       return this->Error(E);
2709 
2710     if (MD->getType()->isReferenceType()) {
2711       APValue RefValue;
2712       if (!HandleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
2713                                           RefValue))
2714         return false;
2715       return Success(RefValue, E);
2716     }
2717     return true;
2718   }
2719 
VisitBinaryOperator(const BinaryOperator * E)2720   bool VisitBinaryOperator(const BinaryOperator *E) {
2721     switch (E->getOpcode()) {
2722     default:
2723       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
2724 
2725     case BO_PtrMemD:
2726     case BO_PtrMemI:
2727       return HandleMemberPointerAccess(this->Info, E, Result);
2728     }
2729   }
2730 
VisitCastExpr(const CastExpr * E)2731   bool VisitCastExpr(const CastExpr *E) {
2732     switch (E->getCastKind()) {
2733     default:
2734       return ExprEvaluatorBaseTy::VisitCastExpr(E);
2735 
2736     case CK_DerivedToBase:
2737     case CK_UncheckedDerivedToBase: {
2738       if (!this->Visit(E->getSubExpr()))
2739         return false;
2740 
2741       // Now figure out the necessary offset to add to the base LV to get from
2742       // the derived class to the base class.
2743       QualType Type = E->getSubExpr()->getType();
2744 
2745       for (CastExpr::path_const_iterator PathI = E->path_begin(),
2746            PathE = E->path_end(); PathI != PathE; ++PathI) {
2747         if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
2748                               *PathI))
2749           return false;
2750         Type = (*PathI)->getType();
2751       }
2752 
2753       return true;
2754     }
2755     }
2756   }
2757 };
2758 }
2759 
2760 //===----------------------------------------------------------------------===//
2761 // LValue Evaluation
2762 //
2763 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
2764 // function designators (in C), decl references to void objects (in C), and
2765 // temporaries (if building with -Wno-address-of-temporary).
2766 //
2767 // LValue evaluation produces values comprising a base expression of one of the
2768 // following types:
2769 // - Declarations
2770 //  * VarDecl
2771 //  * FunctionDecl
2772 // - Literals
2773 //  * CompoundLiteralExpr in C
2774 //  * StringLiteral
2775 //  * CXXTypeidExpr
2776 //  * PredefinedExpr
2777 //  * ObjCStringLiteralExpr
2778 //  * ObjCEncodeExpr
2779 //  * AddrLabelExpr
2780 //  * BlockExpr
2781 //  * CallExpr for a MakeStringConstant builtin
2782 // - Locals and temporaries
2783 //  * Any Expr, with a CallIndex indicating the function in which the temporary
2784 //    was evaluated.
2785 // plus an offset in bytes.
2786 //===----------------------------------------------------------------------===//
2787 namespace {
2788 class LValueExprEvaluator
2789   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
2790 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)2791   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
2792     LValueExprEvaluatorBaseTy(Info, Result) {}
2793 
2794   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
2795 
2796   bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)2797   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
2798   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2799   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
2800   bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)2801   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)2802   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
2803   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2804   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
2805   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
2806   bool VisitUnaryDeref(const UnaryOperator *E);
2807   bool VisitUnaryReal(const UnaryOperator *E);
2808   bool VisitUnaryImag(const UnaryOperator *E);
2809 
VisitCastExpr(const CastExpr * E)2810   bool VisitCastExpr(const CastExpr *E) {
2811     switch (E->getCastKind()) {
2812     default:
2813       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
2814 
2815     case CK_LValueBitCast:
2816       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
2817       if (!Visit(E->getSubExpr()))
2818         return false;
2819       Result.Designator.setInvalid();
2820       return true;
2821 
2822     case CK_BaseToDerived:
2823       if (!Visit(E->getSubExpr()))
2824         return false;
2825       return HandleBaseToDerivedCast(Info, E, Result);
2826     }
2827   }
2828 };
2829 } // end anonymous namespace
2830 
2831 /// Evaluate an expression as an lvalue. This can be legitimately called on
2832 /// expressions which are not glvalues, in a few cases:
2833 ///  * function designators in C,
2834 ///  * "extern void" objects,
2835 ///  * temporaries, if building with -Wno-address-of-temporary.
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)2836 static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
2837   assert((E->isGLValue() || E->getType()->isFunctionType() ||
2838           E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
2839          "can't evaluate expression as an lvalue");
2840   return LValueExprEvaluator(Info, Result).Visit(E);
2841 }
2842 
VisitDeclRefExpr(const DeclRefExpr * E)2843 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
2844   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
2845     return Success(FD);
2846   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
2847     return VisitVarDecl(E, VD);
2848   return Error(E);
2849 }
2850 
VisitVarDecl(const Expr * E,const VarDecl * VD)2851 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
2852   if (!VD->getType()->isReferenceType()) {
2853     if (isa<ParmVarDecl>(VD)) {
2854       Result.set(VD, Info.CurrentCall->Index);
2855       return true;
2856     }
2857     return Success(VD);
2858   }
2859 
2860   APValue V;
2861   if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
2862     return false;
2863   return Success(V, E);
2864 }
2865 
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)2866 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
2867     const MaterializeTemporaryExpr *E) {
2868   if (E->GetTemporaryExpr()->isRValue()) {
2869     if (E->getType()->isRecordType())
2870       return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
2871 
2872     Result.set(E, Info.CurrentCall->Index);
2873     return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
2874                            Result, E->GetTemporaryExpr());
2875   }
2876 
2877   // Materialization of an lvalue temporary occurs when we need to force a copy
2878   // (for instance, if it's a bitfield).
2879   // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
2880   if (!Visit(E->GetTemporaryExpr()))
2881     return false;
2882   if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
2883                                       Info.CurrentCall->Temporaries[E]))
2884     return false;
2885   Result.set(E, Info.CurrentCall->Index);
2886   return true;
2887 }
2888 
2889 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)2890 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2891   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2892   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
2893   // only see this when folding in C, so there's no standard to follow here.
2894   return Success(E);
2895 }
2896 
VisitCXXTypeidExpr(const CXXTypeidExpr * E)2897 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2898   if (!E->isPotentiallyEvaluated())
2899     return Success(E);
2900 
2901   Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
2902     << E->getExprOperand()->getType()
2903     << E->getExprOperand()->getSourceRange();
2904   return false;
2905 }
2906 
VisitCXXUuidofExpr(const CXXUuidofExpr * E)2907 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
2908   return Success(E);
2909 }
2910 
VisitMemberExpr(const MemberExpr * E)2911 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
2912   // Handle static data members.
2913   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
2914     VisitIgnoredValue(E->getBase());
2915     return VisitVarDecl(E, VD);
2916   }
2917 
2918   // Handle static member functions.
2919   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
2920     if (MD->isStatic()) {
2921       VisitIgnoredValue(E->getBase());
2922       return Success(MD);
2923     }
2924   }
2925 
2926   // Handle non-static data members.
2927   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
2928 }
2929 
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)2930 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2931   // FIXME: Deal with vectors as array subscript bases.
2932   if (E->getBase()->getType()->isVectorType())
2933     return Error(E);
2934 
2935   if (!EvaluatePointer(E->getBase(), Result, Info))
2936     return false;
2937 
2938   APSInt Index;
2939   if (!EvaluateInteger(E->getIdx(), Index, Info))
2940     return false;
2941   int64_t IndexValue
2942     = Index.isSigned() ? Index.getSExtValue()
2943                        : static_cast<int64_t>(Index.getZExtValue());
2944 
2945   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
2946 }
2947 
VisitUnaryDeref(const UnaryOperator * E)2948 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
2949   return EvaluatePointer(E->getSubExpr(), Result, Info);
2950 }
2951 
VisitUnaryReal(const UnaryOperator * E)2952 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
2953   if (!Visit(E->getSubExpr()))
2954     return false;
2955   // __real is a no-op on scalar lvalues.
2956   if (E->getSubExpr()->getType()->isAnyComplexType())
2957     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
2958   return true;
2959 }
2960 
VisitUnaryImag(const UnaryOperator * E)2961 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
2962   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
2963          "lvalue __imag__ on scalar?");
2964   if (!Visit(E->getSubExpr()))
2965     return false;
2966   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
2967   return true;
2968 }
2969 
2970 //===----------------------------------------------------------------------===//
2971 // Pointer Evaluation
2972 //===----------------------------------------------------------------------===//
2973 
2974 namespace {
2975 class PointerExprEvaluator
2976   : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
2977   LValue &Result;
2978 
Success(const Expr * E)2979   bool Success(const Expr *E) {
2980     Result.set(E);
2981     return true;
2982   }
2983 public:
2984 
PointerExprEvaluator(EvalInfo & info,LValue & Result)2985   PointerExprEvaluator(EvalInfo &info, LValue &Result)
2986     : ExprEvaluatorBaseTy(info), Result(Result) {}
2987 
Success(const APValue & V,const Expr * E)2988   bool Success(const APValue &V, const Expr *E) {
2989     Result.setFrom(Info.Ctx, V);
2990     return true;
2991   }
ZeroInitialization(const Expr * E)2992   bool ZeroInitialization(const Expr *E) {
2993     return Success((Expr*)0);
2994   }
2995 
2996   bool VisitBinaryOperator(const BinaryOperator *E);
2997   bool VisitCastExpr(const CastExpr* E);
2998   bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)2999   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
3000       { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)3001   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
3002       { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)3003   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
3004       { return Success(E); }
3005   bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)3006   bool VisitBlockExpr(const BlockExpr *E) {
3007     if (!E->getBlockDecl()->hasCaptures())
3008       return Success(E);
3009     return Error(E);
3010   }
VisitCXXThisExpr(const CXXThisExpr * E)3011   bool VisitCXXThisExpr(const CXXThisExpr *E) {
3012     if (!Info.CurrentCall->This)
3013       return Error(E);
3014     Result = *Info.CurrentCall->This;
3015     return true;
3016   }
3017 
3018   // FIXME: Missing: @protocol, @selector
3019 };
3020 } // end anonymous namespace
3021 
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)3022 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
3023   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
3024   return PointerExprEvaluator(Info, Result).Visit(E);
3025 }
3026 
VisitBinaryOperator(const BinaryOperator * E)3027 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
3028   if (E->getOpcode() != BO_Add &&
3029       E->getOpcode() != BO_Sub)
3030     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
3031 
3032   const Expr *PExp = E->getLHS();
3033   const Expr *IExp = E->getRHS();
3034   if (IExp->getType()->isPointerType())
3035     std::swap(PExp, IExp);
3036 
3037   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
3038   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
3039     return false;
3040 
3041   llvm::APSInt Offset;
3042   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
3043     return false;
3044   int64_t AdditionalOffset
3045     = Offset.isSigned() ? Offset.getSExtValue()
3046                         : static_cast<int64_t>(Offset.getZExtValue());
3047   if (E->getOpcode() == BO_Sub)
3048     AdditionalOffset = -AdditionalOffset;
3049 
3050   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
3051   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
3052                                      AdditionalOffset);
3053 }
3054 
VisitUnaryAddrOf(const UnaryOperator * E)3055 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3056   return EvaluateLValue(E->getSubExpr(), Result, Info);
3057 }
3058 
VisitCastExpr(const CastExpr * E)3059 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
3060   const Expr* SubExpr = E->getSubExpr();
3061 
3062   switch (E->getCastKind()) {
3063   default:
3064     break;
3065 
3066   case CK_BitCast:
3067   case CK_CPointerToObjCPointerCast:
3068   case CK_BlockPointerToObjCPointerCast:
3069   case CK_AnyPointerToBlockPointerCast:
3070     if (!Visit(SubExpr))
3071       return false;
3072     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
3073     // permitted in constant expressions in C++11. Bitcasts from cv void* are
3074     // also static_casts, but we disallow them as a resolution to DR1312.
3075     if (!E->getType()->isVoidPointerType()) {
3076       Result.Designator.setInvalid();
3077       if (SubExpr->getType()->isVoidPointerType())
3078         CCEDiag(E, diag::note_constexpr_invalid_cast)
3079           << 3 << SubExpr->getType();
3080       else
3081         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3082     }
3083     return true;
3084 
3085   case CK_DerivedToBase:
3086   case CK_UncheckedDerivedToBase: {
3087     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
3088       return false;
3089     if (!Result.Base && Result.Offset.isZero())
3090       return true;
3091 
3092     // Now figure out the necessary offset to add to the base LV to get from
3093     // the derived class to the base class.
3094     QualType Type =
3095         E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3096 
3097     for (CastExpr::path_const_iterator PathI = E->path_begin(),
3098          PathE = E->path_end(); PathI != PathE; ++PathI) {
3099       if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3100                             *PathI))
3101         return false;
3102       Type = (*PathI)->getType();
3103     }
3104 
3105     return true;
3106   }
3107 
3108   case CK_BaseToDerived:
3109     if (!Visit(E->getSubExpr()))
3110       return false;
3111     if (!Result.Base && Result.Offset.isZero())
3112       return true;
3113     return HandleBaseToDerivedCast(Info, E, Result);
3114 
3115   case CK_NullToPointer:
3116     VisitIgnoredValue(E->getSubExpr());
3117     return ZeroInitialization(E);
3118 
3119   case CK_IntegralToPointer: {
3120     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3121 
3122     APValue Value;
3123     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
3124       break;
3125 
3126     if (Value.isInt()) {
3127       unsigned Size = Info.Ctx.getTypeSize(E->getType());
3128       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
3129       Result.Base = (Expr*)0;
3130       Result.Offset = CharUnits::fromQuantity(N);
3131       Result.CallIndex = 0;
3132       Result.Designator.setInvalid();
3133       return true;
3134     } else {
3135       // Cast is of an lvalue, no need to change value.
3136       Result.setFrom(Info.Ctx, Value);
3137       return true;
3138     }
3139   }
3140   case CK_ArrayToPointerDecay:
3141     if (SubExpr->isGLValue()) {
3142       if (!EvaluateLValue(SubExpr, Result, Info))
3143         return false;
3144     } else {
3145       Result.set(SubExpr, Info.CurrentCall->Index);
3146       if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
3147                            Info, Result, SubExpr))
3148         return false;
3149     }
3150     // The result is a pointer to the first element of the array.
3151     if (const ConstantArrayType *CAT
3152           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
3153       Result.addArray(Info, E, CAT);
3154     else
3155       Result.Designator.setInvalid();
3156     return true;
3157 
3158   case CK_FunctionToPointerDecay:
3159     return EvaluateLValue(SubExpr, Result, Info);
3160   }
3161 
3162   return ExprEvaluatorBaseTy::VisitCastExpr(E);
3163 }
3164 
VisitCallExpr(const CallExpr * E)3165 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
3166   if (IsStringLiteralCall(E))
3167     return Success(E);
3168 
3169   return ExprEvaluatorBaseTy::VisitCallExpr(E);
3170 }
3171 
3172 //===----------------------------------------------------------------------===//
3173 // Member Pointer Evaluation
3174 //===----------------------------------------------------------------------===//
3175 
3176 namespace {
3177 class MemberPointerExprEvaluator
3178   : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
3179   MemberPtr &Result;
3180 
Success(const ValueDecl * D)3181   bool Success(const ValueDecl *D) {
3182     Result = MemberPtr(D);
3183     return true;
3184   }
3185 public:
3186 
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)3187   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
3188     : ExprEvaluatorBaseTy(Info), Result(Result) {}
3189 
Success(const APValue & V,const Expr * E)3190   bool Success(const APValue &V, const Expr *E) {
3191     Result.setFrom(V);
3192     return true;
3193   }
ZeroInitialization(const Expr * E)3194   bool ZeroInitialization(const Expr *E) {
3195     return Success((const ValueDecl*)0);
3196   }
3197 
3198   bool VisitCastExpr(const CastExpr *E);
3199   bool VisitUnaryAddrOf(const UnaryOperator *E);
3200 };
3201 } // end anonymous namespace
3202 
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)3203 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
3204                                   EvalInfo &Info) {
3205   assert(E->isRValue() && E->getType()->isMemberPointerType());
3206   return MemberPointerExprEvaluator(Info, Result).Visit(E);
3207 }
3208 
VisitCastExpr(const CastExpr * E)3209 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
3210   switch (E->getCastKind()) {
3211   default:
3212     return ExprEvaluatorBaseTy::VisitCastExpr(E);
3213 
3214   case CK_NullToMemberPointer:
3215     VisitIgnoredValue(E->getSubExpr());
3216     return ZeroInitialization(E);
3217 
3218   case CK_BaseToDerivedMemberPointer: {
3219     if (!Visit(E->getSubExpr()))
3220       return false;
3221     if (E->path_empty())
3222       return true;
3223     // Base-to-derived member pointer casts store the path in derived-to-base
3224     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
3225     // the wrong end of the derived->base arc, so stagger the path by one class.
3226     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
3227     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
3228          PathI != PathE; ++PathI) {
3229       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3230       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
3231       if (!Result.castToDerived(Derived))
3232         return Error(E);
3233     }
3234     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
3235     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
3236       return Error(E);
3237     return true;
3238   }
3239 
3240   case CK_DerivedToBaseMemberPointer:
3241     if (!Visit(E->getSubExpr()))
3242       return false;
3243     for (CastExpr::path_const_iterator PathI = E->path_begin(),
3244          PathE = E->path_end(); PathI != PathE; ++PathI) {
3245       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3246       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3247       if (!Result.castToBase(Base))
3248         return Error(E);
3249     }
3250     return true;
3251   }
3252 }
3253 
VisitUnaryAddrOf(const UnaryOperator * E)3254 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3255   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
3256   // member can be formed.
3257   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
3258 }
3259 
3260 //===----------------------------------------------------------------------===//
3261 // Record Evaluation
3262 //===----------------------------------------------------------------------===//
3263 
3264 namespace {
3265   class RecordExprEvaluator
3266   : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
3267     const LValue &This;
3268     APValue &Result;
3269   public:
3270 
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)3271     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
3272       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
3273 
Success(const APValue & V,const Expr * E)3274     bool Success(const APValue &V, const Expr *E) {
3275       Result = V;
3276       return true;
3277     }
3278     bool ZeroInitialization(const Expr *E);
3279 
3280     bool VisitCastExpr(const CastExpr *E);
3281     bool VisitInitListExpr(const InitListExpr *E);
3282     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3283   };
3284 }
3285 
3286 /// Perform zero-initialization on an object of non-union class type.
3287 /// C++11 [dcl.init]p5:
3288 ///  To zero-initialize an object or reference of type T means:
3289 ///    [...]
3290 ///    -- if T is a (possibly cv-qualified) non-union class type,
3291 ///       each non-static data member and each base-class subobject is
3292 ///       zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)3293 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
3294                                           const RecordDecl *RD,
3295                                           const LValue &This, APValue &Result) {
3296   assert(!RD->isUnion() && "Expected non-union class type");
3297   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
3298   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
3299                    std::distance(RD->field_begin(), RD->field_end()));
3300 
3301   if (RD->isInvalidDecl()) return false;
3302   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3303 
3304   if (CD) {
3305     unsigned Index = 0;
3306     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
3307            End = CD->bases_end(); I != End; ++I, ++Index) {
3308       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
3309       LValue Subobject = This;
3310       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
3311         return false;
3312       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
3313                                          Result.getStructBase(Index)))
3314         return false;
3315     }
3316   }
3317 
3318   for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
3319        I != End; ++I) {
3320     // -- if T is a reference type, no initialization is performed.
3321     if (I->getType()->isReferenceType())
3322       continue;
3323 
3324     LValue Subobject = This;
3325     if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
3326       return false;
3327 
3328     ImplicitValueInitExpr VIE(I->getType());
3329     if (!EvaluateInPlace(
3330           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
3331       return false;
3332   }
3333 
3334   return true;
3335 }
3336 
ZeroInitialization(const Expr * E)3337 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
3338   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3339   if (RD->isInvalidDecl()) return false;
3340   if (RD->isUnion()) {
3341     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3342     // object's first non-static named data member is zero-initialized
3343     RecordDecl::field_iterator I = RD->field_begin();
3344     if (I == RD->field_end()) {
3345       Result = APValue((const FieldDecl*)0);
3346       return true;
3347     }
3348 
3349     LValue Subobject = This;
3350     if (!HandleLValueMember(Info, E, Subobject, *I))
3351       return false;
3352     Result = APValue(*I);
3353     ImplicitValueInitExpr VIE(I->getType());
3354     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
3355   }
3356 
3357   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
3358     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
3359     return false;
3360   }
3361 
3362   return HandleClassZeroInitialization(Info, E, RD, This, Result);
3363 }
3364 
VisitCastExpr(const CastExpr * E)3365 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
3366   switch (E->getCastKind()) {
3367   default:
3368     return ExprEvaluatorBaseTy::VisitCastExpr(E);
3369 
3370   case CK_ConstructorConversion:
3371     return Visit(E->getSubExpr());
3372 
3373   case CK_DerivedToBase:
3374   case CK_UncheckedDerivedToBase: {
3375     APValue DerivedObject;
3376     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
3377       return false;
3378     if (!DerivedObject.isStruct())
3379       return Error(E->getSubExpr());
3380 
3381     // Derived-to-base rvalue conversion: just slice off the derived part.
3382     APValue *Value = &DerivedObject;
3383     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
3384     for (CastExpr::path_const_iterator PathI = E->path_begin(),
3385          PathE = E->path_end(); PathI != PathE; ++PathI) {
3386       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
3387       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3388       Value = &Value->getStructBase(getBaseIndex(RD, Base));
3389       RD = Base;
3390     }
3391     Result = *Value;
3392     return true;
3393   }
3394   }
3395 }
3396 
VisitInitListExpr(const InitListExpr * E)3397 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3398   // Cannot constant-evaluate std::initializer_list inits.
3399   if (E->initializesStdInitializerList())
3400     return false;
3401 
3402   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3403   if (RD->isInvalidDecl()) return false;
3404   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3405 
3406   if (RD->isUnion()) {
3407     const FieldDecl *Field = E->getInitializedFieldInUnion();
3408     Result = APValue(Field);
3409     if (!Field)
3410       return true;
3411 
3412     // If the initializer list for a union does not contain any elements, the
3413     // first element of the union is value-initialized.
3414     ImplicitValueInitExpr VIE(Field->getType());
3415     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
3416 
3417     LValue Subobject = This;
3418     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
3419       return false;
3420     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
3421   }
3422 
3423   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
3424          "initializer list for class with base classes");
3425   Result = APValue(APValue::UninitStruct(), 0,
3426                    std::distance(RD->field_begin(), RD->field_end()));
3427   unsigned ElementNo = 0;
3428   bool Success = true;
3429   for (RecordDecl::field_iterator Field = RD->field_begin(),
3430        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
3431     // Anonymous bit-fields are not considered members of the class for
3432     // purposes of aggregate initialization.
3433     if (Field->isUnnamedBitfield())
3434       continue;
3435 
3436     LValue Subobject = This;
3437 
3438     bool HaveInit = ElementNo < E->getNumInits();
3439 
3440     // FIXME: Diagnostics here should point to the end of the initializer
3441     // list, not the start.
3442     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
3443                             Subobject, *Field, &Layout))
3444       return false;
3445 
3446     // Perform an implicit value-initialization for members beyond the end of
3447     // the initializer list.
3448     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
3449 
3450     if (!EvaluateInPlace(
3451           Result.getStructField(Field->getFieldIndex()),
3452           Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
3453       if (!Info.keepEvaluatingAfterFailure())
3454         return false;
3455       Success = false;
3456     }
3457   }
3458 
3459   return Success;
3460 }
3461 
VisitCXXConstructExpr(const CXXConstructExpr * E)3462 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3463   const CXXConstructorDecl *FD = E->getConstructor();
3464   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
3465 
3466   bool ZeroInit = E->requiresZeroInitialization();
3467   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3468     // If we've already performed zero-initialization, we're already done.
3469     if (!Result.isUninit())
3470       return true;
3471 
3472     if (ZeroInit)
3473       return ZeroInitialization(E);
3474 
3475     const CXXRecordDecl *RD = FD->getParent();
3476     if (RD->isUnion())
3477       Result = APValue((FieldDecl*)0);
3478     else
3479       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3480                        std::distance(RD->field_begin(), RD->field_end()));
3481     return true;
3482   }
3483 
3484   const FunctionDecl *Definition = 0;
3485   FD->getBody(Definition);
3486 
3487   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3488     return false;
3489 
3490   // Avoid materializing a temporary for an elidable copy/move constructor.
3491   if (E->isElidable() && !ZeroInit)
3492     if (const MaterializeTemporaryExpr *ME
3493           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
3494       return Visit(ME->GetTemporaryExpr());
3495 
3496   if (ZeroInit && !ZeroInitialization(E))
3497     return false;
3498 
3499   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3500   return HandleConstructorCall(E->getExprLoc(), This, Args,
3501                                cast<CXXConstructorDecl>(Definition), Info,
3502                                Result);
3503 }
3504 
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)3505 static bool EvaluateRecord(const Expr *E, const LValue &This,
3506                            APValue &Result, EvalInfo &Info) {
3507   assert(E->isRValue() && E->getType()->isRecordType() &&
3508          "can't evaluate expression as a record rvalue");
3509   return RecordExprEvaluator(Info, This, Result).Visit(E);
3510 }
3511 
3512 //===----------------------------------------------------------------------===//
3513 // Temporary Evaluation
3514 //
3515 // Temporaries are represented in the AST as rvalues, but generally behave like
3516 // lvalues. The full-object of which the temporary is a subobject is implicitly
3517 // materialized so that a reference can bind to it.
3518 //===----------------------------------------------------------------------===//
3519 namespace {
3520 class TemporaryExprEvaluator
3521   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
3522 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)3523   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
3524     LValueExprEvaluatorBaseTy(Info, Result) {}
3525 
3526   /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)3527   bool VisitConstructExpr(const Expr *E) {
3528     Result.set(E, Info.CurrentCall->Index);
3529     return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
3530   }
3531 
VisitCastExpr(const CastExpr * E)3532   bool VisitCastExpr(const CastExpr *E) {
3533     switch (E->getCastKind()) {
3534     default:
3535       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
3536 
3537     case CK_ConstructorConversion:
3538       return VisitConstructExpr(E->getSubExpr());
3539     }
3540   }
VisitInitListExpr(const InitListExpr * E)3541   bool VisitInitListExpr(const InitListExpr *E) {
3542     return VisitConstructExpr(E);
3543   }
VisitCXXConstructExpr(const CXXConstructExpr * E)3544   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
3545     return VisitConstructExpr(E);
3546   }
VisitCallExpr(const CallExpr * E)3547   bool VisitCallExpr(const CallExpr *E) {
3548     return VisitConstructExpr(E);
3549   }
3550 };
3551 } // end anonymous namespace
3552 
3553 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)3554 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
3555   assert(E->isRValue() && E->getType()->isRecordType());
3556   return TemporaryExprEvaluator(Info, Result).Visit(E);
3557 }
3558 
3559 //===----------------------------------------------------------------------===//
3560 // Vector Evaluation
3561 //===----------------------------------------------------------------------===//
3562 
3563 namespace {
3564   class VectorExprEvaluator
3565   : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
3566     APValue &Result;
3567   public:
3568 
VectorExprEvaluator(EvalInfo & info,APValue & Result)3569     VectorExprEvaluator(EvalInfo &info, APValue &Result)
3570       : ExprEvaluatorBaseTy(info), Result(Result) {}
3571 
Success(const ArrayRef<APValue> & V,const Expr * E)3572     bool Success(const ArrayRef<APValue> &V, const Expr *E) {
3573       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
3574       // FIXME: remove this APValue copy.
3575       Result = APValue(V.data(), V.size());
3576       return true;
3577     }
Success(const APValue & V,const Expr * E)3578     bool Success(const APValue &V, const Expr *E) {
3579       assert(V.isVector());
3580       Result = V;
3581       return true;
3582     }
3583     bool ZeroInitialization(const Expr *E);
3584 
VisitUnaryReal(const UnaryOperator * E)3585     bool VisitUnaryReal(const UnaryOperator *E)
3586       { return Visit(E->getSubExpr()); }
3587     bool VisitCastExpr(const CastExpr* E);
3588     bool VisitInitListExpr(const InitListExpr *E);
3589     bool VisitUnaryImag(const UnaryOperator *E);
3590     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
3591     //                 binary comparisons, binary and/or/xor,
3592     //                 shufflevector, ExtVectorElementExpr
3593   };
3594 } // end anonymous namespace
3595 
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)3596 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
3597   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
3598   return VectorExprEvaluator(Info, Result).Visit(E);
3599 }
3600 
VisitCastExpr(const CastExpr * E)3601 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
3602   const VectorType *VTy = E->getType()->castAs<VectorType>();
3603   unsigned NElts = VTy->getNumElements();
3604 
3605   const Expr *SE = E->getSubExpr();
3606   QualType SETy = SE->getType();
3607 
3608   switch (E->getCastKind()) {
3609   case CK_VectorSplat: {
3610     APValue Val = APValue();
3611     if (SETy->isIntegerType()) {
3612       APSInt IntResult;
3613       if (!EvaluateInteger(SE, IntResult, Info))
3614          return false;
3615       Val = APValue(IntResult);
3616     } else if (SETy->isRealFloatingType()) {
3617        APFloat F(0.0);
3618        if (!EvaluateFloat(SE, F, Info))
3619          return false;
3620        Val = APValue(F);
3621     } else {
3622       return Error(E);
3623     }
3624 
3625     // Splat and create vector APValue.
3626     SmallVector<APValue, 4> Elts(NElts, Val);
3627     return Success(Elts, E);
3628   }
3629   case CK_BitCast: {
3630     // Evaluate the operand into an APInt we can extract from.
3631     llvm::APInt SValInt;
3632     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
3633       return false;
3634     // Extract the elements
3635     QualType EltTy = VTy->getElementType();
3636     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
3637     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
3638     SmallVector<APValue, 4> Elts;
3639     if (EltTy->isRealFloatingType()) {
3640       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
3641       unsigned FloatEltSize = EltSize;
3642       if (&Sem == &APFloat::x87DoubleExtended)
3643         FloatEltSize = 80;
3644       for (unsigned i = 0; i < NElts; i++) {
3645         llvm::APInt Elt;
3646         if (BigEndian)
3647           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
3648         else
3649           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
3650         Elts.push_back(APValue(APFloat(Sem, Elt)));
3651       }
3652     } else if (EltTy->isIntegerType()) {
3653       for (unsigned i = 0; i < NElts; i++) {
3654         llvm::APInt Elt;
3655         if (BigEndian)
3656           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
3657         else
3658           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
3659         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
3660       }
3661     } else {
3662       return Error(E);
3663     }
3664     return Success(Elts, E);
3665   }
3666   default:
3667     return ExprEvaluatorBaseTy::VisitCastExpr(E);
3668   }
3669 }
3670 
3671 bool
VisitInitListExpr(const InitListExpr * E)3672 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3673   const VectorType *VT = E->getType()->castAs<VectorType>();
3674   unsigned NumInits = E->getNumInits();
3675   unsigned NumElements = VT->getNumElements();
3676 
3677   QualType EltTy = VT->getElementType();
3678   SmallVector<APValue, 4> Elements;
3679 
3680   // The number of initializers can be less than the number of
3681   // vector elements. For OpenCL, this can be due to nested vector
3682   // initialization. For GCC compatibility, missing trailing elements
3683   // should be initialized with zeroes.
3684   unsigned CountInits = 0, CountElts = 0;
3685   while (CountElts < NumElements) {
3686     // Handle nested vector initialization.
3687     if (CountInits < NumInits
3688         && E->getInit(CountInits)->getType()->isExtVectorType()) {
3689       APValue v;
3690       if (!EvaluateVector(E->getInit(CountInits), v, Info))
3691         return Error(E);
3692       unsigned vlen = v.getVectorLength();
3693       for (unsigned j = 0; j < vlen; j++)
3694         Elements.push_back(v.getVectorElt(j));
3695       CountElts += vlen;
3696     } else if (EltTy->isIntegerType()) {
3697       llvm::APSInt sInt(32);
3698       if (CountInits < NumInits) {
3699         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
3700           return false;
3701       } else // trailing integer zero.
3702         sInt = Info.Ctx.MakeIntValue(0, EltTy);
3703       Elements.push_back(APValue(sInt));
3704       CountElts++;
3705     } else {
3706       llvm::APFloat f(0.0);
3707       if (CountInits < NumInits) {
3708         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
3709           return false;
3710       } else // trailing float zero.
3711         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
3712       Elements.push_back(APValue(f));
3713       CountElts++;
3714     }
3715     CountInits++;
3716   }
3717   return Success(Elements, E);
3718 }
3719 
3720 bool
ZeroInitialization(const Expr * E)3721 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
3722   const VectorType *VT = E->getType()->getAs<VectorType>();
3723   QualType EltTy = VT->getElementType();
3724   APValue ZeroElement;
3725   if (EltTy->isIntegerType())
3726     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
3727   else
3728     ZeroElement =
3729         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
3730 
3731   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
3732   return Success(Elements, E);
3733 }
3734 
VisitUnaryImag(const UnaryOperator * E)3735 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
3736   VisitIgnoredValue(E->getSubExpr());
3737   return ZeroInitialization(E);
3738 }
3739 
3740 //===----------------------------------------------------------------------===//
3741 // Array Evaluation
3742 //===----------------------------------------------------------------------===//
3743 
3744 namespace {
3745   class ArrayExprEvaluator
3746   : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
3747     const LValue &This;
3748     APValue &Result;
3749   public:
3750 
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)3751     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
3752       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
3753 
Success(const APValue & V,const Expr * E)3754     bool Success(const APValue &V, const Expr *E) {
3755       assert((V.isArray() || V.isLValue()) &&
3756              "expected array or string literal");
3757       Result = V;
3758       return true;
3759     }
3760 
ZeroInitialization(const Expr * E)3761     bool ZeroInitialization(const Expr *E) {
3762       const ConstantArrayType *CAT =
3763           Info.Ctx.getAsConstantArrayType(E->getType());
3764       if (!CAT)
3765         return Error(E);
3766 
3767       Result = APValue(APValue::UninitArray(), 0,
3768                        CAT->getSize().getZExtValue());
3769       if (!Result.hasArrayFiller()) return true;
3770 
3771       // Zero-initialize all elements.
3772       LValue Subobject = This;
3773       Subobject.addArray(Info, E, CAT);
3774       ImplicitValueInitExpr VIE(CAT->getElementType());
3775       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
3776     }
3777 
3778     bool VisitInitListExpr(const InitListExpr *E);
3779     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3780   };
3781 } // end anonymous namespace
3782 
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)3783 static bool EvaluateArray(const Expr *E, const LValue &This,
3784                           APValue &Result, EvalInfo &Info) {
3785   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
3786   return ArrayExprEvaluator(Info, This, Result).Visit(E);
3787 }
3788 
VisitInitListExpr(const InitListExpr * E)3789 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3790   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
3791   if (!CAT)
3792     return Error(E);
3793 
3794   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
3795   // an appropriately-typed string literal enclosed in braces.
3796   if (E->isStringLiteralInit()) {
3797     LValue LV;
3798     if (!EvaluateLValue(E->getInit(0), LV, Info))
3799       return false;
3800     APValue Val;
3801     LV.moveInto(Val);
3802     return Success(Val, E);
3803   }
3804 
3805   bool Success = true;
3806 
3807   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
3808          "zero-initialized array shouldn't have any initialized elts");
3809   APValue Filler;
3810   if (Result.isArray() && Result.hasArrayFiller())
3811     Filler = Result.getArrayFiller();
3812 
3813   Result = APValue(APValue::UninitArray(), E->getNumInits(),
3814                    CAT->getSize().getZExtValue());
3815 
3816   // If the array was previously zero-initialized, preserve the
3817   // zero-initialized values.
3818   if (!Filler.isUninit()) {
3819     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
3820       Result.getArrayInitializedElt(I) = Filler;
3821     if (Result.hasArrayFiller())
3822       Result.getArrayFiller() = Filler;
3823   }
3824 
3825   LValue Subobject = This;
3826   Subobject.addArray(Info, E, CAT);
3827   unsigned Index = 0;
3828   for (InitListExpr::const_iterator I = E->begin(), End = E->end();
3829        I != End; ++I, ++Index) {
3830     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
3831                          Info, Subobject, cast<Expr>(*I)) ||
3832         !HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
3833                                      CAT->getElementType(), 1)) {
3834       if (!Info.keepEvaluatingAfterFailure())
3835         return false;
3836       Success = false;
3837     }
3838   }
3839 
3840   if (!Result.hasArrayFiller()) return Success;
3841   assert(E->hasArrayFiller() && "no array filler for incomplete init list");
3842   // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3843   // but sometimes does:
3844   //   struct S { constexpr S() : p(&p) {} void *p; };
3845   //   S s[10] = {};
3846   return EvaluateInPlace(Result.getArrayFiller(), Info,
3847                          Subobject, E->getArrayFiller()) && Success;
3848 }
3849 
VisitCXXConstructExpr(const CXXConstructExpr * E)3850 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3851   // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3852   // but sometimes does:
3853   //   struct S { constexpr S() : p(&p) {} void *p; };
3854   //   S s[10];
3855   LValue Subobject = This;
3856 
3857   APValue *Value = &Result;
3858   bool HadZeroInit = true;
3859   QualType ElemTy = E->getType();
3860   while (const ConstantArrayType *CAT =
3861            Info.Ctx.getAsConstantArrayType(ElemTy)) {
3862     Subobject.addArray(Info, E, CAT);
3863     HadZeroInit &= !Value->isUninit();
3864     if (!HadZeroInit)
3865       *Value = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
3866     if (!Value->hasArrayFiller())
3867       return true;
3868     Value = &Value->getArrayFiller();
3869     ElemTy = CAT->getElementType();
3870   }
3871 
3872   if (!ElemTy->isRecordType())
3873     return Error(E);
3874 
3875   const CXXConstructorDecl *FD = E->getConstructor();
3876 
3877   bool ZeroInit = E->requiresZeroInitialization();
3878   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3879     if (HadZeroInit)
3880       return true;
3881 
3882     if (ZeroInit) {
3883       ImplicitValueInitExpr VIE(ElemTy);
3884       return EvaluateInPlace(*Value, Info, Subobject, &VIE);
3885     }
3886 
3887     const CXXRecordDecl *RD = FD->getParent();
3888     if (RD->isUnion())
3889       *Value = APValue((FieldDecl*)0);
3890     else
3891       *Value =
3892           APValue(APValue::UninitStruct(), RD->getNumBases(),
3893                   std::distance(RD->field_begin(), RD->field_end()));
3894     return true;
3895   }
3896 
3897   const FunctionDecl *Definition = 0;
3898   FD->getBody(Definition);
3899 
3900   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3901     return false;
3902 
3903   if (ZeroInit && !HadZeroInit) {
3904     ImplicitValueInitExpr VIE(ElemTy);
3905     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
3906       return false;
3907   }
3908 
3909   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3910   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
3911                                cast<CXXConstructorDecl>(Definition),
3912                                Info, *Value);
3913 }
3914 
3915 //===----------------------------------------------------------------------===//
3916 // Integer Evaluation
3917 //
3918 // As a GNU extension, we support casting pointers to sufficiently-wide integer
3919 // types and back in constant folding. Integer values are thus represented
3920 // either as an integer-valued APValue, or as an lvalue-valued APValue.
3921 //===----------------------------------------------------------------------===//
3922 
3923 namespace {
3924 class IntExprEvaluator
3925   : public ExprEvaluatorBase<IntExprEvaluator, bool> {
3926   APValue &Result;
3927 public:
IntExprEvaluator(EvalInfo & info,APValue & result)3928   IntExprEvaluator(EvalInfo &info, APValue &result)
3929     : ExprEvaluatorBaseTy(info), Result(result) {}
3930 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)3931   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
3932     assert(E->getType()->isIntegralOrEnumerationType() &&
3933            "Invalid evaluation result.");
3934     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
3935            "Invalid evaluation result.");
3936     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3937            "Invalid evaluation result.");
3938     Result = APValue(SI);
3939     return true;
3940   }
Success(const llvm::APSInt & SI,const Expr * E)3941   bool Success(const llvm::APSInt &SI, const Expr *E) {
3942     return Success(SI, E, Result);
3943   }
3944 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)3945   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
3946     assert(E->getType()->isIntegralOrEnumerationType() &&
3947            "Invalid evaluation result.");
3948     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3949            "Invalid evaluation result.");
3950     Result = APValue(APSInt(I));
3951     Result.getInt().setIsUnsigned(
3952                             E->getType()->isUnsignedIntegerOrEnumerationType());
3953     return true;
3954   }
Success(const llvm::APInt & I,const Expr * E)3955   bool Success(const llvm::APInt &I, const Expr *E) {
3956     return Success(I, E, Result);
3957   }
3958 
Success(uint64_t Value,const Expr * E,APValue & Result)3959   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
3960     assert(E->getType()->isIntegralOrEnumerationType() &&
3961            "Invalid evaluation result.");
3962     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
3963     return true;
3964   }
Success(uint64_t Value,const Expr * E)3965   bool Success(uint64_t Value, const Expr *E) {
3966     return Success(Value, E, Result);
3967   }
3968 
Success(CharUnits Size,const Expr * E)3969   bool Success(CharUnits Size, const Expr *E) {
3970     return Success(Size.getQuantity(), E);
3971   }
3972 
Success(const APValue & V,const Expr * E)3973   bool Success(const APValue &V, const Expr *E) {
3974     if (V.isLValue() || V.isAddrLabelDiff()) {
3975       Result = V;
3976       return true;
3977     }
3978     return Success(V.getInt(), E);
3979   }
3980 
ZeroInitialization(const Expr * E)3981   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
3982 
3983   //===--------------------------------------------------------------------===//
3984   //                            Visitor Methods
3985   //===--------------------------------------------------------------------===//
3986 
VisitIntegerLiteral(const IntegerLiteral * E)3987   bool VisitIntegerLiteral(const IntegerLiteral *E) {
3988     return Success(E->getValue(), E);
3989   }
VisitCharacterLiteral(const CharacterLiteral * E)3990   bool VisitCharacterLiteral(const CharacterLiteral *E) {
3991     return Success(E->getValue(), E);
3992   }
3993 
3994   bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)3995   bool VisitDeclRefExpr(const DeclRefExpr *E) {
3996     if (CheckReferencedDecl(E, E->getDecl()))
3997       return true;
3998 
3999     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
4000   }
VisitMemberExpr(const MemberExpr * E)4001   bool VisitMemberExpr(const MemberExpr *E) {
4002     if (CheckReferencedDecl(E, E->getMemberDecl())) {
4003       VisitIgnoredValue(E->getBase());
4004       return true;
4005     }
4006 
4007     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
4008   }
4009 
4010   bool VisitCallExpr(const CallExpr *E);
4011   bool VisitBinaryOperator(const BinaryOperator *E);
4012   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
4013   bool VisitUnaryOperator(const UnaryOperator *E);
4014 
4015   bool VisitCastExpr(const CastExpr* E);
4016   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
4017 
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)4018   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4019     return Success(E->getValue(), E);
4020   }
4021 
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)4022   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
4023     return Success(E->getValue(), E);
4024   }
4025 
4026   // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)4027   bool VisitGNUNullExpr(const GNUNullExpr *E) {
4028     return ZeroInitialization(E);
4029   }
4030 
VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr * E)4031   bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
4032     return Success(E->getValue(), E);
4033   }
4034 
VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr * E)4035   bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
4036     return Success(E->getValue(), E);
4037   }
4038 
VisitTypeTraitExpr(const TypeTraitExpr * E)4039   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
4040     return Success(E->getValue(), E);
4041   }
4042 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)4043   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
4044     return Success(E->getValue(), E);
4045   }
4046 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)4047   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
4048     return Success(E->getValue(), E);
4049   }
4050 
4051   bool VisitUnaryReal(const UnaryOperator *E);
4052   bool VisitUnaryImag(const UnaryOperator *E);
4053 
4054   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
4055   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
4056 
4057 private:
4058   CharUnits GetAlignOfExpr(const Expr *E);
4059   CharUnits GetAlignOfType(QualType T);
4060   static QualType GetObjectType(APValue::LValueBase B);
4061   bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
4062   // FIXME: Missing: array subscript of vector, member of vector
4063 };
4064 } // end anonymous namespace
4065 
4066 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
4067 /// produce either the integer value or a pointer.
4068 ///
4069 /// GCC has a heinous extension which folds casts between pointer types and
4070 /// pointer-sized integral types. We support this by allowing the evaluation of
4071 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
4072 /// Some simple arithmetic on such values is supported (they are treated much
4073 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)4074 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
4075                                     EvalInfo &Info) {
4076   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
4077   return IntExprEvaluator(Info, Result).Visit(E);
4078 }
4079 
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)4080 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
4081   APValue Val;
4082   if (!EvaluateIntegerOrLValue(E, Val, Info))
4083     return false;
4084   if (!Val.isInt()) {
4085     // FIXME: It would be better to produce the diagnostic for casting
4086     //        a pointer to an integer.
4087     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
4088     return false;
4089   }
4090   Result = Val.getInt();
4091   return true;
4092 }
4093 
4094 /// Check whether the given declaration can be directly converted to an integral
4095 /// rvalue. If not, no diagnostic is produced; there are other things we can
4096 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)4097 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
4098   // Enums are integer constant exprs.
4099   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
4100     // Check for signedness/width mismatches between E type and ECD value.
4101     bool SameSign = (ECD->getInitVal().isSigned()
4102                      == E->getType()->isSignedIntegerOrEnumerationType());
4103     bool SameWidth = (ECD->getInitVal().getBitWidth()
4104                       == Info.Ctx.getIntWidth(E->getType()));
4105     if (SameSign && SameWidth)
4106       return Success(ECD->getInitVal(), E);
4107     else {
4108       // Get rid of mismatch (otherwise Success assertions will fail)
4109       // by computing a new value matching the type of E.
4110       llvm::APSInt Val = ECD->getInitVal();
4111       if (!SameSign)
4112         Val.setIsSigned(!ECD->getInitVal().isSigned());
4113       if (!SameWidth)
4114         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
4115       return Success(Val, E);
4116     }
4117   }
4118   return false;
4119 }
4120 
4121 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
4122 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E)4123 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
4124   // The following enum mimics the values returned by GCC.
4125   // FIXME: Does GCC differ between lvalue and rvalue references here?
4126   enum gcc_type_class {
4127     no_type_class = -1,
4128     void_type_class, integer_type_class, char_type_class,
4129     enumeral_type_class, boolean_type_class,
4130     pointer_type_class, reference_type_class, offset_type_class,
4131     real_type_class, complex_type_class,
4132     function_type_class, method_type_class,
4133     record_type_class, union_type_class,
4134     array_type_class, string_type_class,
4135     lang_type_class
4136   };
4137 
4138   // If no argument was supplied, default to "no_type_class". This isn't
4139   // ideal, however it is what gcc does.
4140   if (E->getNumArgs() == 0)
4141     return no_type_class;
4142 
4143   QualType ArgTy = E->getArg(0)->getType();
4144   if (ArgTy->isVoidType())
4145     return void_type_class;
4146   else if (ArgTy->isEnumeralType())
4147     return enumeral_type_class;
4148   else if (ArgTy->isBooleanType())
4149     return boolean_type_class;
4150   else if (ArgTy->isCharType())
4151     return string_type_class; // gcc doesn't appear to use char_type_class
4152   else if (ArgTy->isIntegerType())
4153     return integer_type_class;
4154   else if (ArgTy->isPointerType())
4155     return pointer_type_class;
4156   else if (ArgTy->isReferenceType())
4157     return reference_type_class;
4158   else if (ArgTy->isRealType())
4159     return real_type_class;
4160   else if (ArgTy->isComplexType())
4161     return complex_type_class;
4162   else if (ArgTy->isFunctionType())
4163     return function_type_class;
4164   else if (ArgTy->isStructureOrClassType())
4165     return record_type_class;
4166   else if (ArgTy->isUnionType())
4167     return union_type_class;
4168   else if (ArgTy->isArrayType())
4169     return array_type_class;
4170   else if (ArgTy->isUnionType())
4171     return union_type_class;
4172   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
4173     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
4174 }
4175 
4176 /// EvaluateBuiltinConstantPForLValue - Determine the result of
4177 /// __builtin_constant_p when applied to the given lvalue.
4178 ///
4179 /// An lvalue is only "constant" if it is a pointer or reference to the first
4180 /// character of a string literal.
4181 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)4182 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
4183   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
4184   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
4185 }
4186 
4187 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
4188 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)4189 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
4190   QualType ArgType = Arg->getType();
4191 
4192   // __builtin_constant_p always has one operand. The rules which gcc follows
4193   // are not precisely documented, but are as follows:
4194   //
4195   //  - If the operand is of integral, floating, complex or enumeration type,
4196   //    and can be folded to a known value of that type, it returns 1.
4197   //  - If the operand and can be folded to a pointer to the first character
4198   //    of a string literal (or such a pointer cast to an integral type), it
4199   //    returns 1.
4200   //
4201   // Otherwise, it returns 0.
4202   //
4203   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
4204   // its support for this does not currently work.
4205   if (ArgType->isIntegralOrEnumerationType()) {
4206     Expr::EvalResult Result;
4207     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
4208       return false;
4209 
4210     APValue &V = Result.Val;
4211     if (V.getKind() == APValue::Int)
4212       return true;
4213 
4214     return EvaluateBuiltinConstantPForLValue(V);
4215   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
4216     return Arg->isEvaluatable(Ctx);
4217   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
4218     LValue LV;
4219     Expr::EvalStatus Status;
4220     EvalInfo Info(Ctx, Status);
4221     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
4222                           : EvaluatePointer(Arg, LV, Info)) &&
4223         !Status.HasSideEffects)
4224       return EvaluateBuiltinConstantPForLValue(LV);
4225   }
4226 
4227   // Anything else isn't considered to be sufficiently constant.
4228   return false;
4229 }
4230 
4231 /// Retrieves the "underlying object type" of the given expression,
4232 /// as used by __builtin_object_size.
GetObjectType(APValue::LValueBase B)4233 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
4234   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
4235     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4236       return VD->getType();
4237   } else if (const Expr *E = B.get<const Expr*>()) {
4238     if (isa<CompoundLiteralExpr>(E))
4239       return E->getType();
4240   }
4241 
4242   return QualType();
4243 }
4244 
TryEvaluateBuiltinObjectSize(const CallExpr * E)4245 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
4246   LValue Base;
4247 
4248   {
4249     // The operand of __builtin_object_size is never evaluated for side-effects.
4250     // If there are any, but we can determine the pointed-to object anyway, then
4251     // ignore the side-effects.
4252     SpeculativeEvaluationRAII SpeculativeEval(Info);
4253     if (!EvaluatePointer(E->getArg(0), Base, Info))
4254       return false;
4255   }
4256 
4257   // If we can prove the base is null, lower to zero now.
4258   if (!Base.getLValueBase()) return Success(0, E);
4259 
4260   QualType T = GetObjectType(Base.getLValueBase());
4261   if (T.isNull() ||
4262       T->isIncompleteType() ||
4263       T->isFunctionType() ||
4264       T->isVariablyModifiedType() ||
4265       T->isDependentType())
4266     return Error(E);
4267 
4268   CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
4269   CharUnits Offset = Base.getLValueOffset();
4270 
4271   if (!Offset.isNegative() && Offset <= Size)
4272     Size -= Offset;
4273   else
4274     Size = CharUnits::Zero();
4275   return Success(Size, E);
4276 }
4277 
VisitCallExpr(const CallExpr * E)4278 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
4279   switch (unsigned BuiltinOp = E->isBuiltinCall()) {
4280   default:
4281     return ExprEvaluatorBaseTy::VisitCallExpr(E);
4282 
4283   case Builtin::BI__builtin_object_size: {
4284     if (TryEvaluateBuiltinObjectSize(E))
4285       return true;
4286 
4287     // If evaluating the argument has side-effects, we can't determine the size
4288     // of the object, and so we lower it to unknown now. CodeGen relies on us to
4289     // handle all cases where the expression has side-effects.
4290     if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
4291       if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
4292         return Success(-1ULL, E);
4293       return Success(0, E);
4294     }
4295 
4296     // Expression had no side effects, but we couldn't statically determine the
4297     // size of the referenced object.
4298     return Error(E);
4299   }
4300 
4301   case Builtin::BI__builtin_bswap16:
4302   case Builtin::BI__builtin_bswap32:
4303   case Builtin::BI__builtin_bswap64: {
4304     APSInt Val;
4305     if (!EvaluateInteger(E->getArg(0), Val, Info))
4306       return false;
4307 
4308     return Success(Val.byteSwap(), E);
4309   }
4310 
4311   case Builtin::BI__builtin_classify_type:
4312     return Success(EvaluateBuiltinClassifyType(E), E);
4313 
4314   case Builtin::BI__builtin_constant_p:
4315     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
4316 
4317   case Builtin::BI__builtin_eh_return_data_regno: {
4318     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
4319     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
4320     return Success(Operand, E);
4321   }
4322 
4323   case Builtin::BI__builtin_expect:
4324     return Visit(E->getArg(0));
4325 
4326   case Builtin::BIstrlen:
4327     // A call to strlen is not a constant expression.
4328     if (Info.getLangOpts().CPlusPlus11)
4329       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
4330         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
4331     else
4332       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
4333     // Fall through.
4334   case Builtin::BI__builtin_strlen:
4335     // As an extension, we support strlen() and __builtin_strlen() as constant
4336     // expressions when the argument is a string literal.
4337     if (const StringLiteral *S
4338                = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
4339       // The string literal may have embedded null characters. Find the first
4340       // one and truncate there.
4341       StringRef Str = S->getString();
4342       StringRef::size_type Pos = Str.find(0);
4343       if (Pos != StringRef::npos)
4344         Str = Str.substr(0, Pos);
4345 
4346       return Success(Str.size(), E);
4347     }
4348 
4349     return Error(E);
4350 
4351   case Builtin::BI__atomic_always_lock_free:
4352   case Builtin::BI__atomic_is_lock_free:
4353   case Builtin::BI__c11_atomic_is_lock_free: {
4354     APSInt SizeVal;
4355     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
4356       return false;
4357 
4358     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
4359     // of two less than the maximum inline atomic width, we know it is
4360     // lock-free.  If the size isn't a power of two, or greater than the
4361     // maximum alignment where we promote atomics, we know it is not lock-free
4362     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
4363     // the answer can only be determined at runtime; for example, 16-byte
4364     // atomics have lock-free implementations on some, but not all,
4365     // x86-64 processors.
4366 
4367     // Check power-of-two.
4368     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
4369     if (Size.isPowerOfTwo()) {
4370       // Check against inlining width.
4371       unsigned InlineWidthBits =
4372           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
4373       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
4374         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
4375             Size == CharUnits::One() ||
4376             E->getArg(1)->isNullPointerConstant(Info.Ctx,
4377                                                 Expr::NPC_NeverValueDependent))
4378           // OK, we will inline appropriately-aligned operations of this size,
4379           // and _Atomic(T) is appropriately-aligned.
4380           return Success(1, E);
4381 
4382         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
4383           castAs<PointerType>()->getPointeeType();
4384         if (!PointeeType->isIncompleteType() &&
4385             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
4386           // OK, we will inline operations on this object.
4387           return Success(1, E);
4388         }
4389       }
4390     }
4391 
4392     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
4393         Success(0, E) : Error(E);
4394   }
4395   }
4396 }
4397 
HasSameBase(const LValue & A,const LValue & B)4398 static bool HasSameBase(const LValue &A, const LValue &B) {
4399   if (!A.getLValueBase())
4400     return !B.getLValueBase();
4401   if (!B.getLValueBase())
4402     return false;
4403 
4404   if (A.getLValueBase().getOpaqueValue() !=
4405       B.getLValueBase().getOpaqueValue()) {
4406     const Decl *ADecl = GetLValueBaseDecl(A);
4407     if (!ADecl)
4408       return false;
4409     const Decl *BDecl = GetLValueBaseDecl(B);
4410     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
4411       return false;
4412   }
4413 
4414   return IsGlobalLValue(A.getLValueBase()) ||
4415          A.getLValueCallIndex() == B.getLValueCallIndex();
4416 }
4417 
4418 /// Perform the given integer operation, which is known to need at most BitWidth
4419 /// bits, and check for overflow in the original type (if that type was not an
4420 /// unsigned type).
4421 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op)4422 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
4423                                    const APSInt &LHS, const APSInt &RHS,
4424                                    unsigned BitWidth, Operation Op) {
4425   if (LHS.isUnsigned())
4426     return Op(LHS, RHS);
4427 
4428   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
4429   APSInt Result = Value.trunc(LHS.getBitWidth());
4430   if (Result.extend(BitWidth) != Value) {
4431     if (Info.getIntOverflowCheckMode())
4432       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
4433         diag::warn_integer_constant_overflow)
4434           << Result.toString(10) << E->getType();
4435     else
4436       HandleOverflow(Info, E, Value, E->getType());
4437   }
4438   return Result;
4439 }
4440 
4441 namespace {
4442 
4443 /// \brief Data recursive integer evaluator of certain binary operators.
4444 ///
4445 /// We use a data recursive algorithm for binary operators so that we are able
4446 /// to handle extreme cases of chained binary operators without causing stack
4447 /// overflow.
4448 class DataRecursiveIntBinOpEvaluator {
4449   struct EvalResult {
4450     APValue Val;
4451     bool Failed;
4452 
EvalResult__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::EvalResult4453     EvalResult() : Failed(false) { }
4454 
swap__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::EvalResult4455     void swap(EvalResult &RHS) {
4456       Val.swap(RHS.Val);
4457       Failed = RHS.Failed;
4458       RHS.Failed = false;
4459     }
4460   };
4461 
4462   struct Job {
4463     const Expr *E;
4464     EvalResult LHSResult; // meaningful only for binary operator expression.
4465     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
4466 
Job__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::Job4467     Job() : StoredInfo(0) { }
startSpeculativeEval__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::Job4468     void startSpeculativeEval(EvalInfo &Info) {
4469       OldEvalStatus = Info.EvalStatus;
4470       Info.EvalStatus.Diag = 0;
4471       StoredInfo = &Info;
4472     }
~Job__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::Job4473     ~Job() {
4474       if (StoredInfo) {
4475         StoredInfo->EvalStatus = OldEvalStatus;
4476       }
4477     }
4478   private:
4479     EvalInfo *StoredInfo; // non-null if status changed.
4480     Expr::EvalStatus OldEvalStatus;
4481   };
4482 
4483   SmallVector<Job, 16> Queue;
4484 
4485   IntExprEvaluator &IntEval;
4486   EvalInfo &Info;
4487   APValue &FinalResult;
4488 
4489 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)4490   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
4491     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
4492 
4493   /// \brief True if \param E is a binary operator that we are going to handle
4494   /// data recursively.
4495   /// We handle binary operators that are comma, logical, or that have operands
4496   /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)4497   static bool shouldEnqueue(const BinaryOperator *E) {
4498     return E->getOpcode() == BO_Comma ||
4499            E->isLogicalOp() ||
4500            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4501             E->getRHS()->getType()->isIntegralOrEnumerationType());
4502   }
4503 
Traverse(const BinaryOperator * E)4504   bool Traverse(const BinaryOperator *E) {
4505     enqueue(E);
4506     EvalResult PrevResult;
4507     while (!Queue.empty())
4508       process(PrevResult);
4509 
4510     if (PrevResult.Failed) return false;
4511 
4512     FinalResult.swap(PrevResult.Val);
4513     return true;
4514   }
4515 
4516 private:
Success(uint64_t Value,const Expr * E,APValue & Result)4517   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
4518     return IntEval.Success(Value, E, Result);
4519   }
Success(const APSInt & Value,const Expr * E,APValue & Result)4520   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
4521     return IntEval.Success(Value, E, Result);
4522   }
Error(const Expr * E)4523   bool Error(const Expr *E) {
4524     return IntEval.Error(E);
4525   }
Error(const Expr * E,diag::kind D)4526   bool Error(const Expr *E, diag::kind D) {
4527     return IntEval.Error(E, D);
4528   }
4529 
CCEDiag(const Expr * E,diag::kind D)4530   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4531     return Info.CCEDiag(E, D);
4532   }
4533 
4534   // \brief Returns true if visiting the RHS is necessary, false otherwise.
4535   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4536                          bool &SuppressRHSDiags);
4537 
4538   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4539                   const BinaryOperator *E, APValue &Result);
4540 
EvaluateExpr(const Expr * E,EvalResult & Result)4541   void EvaluateExpr(const Expr *E, EvalResult &Result) {
4542     Result.Failed = !Evaluate(Result.Val, Info, E);
4543     if (Result.Failed)
4544       Result.Val = APValue();
4545   }
4546 
4547   void process(EvalResult &Result);
4548 
enqueue(const Expr * E)4549   void enqueue(const Expr *E) {
4550     E = E->IgnoreParens();
4551     Queue.resize(Queue.size()+1);
4552     Queue.back().E = E;
4553     Queue.back().Kind = Job::AnyExprKind;
4554   }
4555 };
4556 
4557 }
4558 
4559 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)4560        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4561                          bool &SuppressRHSDiags) {
4562   if (E->getOpcode() == BO_Comma) {
4563     // Ignore LHS but note if we could not evaluate it.
4564     if (LHSResult.Failed)
4565       Info.EvalStatus.HasSideEffects = true;
4566     return true;
4567   }
4568 
4569   if (E->isLogicalOp()) {
4570     bool lhsResult;
4571     if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
4572       // We were able to evaluate the LHS, see if we can get away with not
4573       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
4574       if (lhsResult == (E->getOpcode() == BO_LOr)) {
4575         Success(lhsResult, E, LHSResult.Val);
4576         return false; // Ignore RHS
4577       }
4578     } else {
4579       // Since we weren't able to evaluate the left hand side, it
4580       // must have had side effects.
4581       Info.EvalStatus.HasSideEffects = true;
4582 
4583       // We can't evaluate the LHS; however, sometimes the result
4584       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4585       // Don't ignore RHS and suppress diagnostics from this arm.
4586       SuppressRHSDiags = true;
4587     }
4588 
4589     return true;
4590   }
4591 
4592   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4593          E->getRHS()->getType()->isIntegralOrEnumerationType());
4594 
4595   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
4596     return false; // Ignore RHS;
4597 
4598   return true;
4599 }
4600 
4601 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)4602        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4603                   const BinaryOperator *E, APValue &Result) {
4604   if (E->getOpcode() == BO_Comma) {
4605     if (RHSResult.Failed)
4606       return false;
4607     Result = RHSResult.Val;
4608     return true;
4609   }
4610 
4611   if (E->isLogicalOp()) {
4612     bool lhsResult, rhsResult;
4613     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
4614     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
4615 
4616     if (LHSIsOK) {
4617       if (RHSIsOK) {
4618         if (E->getOpcode() == BO_LOr)
4619           return Success(lhsResult || rhsResult, E, Result);
4620         else
4621           return Success(lhsResult && rhsResult, E, Result);
4622       }
4623     } else {
4624       if (RHSIsOK) {
4625         // We can't evaluate the LHS; however, sometimes the result
4626         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4627         if (rhsResult == (E->getOpcode() == BO_LOr))
4628           return Success(rhsResult, E, Result);
4629       }
4630     }
4631 
4632     return false;
4633   }
4634 
4635   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4636          E->getRHS()->getType()->isIntegralOrEnumerationType());
4637 
4638   if (LHSResult.Failed || RHSResult.Failed)
4639     return false;
4640 
4641   const APValue &LHSVal = LHSResult.Val;
4642   const APValue &RHSVal = RHSResult.Val;
4643 
4644   // Handle cases like (unsigned long)&a + 4.
4645   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
4646     Result = LHSVal;
4647     CharUnits AdditionalOffset = CharUnits::fromQuantity(
4648                                                          RHSVal.getInt().getZExtValue());
4649     if (E->getOpcode() == BO_Add)
4650       Result.getLValueOffset() += AdditionalOffset;
4651     else
4652       Result.getLValueOffset() -= AdditionalOffset;
4653     return true;
4654   }
4655 
4656   // Handle cases like 4 + (unsigned long)&a
4657   if (E->getOpcode() == BO_Add &&
4658       RHSVal.isLValue() && LHSVal.isInt()) {
4659     Result = RHSVal;
4660     Result.getLValueOffset() += CharUnits::fromQuantity(
4661                                                         LHSVal.getInt().getZExtValue());
4662     return true;
4663   }
4664 
4665   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
4666     // Handle (intptr_t)&&A - (intptr_t)&&B.
4667     if (!LHSVal.getLValueOffset().isZero() ||
4668         !RHSVal.getLValueOffset().isZero())
4669       return false;
4670     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
4671     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
4672     if (!LHSExpr || !RHSExpr)
4673       return false;
4674     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4675     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4676     if (!LHSAddrExpr || !RHSAddrExpr)
4677       return false;
4678     // Make sure both labels come from the same function.
4679     if (LHSAddrExpr->getLabel()->getDeclContext() !=
4680         RHSAddrExpr->getLabel()->getDeclContext())
4681       return false;
4682     Result = APValue(LHSAddrExpr, RHSAddrExpr);
4683     return true;
4684   }
4685 
4686   // All the following cases expect both operands to be an integer
4687   if (!LHSVal.isInt() || !RHSVal.isInt())
4688     return Error(E);
4689 
4690   const APSInt &LHS = LHSVal.getInt();
4691   APSInt RHS = RHSVal.getInt();
4692 
4693   switch (E->getOpcode()) {
4694     default:
4695       return Error(E);
4696     case BO_Mul:
4697       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4698                                           LHS.getBitWidth() * 2,
4699                                           std::multiplies<APSInt>()), E,
4700                      Result);
4701     case BO_Add:
4702       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4703                                           LHS.getBitWidth() + 1,
4704                                           std::plus<APSInt>()), E, Result);
4705     case BO_Sub:
4706       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4707                                           LHS.getBitWidth() + 1,
4708                                           std::minus<APSInt>()), E, Result);
4709     case BO_And: return Success(LHS & RHS, E, Result);
4710     case BO_Xor: return Success(LHS ^ RHS, E, Result);
4711     case BO_Or:  return Success(LHS | RHS, E, Result);
4712     case BO_Div:
4713     case BO_Rem:
4714       if (RHS == 0)
4715         return Error(E, diag::note_expr_divide_by_zero);
4716       // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
4717       // not actually undefined behavior in C++11 due to a language defect.
4718       if (RHS.isNegative() && RHS.isAllOnesValue() &&
4719           LHS.isSigned() && LHS.isMinSignedValue())
4720         HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
4721       return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
4722                      Result);
4723     case BO_Shl: {
4724       if (Info.getLangOpts().OpenCL)
4725         // OpenCL 6.3j: shift values are effectively % word size of LHS.
4726         RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
4727                       static_cast<uint64_t>(LHS.getBitWidth() - 1)),
4728                       RHS.isUnsigned());
4729       else if (RHS.isSigned() && RHS.isNegative()) {
4730         // During constant-folding, a negative shift is an opposite shift. Such
4731         // a shift is not a constant expression.
4732         CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4733         RHS = -RHS;
4734         goto shift_right;
4735       }
4736 
4737     shift_left:
4738       // C++11 [expr.shift]p1: Shift width must be less than the bit width of
4739       // the shifted type.
4740       unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4741       if (SA != RHS) {
4742         CCEDiag(E, diag::note_constexpr_large_shift)
4743         << RHS << E->getType() << LHS.getBitWidth();
4744       } else if (LHS.isSigned()) {
4745         // C++11 [expr.shift]p2: A signed left shift must have a non-negative
4746         // operand, and must not overflow the corresponding unsigned type.
4747         if (LHS.isNegative())
4748           CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
4749         else if (LHS.countLeadingZeros() < SA)
4750           CCEDiag(E, diag::note_constexpr_lshift_discards);
4751       }
4752 
4753       return Success(LHS << SA, E, Result);
4754     }
4755     case BO_Shr: {
4756       if (Info.getLangOpts().OpenCL)
4757         // OpenCL 6.3j: shift values are effectively % word size of LHS.
4758         RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
4759                       static_cast<uint64_t>(LHS.getBitWidth() - 1)),
4760                       RHS.isUnsigned());
4761       else if (RHS.isSigned() && RHS.isNegative()) {
4762         // During constant-folding, a negative shift is an opposite shift. Such a
4763         // shift is not a constant expression.
4764         CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4765         RHS = -RHS;
4766         goto shift_left;
4767       }
4768 
4769     shift_right:
4770       // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
4771       // shifted type.
4772       unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4773       if (SA != RHS)
4774         CCEDiag(E, diag::note_constexpr_large_shift)
4775         << RHS << E->getType() << LHS.getBitWidth();
4776 
4777       return Success(LHS >> SA, E, Result);
4778     }
4779 
4780     case BO_LT: return Success(LHS < RHS, E, Result);
4781     case BO_GT: return Success(LHS > RHS, E, Result);
4782     case BO_LE: return Success(LHS <= RHS, E, Result);
4783     case BO_GE: return Success(LHS >= RHS, E, Result);
4784     case BO_EQ: return Success(LHS == RHS, E, Result);
4785     case BO_NE: return Success(LHS != RHS, E, Result);
4786   }
4787 }
4788 
process(EvalResult & Result)4789 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
4790   Job &job = Queue.back();
4791 
4792   switch (job.Kind) {
4793     case Job::AnyExprKind: {
4794       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
4795         if (shouldEnqueue(Bop)) {
4796           job.Kind = Job::BinOpKind;
4797           enqueue(Bop->getLHS());
4798           return;
4799         }
4800       }
4801 
4802       EvaluateExpr(job.E, Result);
4803       Queue.pop_back();
4804       return;
4805     }
4806 
4807     case Job::BinOpKind: {
4808       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4809       bool SuppressRHSDiags = false;
4810       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
4811         Queue.pop_back();
4812         return;
4813       }
4814       if (SuppressRHSDiags)
4815         job.startSpeculativeEval(Info);
4816       job.LHSResult.swap(Result);
4817       job.Kind = Job::BinOpVisitedLHSKind;
4818       enqueue(Bop->getRHS());
4819       return;
4820     }
4821 
4822     case Job::BinOpVisitedLHSKind: {
4823       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4824       EvalResult RHS;
4825       RHS.swap(Result);
4826       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
4827       Queue.pop_back();
4828       return;
4829     }
4830   }
4831 
4832   llvm_unreachable("Invalid Job::Kind!");
4833 }
4834 
VisitBinaryOperator(const BinaryOperator * E)4835 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4836   if (E->isAssignmentOp())
4837     return Error(E);
4838 
4839   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
4840     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
4841 
4842   QualType LHSTy = E->getLHS()->getType();
4843   QualType RHSTy = E->getRHS()->getType();
4844 
4845   if (LHSTy->isAnyComplexType()) {
4846     assert(RHSTy->isAnyComplexType() && "Invalid comparison");
4847     ComplexValue LHS, RHS;
4848 
4849     bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
4850     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4851       return false;
4852 
4853     if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
4854       return false;
4855 
4856     if (LHS.isComplexFloat()) {
4857       APFloat::cmpResult CR_r =
4858         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
4859       APFloat::cmpResult CR_i =
4860         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
4861 
4862       if (E->getOpcode() == BO_EQ)
4863         return Success((CR_r == APFloat::cmpEqual &&
4864                         CR_i == APFloat::cmpEqual), E);
4865       else {
4866         assert(E->getOpcode() == BO_NE &&
4867                "Invalid complex comparison.");
4868         return Success(((CR_r == APFloat::cmpGreaterThan ||
4869                          CR_r == APFloat::cmpLessThan ||
4870                          CR_r == APFloat::cmpUnordered) ||
4871                         (CR_i == APFloat::cmpGreaterThan ||
4872                          CR_i == APFloat::cmpLessThan ||
4873                          CR_i == APFloat::cmpUnordered)), E);
4874       }
4875     } else {
4876       if (E->getOpcode() == BO_EQ)
4877         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
4878                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
4879       else {
4880         assert(E->getOpcode() == BO_NE &&
4881                "Invalid compex comparison.");
4882         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
4883                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
4884       }
4885     }
4886   }
4887 
4888   if (LHSTy->isRealFloatingType() &&
4889       RHSTy->isRealFloatingType()) {
4890     APFloat RHS(0.0), LHS(0.0);
4891 
4892     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
4893     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4894       return false;
4895 
4896     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
4897       return false;
4898 
4899     APFloat::cmpResult CR = LHS.compare(RHS);
4900 
4901     switch (E->getOpcode()) {
4902     default:
4903       llvm_unreachable("Invalid binary operator!");
4904     case BO_LT:
4905       return Success(CR == APFloat::cmpLessThan, E);
4906     case BO_GT:
4907       return Success(CR == APFloat::cmpGreaterThan, E);
4908     case BO_LE:
4909       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
4910     case BO_GE:
4911       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
4912                      E);
4913     case BO_EQ:
4914       return Success(CR == APFloat::cmpEqual, E);
4915     case BO_NE:
4916       return Success(CR == APFloat::cmpGreaterThan
4917                      || CR == APFloat::cmpLessThan
4918                      || CR == APFloat::cmpUnordered, E);
4919     }
4920   }
4921 
4922   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4923     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
4924       LValue LHSValue, RHSValue;
4925 
4926       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
4927       if (!LHSOK && Info.keepEvaluatingAfterFailure())
4928         return false;
4929 
4930       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
4931         return false;
4932 
4933       // Reject differing bases from the normal codepath; we special-case
4934       // comparisons to null.
4935       if (!HasSameBase(LHSValue, RHSValue)) {
4936         if (E->getOpcode() == BO_Sub) {
4937           // Handle &&A - &&B.
4938           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
4939             return false;
4940           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4941           const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
4942           if (!LHSExpr || !RHSExpr)
4943             return false;
4944           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4945           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4946           if (!LHSAddrExpr || !RHSAddrExpr)
4947             return false;
4948           // Make sure both labels come from the same function.
4949           if (LHSAddrExpr->getLabel()->getDeclContext() !=
4950               RHSAddrExpr->getLabel()->getDeclContext())
4951             return false;
4952           Result = APValue(LHSAddrExpr, RHSAddrExpr);
4953           return true;
4954         }
4955         // Inequalities and subtractions between unrelated pointers have
4956         // unspecified or undefined behavior.
4957         if (!E->isEqualityOp())
4958           return Error(E);
4959         // A constant address may compare equal to the address of a symbol.
4960         // The one exception is that address of an object cannot compare equal
4961         // to a null pointer constant.
4962         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
4963             (!RHSValue.Base && !RHSValue.Offset.isZero()))
4964           return Error(E);
4965         // It's implementation-defined whether distinct literals will have
4966         // distinct addresses. In clang, the result of such a comparison is
4967         // unspecified, so it is not a constant expression. However, we do know
4968         // that the address of a literal will be non-null.
4969         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
4970             LHSValue.Base && RHSValue.Base)
4971           return Error(E);
4972         // We can't tell whether weak symbols will end up pointing to the same
4973         // object.
4974         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
4975           return Error(E);
4976         // Pointers with different bases cannot represent the same object.
4977         // (Note that clang defaults to -fmerge-all-constants, which can
4978         // lead to inconsistent results for comparisons involving the address
4979         // of a constant; this generally doesn't matter in practice.)
4980         return Success(E->getOpcode() == BO_NE, E);
4981       }
4982 
4983       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
4984       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
4985 
4986       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
4987       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
4988 
4989       if (E->getOpcode() == BO_Sub) {
4990         // C++11 [expr.add]p6:
4991         //   Unless both pointers point to elements of the same array object, or
4992         //   one past the last element of the array object, the behavior is
4993         //   undefined.
4994         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
4995             !AreElementsOfSameArray(getType(LHSValue.Base),
4996                                     LHSDesignator, RHSDesignator))
4997           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
4998 
4999         QualType Type = E->getLHS()->getType();
5000         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
5001 
5002         CharUnits ElementSize;
5003         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
5004           return false;
5005 
5006         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
5007         // and produce incorrect results when it overflows. Such behavior
5008         // appears to be non-conforming, but is common, so perhaps we should
5009         // assume the standard intended for such cases to be undefined behavior
5010         // and check for them.
5011 
5012         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
5013         // overflow in the final conversion to ptrdiff_t.
5014         APSInt LHS(
5015           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
5016         APSInt RHS(
5017           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
5018         APSInt ElemSize(
5019           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
5020         APSInt TrueResult = (LHS - RHS) / ElemSize;
5021         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
5022 
5023         if (Result.extend(65) != TrueResult)
5024           HandleOverflow(Info, E, TrueResult, E->getType());
5025         return Success(Result, E);
5026       }
5027 
5028       // C++11 [expr.rel]p3:
5029       //   Pointers to void (after pointer conversions) can be compared, with a
5030       //   result defined as follows: If both pointers represent the same
5031       //   address or are both the null pointer value, the result is true if the
5032       //   operator is <= or >= and false otherwise; otherwise the result is
5033       //   unspecified.
5034       // We interpret this as applying to pointers to *cv* void.
5035       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
5036           E->isRelationalOp())
5037         CCEDiag(E, diag::note_constexpr_void_comparison);
5038 
5039       // C++11 [expr.rel]p2:
5040       // - If two pointers point to non-static data members of the same object,
5041       //   or to subobjects or array elements fo such members, recursively, the
5042       //   pointer to the later declared member compares greater provided the
5043       //   two members have the same access control and provided their class is
5044       //   not a union.
5045       //   [...]
5046       // - Otherwise pointer comparisons are unspecified.
5047       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
5048           E->isRelationalOp()) {
5049         bool WasArrayIndex;
5050         unsigned Mismatch =
5051           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
5052                                  RHSDesignator, WasArrayIndex);
5053         // At the point where the designators diverge, the comparison has a
5054         // specified value if:
5055         //  - we are comparing array indices
5056         //  - we are comparing fields of a union, or fields with the same access
5057         // Otherwise, the result is unspecified and thus the comparison is not a
5058         // constant expression.
5059         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
5060             Mismatch < RHSDesignator.Entries.size()) {
5061           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
5062           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
5063           if (!LF && !RF)
5064             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
5065           else if (!LF)
5066             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5067               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
5068               << RF->getParent() << RF;
5069           else if (!RF)
5070             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5071               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
5072               << LF->getParent() << LF;
5073           else if (!LF->getParent()->isUnion() &&
5074                    LF->getAccess() != RF->getAccess())
5075             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
5076               << LF << LF->getAccess() << RF << RF->getAccess()
5077               << LF->getParent();
5078         }
5079       }
5080 
5081       // The comparison here must be unsigned, and performed with the same
5082       // width as the pointer.
5083       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
5084       uint64_t CompareLHS = LHSOffset.getQuantity();
5085       uint64_t CompareRHS = RHSOffset.getQuantity();
5086       assert(PtrSize <= 64 && "Unexpected pointer width");
5087       uint64_t Mask = ~0ULL >> (64 - PtrSize);
5088       CompareLHS &= Mask;
5089       CompareRHS &= Mask;
5090 
5091       // If there is a base and this is a relational operator, we can only
5092       // compare pointers within the object in question; otherwise, the result
5093       // depends on where the object is located in memory.
5094       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
5095         QualType BaseTy = getType(LHSValue.Base);
5096         if (BaseTy->isIncompleteType())
5097           return Error(E);
5098         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
5099         uint64_t OffsetLimit = Size.getQuantity();
5100         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
5101           return Error(E);
5102       }
5103 
5104       switch (E->getOpcode()) {
5105       default: llvm_unreachable("missing comparison operator");
5106       case BO_LT: return Success(CompareLHS < CompareRHS, E);
5107       case BO_GT: return Success(CompareLHS > CompareRHS, E);
5108       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
5109       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
5110       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
5111       case BO_NE: return Success(CompareLHS != CompareRHS, E);
5112       }
5113     }
5114   }
5115 
5116   if (LHSTy->isMemberPointerType()) {
5117     assert(E->isEqualityOp() && "unexpected member pointer operation");
5118     assert(RHSTy->isMemberPointerType() && "invalid comparison");
5119 
5120     MemberPtr LHSValue, RHSValue;
5121 
5122     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
5123     if (!LHSOK && Info.keepEvaluatingAfterFailure())
5124       return false;
5125 
5126     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
5127       return false;
5128 
5129     // C++11 [expr.eq]p2:
5130     //   If both operands are null, they compare equal. Otherwise if only one is
5131     //   null, they compare unequal.
5132     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
5133       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
5134       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5135     }
5136 
5137     //   Otherwise if either is a pointer to a virtual member function, the
5138     //   result is unspecified.
5139     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
5140       if (MD->isVirtual())
5141         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5142     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
5143       if (MD->isVirtual())
5144         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5145 
5146     //   Otherwise they compare equal if and only if they would refer to the
5147     //   same member of the same most derived object or the same subobject if
5148     //   they were dereferenced with a hypothetical object of the associated
5149     //   class type.
5150     bool Equal = LHSValue == RHSValue;
5151     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5152   }
5153 
5154   if (LHSTy->isNullPtrType()) {
5155     assert(E->isComparisonOp() && "unexpected nullptr operation");
5156     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
5157     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
5158     // are compared, the result is true of the operator is <=, >= or ==, and
5159     // false otherwise.
5160     BinaryOperator::Opcode Opcode = E->getOpcode();
5161     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
5162   }
5163 
5164   assert((!LHSTy->isIntegralOrEnumerationType() ||
5165           !RHSTy->isIntegralOrEnumerationType()) &&
5166          "DataRecursiveIntBinOpEvaluator should have handled integral types");
5167   // We can't continue from here for non-integral types.
5168   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5169 }
5170 
GetAlignOfType(QualType T)5171 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
5172   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
5173   //   result shall be the alignment of the referenced type."
5174   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5175     T = Ref->getPointeeType();
5176 
5177   // __alignof is defined to return the preferred alignment.
5178   return Info.Ctx.toCharUnitsFromBits(
5179     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5180 }
5181 
GetAlignOfExpr(const Expr * E)5182 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
5183   E = E->IgnoreParens();
5184 
5185   // alignof decl is always accepted, even if it doesn't make sense: we default
5186   // to 1 in those cases.
5187   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5188     return Info.Ctx.getDeclAlign(DRE->getDecl(),
5189                                  /*RefAsPointee*/true);
5190 
5191   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5192     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5193                                  /*RefAsPointee*/true);
5194 
5195   return GetAlignOfType(E->getType());
5196 }
5197 
5198 
5199 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
5200 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)5201 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
5202                                     const UnaryExprOrTypeTraitExpr *E) {
5203   switch(E->getKind()) {
5204   case UETT_AlignOf: {
5205     if (E->isArgumentType())
5206       return Success(GetAlignOfType(E->getArgumentType()), E);
5207     else
5208       return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
5209   }
5210 
5211   case UETT_VecStep: {
5212     QualType Ty = E->getTypeOfArgument();
5213 
5214     if (Ty->isVectorType()) {
5215       unsigned n = Ty->castAs<VectorType>()->getNumElements();
5216 
5217       // The vec_step built-in functions that take a 3-component
5218       // vector return 4. (OpenCL 1.1 spec 6.11.12)
5219       if (n == 3)
5220         n = 4;
5221 
5222       return Success(n, E);
5223     } else
5224       return Success(1, E);
5225   }
5226 
5227   case UETT_SizeOf: {
5228     QualType SrcTy = E->getTypeOfArgument();
5229     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
5230     //   the result is the size of the referenced type."
5231     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
5232       SrcTy = Ref->getPointeeType();
5233 
5234     CharUnits Sizeof;
5235     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
5236       return false;
5237     return Success(Sizeof, E);
5238   }
5239   }
5240 
5241   llvm_unreachable("unknown expr/type trait");
5242 }
5243 
VisitOffsetOfExpr(const OffsetOfExpr * OOE)5244 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
5245   CharUnits Result;
5246   unsigned n = OOE->getNumComponents();
5247   if (n == 0)
5248     return Error(OOE);
5249   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
5250   for (unsigned i = 0; i != n; ++i) {
5251     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
5252     switch (ON.getKind()) {
5253     case OffsetOfExpr::OffsetOfNode::Array: {
5254       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
5255       APSInt IdxResult;
5256       if (!EvaluateInteger(Idx, IdxResult, Info))
5257         return false;
5258       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
5259       if (!AT)
5260         return Error(OOE);
5261       CurrentType = AT->getElementType();
5262       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
5263       Result += IdxResult.getSExtValue() * ElementSize;
5264         break;
5265     }
5266 
5267     case OffsetOfExpr::OffsetOfNode::Field: {
5268       FieldDecl *MemberDecl = ON.getField();
5269       const RecordType *RT = CurrentType->getAs<RecordType>();
5270       if (!RT)
5271         return Error(OOE);
5272       RecordDecl *RD = RT->getDecl();
5273       if (RD->isInvalidDecl()) return false;
5274       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5275       unsigned i = MemberDecl->getFieldIndex();
5276       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
5277       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
5278       CurrentType = MemberDecl->getType().getNonReferenceType();
5279       break;
5280     }
5281 
5282     case OffsetOfExpr::OffsetOfNode::Identifier:
5283       llvm_unreachable("dependent __builtin_offsetof");
5284 
5285     case OffsetOfExpr::OffsetOfNode::Base: {
5286       CXXBaseSpecifier *BaseSpec = ON.getBase();
5287       if (BaseSpec->isVirtual())
5288         return Error(OOE);
5289 
5290       // Find the layout of the class whose base we are looking into.
5291       const RecordType *RT = CurrentType->getAs<RecordType>();
5292       if (!RT)
5293         return Error(OOE);
5294       RecordDecl *RD = RT->getDecl();
5295       if (RD->isInvalidDecl()) return false;
5296       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5297 
5298       // Find the base class itself.
5299       CurrentType = BaseSpec->getType();
5300       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
5301       if (!BaseRT)
5302         return Error(OOE);
5303 
5304       // Add the offset to the base.
5305       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
5306       break;
5307     }
5308     }
5309   }
5310   return Success(Result, OOE);
5311 }
5312 
VisitUnaryOperator(const UnaryOperator * E)5313 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5314   switch (E->getOpcode()) {
5315   default:
5316     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
5317     // See C99 6.6p3.
5318     return Error(E);
5319   case UO_Extension:
5320     // FIXME: Should extension allow i-c-e extension expressions in its scope?
5321     // If so, we could clear the diagnostic ID.
5322     return Visit(E->getSubExpr());
5323   case UO_Plus:
5324     // The result is just the value.
5325     return Visit(E->getSubExpr());
5326   case UO_Minus: {
5327     if (!Visit(E->getSubExpr()))
5328       return false;
5329     if (!Result.isInt()) return Error(E);
5330     const APSInt &Value = Result.getInt();
5331     if (Value.isSigned() && Value.isMinSignedValue())
5332       HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
5333                      E->getType());
5334     return Success(-Value, E);
5335   }
5336   case UO_Not: {
5337     if (!Visit(E->getSubExpr()))
5338       return false;
5339     if (!Result.isInt()) return Error(E);
5340     return Success(~Result.getInt(), E);
5341   }
5342   case UO_LNot: {
5343     bool bres;
5344     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
5345       return false;
5346     return Success(!bres, E);
5347   }
5348   }
5349 }
5350 
5351 /// HandleCast - This is used to evaluate implicit or explicit casts where the
5352 /// result type is integer.
VisitCastExpr(const CastExpr * E)5353 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
5354   const Expr *SubExpr = E->getSubExpr();
5355   QualType DestType = E->getType();
5356   QualType SrcType = SubExpr->getType();
5357 
5358   switch (E->getCastKind()) {
5359   case CK_BaseToDerived:
5360   case CK_DerivedToBase:
5361   case CK_UncheckedDerivedToBase:
5362   case CK_Dynamic:
5363   case CK_ToUnion:
5364   case CK_ArrayToPointerDecay:
5365   case CK_FunctionToPointerDecay:
5366   case CK_NullToPointer:
5367   case CK_NullToMemberPointer:
5368   case CK_BaseToDerivedMemberPointer:
5369   case CK_DerivedToBaseMemberPointer:
5370   case CK_ReinterpretMemberPointer:
5371   case CK_ConstructorConversion:
5372   case CK_IntegralToPointer:
5373   case CK_ToVoid:
5374   case CK_VectorSplat:
5375   case CK_IntegralToFloating:
5376   case CK_FloatingCast:
5377   case CK_CPointerToObjCPointerCast:
5378   case CK_BlockPointerToObjCPointerCast:
5379   case CK_AnyPointerToBlockPointerCast:
5380   case CK_ObjCObjectLValueCast:
5381   case CK_FloatingRealToComplex:
5382   case CK_FloatingComplexToReal:
5383   case CK_FloatingComplexCast:
5384   case CK_FloatingComplexToIntegralComplex:
5385   case CK_IntegralRealToComplex:
5386   case CK_IntegralComplexCast:
5387   case CK_IntegralComplexToFloatingComplex:
5388   case CK_BuiltinFnToFnPtr:
5389   case CK_ZeroToOCLEvent:
5390     llvm_unreachable("invalid cast kind for integral value");
5391 
5392   case CK_BitCast:
5393   case CK_Dependent:
5394   case CK_LValueBitCast:
5395   case CK_ARCProduceObject:
5396   case CK_ARCConsumeObject:
5397   case CK_ARCReclaimReturnedObject:
5398   case CK_ARCExtendBlockObject:
5399   case CK_CopyAndAutoreleaseBlockObject:
5400     return Error(E);
5401 
5402   case CK_UserDefinedConversion:
5403   case CK_LValueToRValue:
5404   case CK_AtomicToNonAtomic:
5405   case CK_NonAtomicToAtomic:
5406   case CK_NoOp:
5407     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5408 
5409   case CK_MemberPointerToBoolean:
5410   case CK_PointerToBoolean:
5411   case CK_IntegralToBoolean:
5412   case CK_FloatingToBoolean:
5413   case CK_FloatingComplexToBoolean:
5414   case CK_IntegralComplexToBoolean: {
5415     bool BoolResult;
5416     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
5417       return false;
5418     return Success(BoolResult, E);
5419   }
5420 
5421   case CK_IntegralCast: {
5422     if (!Visit(SubExpr))
5423       return false;
5424 
5425     if (!Result.isInt()) {
5426       // Allow casts of address-of-label differences if they are no-ops
5427       // or narrowing.  (The narrowing case isn't actually guaranteed to
5428       // be constant-evaluatable except in some narrow cases which are hard
5429       // to detect here.  We let it through on the assumption the user knows
5430       // what they are doing.)
5431       if (Result.isAddrLabelDiff())
5432         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
5433       // Only allow casts of lvalues if they are lossless.
5434       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
5435     }
5436 
5437     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
5438                                       Result.getInt()), E);
5439   }
5440 
5441   case CK_PointerToIntegral: {
5442     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5443 
5444     LValue LV;
5445     if (!EvaluatePointer(SubExpr, LV, Info))
5446       return false;
5447 
5448     if (LV.getLValueBase()) {
5449       // Only allow based lvalue casts if they are lossless.
5450       // FIXME: Allow a larger integer size than the pointer size, and allow
5451       // narrowing back down to pointer width in subsequent integral casts.
5452       // FIXME: Check integer type's active bits, not its type size.
5453       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
5454         return Error(E);
5455 
5456       LV.Designator.setInvalid();
5457       LV.moveInto(Result);
5458       return true;
5459     }
5460 
5461     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
5462                                          SrcType);
5463     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
5464   }
5465 
5466   case CK_IntegralComplexToReal: {
5467     ComplexValue C;
5468     if (!EvaluateComplex(SubExpr, C, Info))
5469       return false;
5470     return Success(C.getComplexIntReal(), E);
5471   }
5472 
5473   case CK_FloatingToIntegral: {
5474     APFloat F(0.0);
5475     if (!EvaluateFloat(SubExpr, F, Info))
5476       return false;
5477 
5478     APSInt Value;
5479     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
5480       return false;
5481     return Success(Value, E);
5482   }
5483   }
5484 
5485   llvm_unreachable("unknown cast resulting in integral value");
5486 }
5487 
VisitUnaryReal(const UnaryOperator * E)5488 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5489   if (E->getSubExpr()->getType()->isAnyComplexType()) {
5490     ComplexValue LV;
5491     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5492       return false;
5493     if (!LV.isComplexInt())
5494       return Error(E);
5495     return Success(LV.getComplexIntReal(), E);
5496   }
5497 
5498   return Visit(E->getSubExpr());
5499 }
5500 
VisitUnaryImag(const UnaryOperator * E)5501 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5502   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
5503     ComplexValue LV;
5504     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5505       return false;
5506     if (!LV.isComplexInt())
5507       return Error(E);
5508     return Success(LV.getComplexIntImag(), E);
5509   }
5510 
5511   VisitIgnoredValue(E->getSubExpr());
5512   return Success(0, E);
5513 }
5514 
VisitSizeOfPackExpr(const SizeOfPackExpr * E)5515 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
5516   return Success(E->getPackLength(), E);
5517 }
5518 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)5519 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
5520   return Success(E->getValue(), E);
5521 }
5522 
5523 //===----------------------------------------------------------------------===//
5524 // Float Evaluation
5525 //===----------------------------------------------------------------------===//
5526 
5527 namespace {
5528 class FloatExprEvaluator
5529   : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
5530   APFloat &Result;
5531 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)5532   FloatExprEvaluator(EvalInfo &info, APFloat &result)
5533     : ExprEvaluatorBaseTy(info), Result(result) {}
5534 
Success(const APValue & V,const Expr * e)5535   bool Success(const APValue &V, const Expr *e) {
5536     Result = V.getFloat();
5537     return true;
5538   }
5539 
ZeroInitialization(const Expr * E)5540   bool ZeroInitialization(const Expr *E) {
5541     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
5542     return true;
5543   }
5544 
5545   bool VisitCallExpr(const CallExpr *E);
5546 
5547   bool VisitUnaryOperator(const UnaryOperator *E);
5548   bool VisitBinaryOperator(const BinaryOperator *E);
5549   bool VisitFloatingLiteral(const FloatingLiteral *E);
5550   bool VisitCastExpr(const CastExpr *E);
5551 
5552   bool VisitUnaryReal(const UnaryOperator *E);
5553   bool VisitUnaryImag(const UnaryOperator *E);
5554 
5555   // FIXME: Missing: array subscript of vector, member of vector
5556 };
5557 } // end anonymous namespace
5558 
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)5559 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
5560   assert(E->isRValue() && E->getType()->isRealFloatingType());
5561   return FloatExprEvaluator(Info, Result).Visit(E);
5562 }
5563 
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)5564 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
5565                                   QualType ResultTy,
5566                                   const Expr *Arg,
5567                                   bool SNaN,
5568                                   llvm::APFloat &Result) {
5569   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
5570   if (!S) return false;
5571 
5572   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
5573 
5574   llvm::APInt fill;
5575 
5576   // Treat empty strings as if they were zero.
5577   if (S->getString().empty())
5578     fill = llvm::APInt(32, 0);
5579   else if (S->getString().getAsInteger(0, fill))
5580     return false;
5581 
5582   if (SNaN)
5583     Result = llvm::APFloat::getSNaN(Sem, false, &fill);
5584   else
5585     Result = llvm::APFloat::getQNaN(Sem, false, &fill);
5586   return true;
5587 }
5588 
VisitCallExpr(const CallExpr * E)5589 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
5590   switch (E->isBuiltinCall()) {
5591   default:
5592     return ExprEvaluatorBaseTy::VisitCallExpr(E);
5593 
5594   case Builtin::BI__builtin_huge_val:
5595   case Builtin::BI__builtin_huge_valf:
5596   case Builtin::BI__builtin_huge_vall:
5597   case Builtin::BI__builtin_inf:
5598   case Builtin::BI__builtin_inff:
5599   case Builtin::BI__builtin_infl: {
5600     const llvm::fltSemantics &Sem =
5601       Info.Ctx.getFloatTypeSemantics(E->getType());
5602     Result = llvm::APFloat::getInf(Sem);
5603     return true;
5604   }
5605 
5606   case Builtin::BI__builtin_nans:
5607   case Builtin::BI__builtin_nansf:
5608   case Builtin::BI__builtin_nansl:
5609     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5610                                true, Result))
5611       return Error(E);
5612     return true;
5613 
5614   case Builtin::BI__builtin_nan:
5615   case Builtin::BI__builtin_nanf:
5616   case Builtin::BI__builtin_nanl:
5617     // If this is __builtin_nan() turn this into a nan, otherwise we
5618     // can't constant fold it.
5619     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5620                                false, Result))
5621       return Error(E);
5622     return true;
5623 
5624   case Builtin::BI__builtin_fabs:
5625   case Builtin::BI__builtin_fabsf:
5626   case Builtin::BI__builtin_fabsl:
5627     if (!EvaluateFloat(E->getArg(0), Result, Info))
5628       return false;
5629 
5630     if (Result.isNegative())
5631       Result.changeSign();
5632     return true;
5633 
5634   case Builtin::BI__builtin_copysign:
5635   case Builtin::BI__builtin_copysignf:
5636   case Builtin::BI__builtin_copysignl: {
5637     APFloat RHS(0.);
5638     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
5639         !EvaluateFloat(E->getArg(1), RHS, Info))
5640       return false;
5641     Result.copySign(RHS);
5642     return true;
5643   }
5644   }
5645 }
5646 
VisitUnaryReal(const UnaryOperator * E)5647 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5648   if (E->getSubExpr()->getType()->isAnyComplexType()) {
5649     ComplexValue CV;
5650     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5651       return false;
5652     Result = CV.FloatReal;
5653     return true;
5654   }
5655 
5656   return Visit(E->getSubExpr());
5657 }
5658 
VisitUnaryImag(const UnaryOperator * E)5659 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5660   if (E->getSubExpr()->getType()->isAnyComplexType()) {
5661     ComplexValue CV;
5662     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5663       return false;
5664     Result = CV.FloatImag;
5665     return true;
5666   }
5667 
5668   VisitIgnoredValue(E->getSubExpr());
5669   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
5670   Result = llvm::APFloat::getZero(Sem);
5671   return true;
5672 }
5673 
VisitUnaryOperator(const UnaryOperator * E)5674 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5675   switch (E->getOpcode()) {
5676   default: return Error(E);
5677   case UO_Plus:
5678     return EvaluateFloat(E->getSubExpr(), Result, Info);
5679   case UO_Minus:
5680     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
5681       return false;
5682     Result.changeSign();
5683     return true;
5684   }
5685 }
5686 
VisitBinaryOperator(const BinaryOperator * E)5687 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5688   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5689     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5690 
5691   APFloat RHS(0.0);
5692   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
5693   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5694     return false;
5695   if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
5696     return false;
5697 
5698   switch (E->getOpcode()) {
5699   default: return Error(E);
5700   case BO_Mul:
5701     Result.multiply(RHS, APFloat::rmNearestTiesToEven);
5702     break;
5703   case BO_Add:
5704     Result.add(RHS, APFloat::rmNearestTiesToEven);
5705     break;
5706   case BO_Sub:
5707     Result.subtract(RHS, APFloat::rmNearestTiesToEven);
5708     break;
5709   case BO_Div:
5710     Result.divide(RHS, APFloat::rmNearestTiesToEven);
5711     break;
5712   }
5713 
5714   if (Result.isInfinity() || Result.isNaN())
5715     CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
5716   return true;
5717 }
5718 
VisitFloatingLiteral(const FloatingLiteral * E)5719 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
5720   Result = E->getValue();
5721   return true;
5722 }
5723 
VisitCastExpr(const CastExpr * E)5724 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
5725   const Expr* SubExpr = E->getSubExpr();
5726 
5727   switch (E->getCastKind()) {
5728   default:
5729     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5730 
5731   case CK_IntegralToFloating: {
5732     APSInt IntResult;
5733     return EvaluateInteger(SubExpr, IntResult, Info) &&
5734            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
5735                                 E->getType(), Result);
5736   }
5737 
5738   case CK_FloatingCast: {
5739     if (!Visit(SubExpr))
5740       return false;
5741     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
5742                                   Result);
5743   }
5744 
5745   case CK_FloatingComplexToReal: {
5746     ComplexValue V;
5747     if (!EvaluateComplex(SubExpr, V, Info))
5748       return false;
5749     Result = V.getComplexFloatReal();
5750     return true;
5751   }
5752   }
5753 }
5754 
5755 //===----------------------------------------------------------------------===//
5756 // Complex Evaluation (for float and integer)
5757 //===----------------------------------------------------------------------===//
5758 
5759 namespace {
5760 class ComplexExprEvaluator
5761   : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
5762   ComplexValue &Result;
5763 
5764 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)5765   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
5766     : ExprEvaluatorBaseTy(info), Result(Result) {}
5767 
Success(const APValue & V,const Expr * e)5768   bool Success(const APValue &V, const Expr *e) {
5769     Result.setFrom(V);
5770     return true;
5771   }
5772 
5773   bool ZeroInitialization(const Expr *E);
5774 
5775   //===--------------------------------------------------------------------===//
5776   //                            Visitor Methods
5777   //===--------------------------------------------------------------------===//
5778 
5779   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
5780   bool VisitCastExpr(const CastExpr *E);
5781   bool VisitBinaryOperator(const BinaryOperator *E);
5782   bool VisitUnaryOperator(const UnaryOperator *E);
5783   bool VisitInitListExpr(const InitListExpr *E);
5784 };
5785 } // end anonymous namespace
5786 
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)5787 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
5788                             EvalInfo &Info) {
5789   assert(E->isRValue() && E->getType()->isAnyComplexType());
5790   return ComplexExprEvaluator(Info, Result).Visit(E);
5791 }
5792 
ZeroInitialization(const Expr * E)5793 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
5794   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
5795   if (ElemTy->isRealFloatingType()) {
5796     Result.makeComplexFloat();
5797     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
5798     Result.FloatReal = Zero;
5799     Result.FloatImag = Zero;
5800   } else {
5801     Result.makeComplexInt();
5802     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
5803     Result.IntReal = Zero;
5804     Result.IntImag = Zero;
5805   }
5806   return true;
5807 }
5808 
VisitImaginaryLiteral(const ImaginaryLiteral * E)5809 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
5810   const Expr* SubExpr = E->getSubExpr();
5811 
5812   if (SubExpr->getType()->isRealFloatingType()) {
5813     Result.makeComplexFloat();
5814     APFloat &Imag = Result.FloatImag;
5815     if (!EvaluateFloat(SubExpr, Imag, Info))
5816       return false;
5817 
5818     Result.FloatReal = APFloat(Imag.getSemantics());
5819     return true;
5820   } else {
5821     assert(SubExpr->getType()->isIntegerType() &&
5822            "Unexpected imaginary literal.");
5823 
5824     Result.makeComplexInt();
5825     APSInt &Imag = Result.IntImag;
5826     if (!EvaluateInteger(SubExpr, Imag, Info))
5827       return false;
5828 
5829     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
5830     return true;
5831   }
5832 }
5833 
VisitCastExpr(const CastExpr * E)5834 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
5835 
5836   switch (E->getCastKind()) {
5837   case CK_BitCast:
5838   case CK_BaseToDerived:
5839   case CK_DerivedToBase:
5840   case CK_UncheckedDerivedToBase:
5841   case CK_Dynamic:
5842   case CK_ToUnion:
5843   case CK_ArrayToPointerDecay:
5844   case CK_FunctionToPointerDecay:
5845   case CK_NullToPointer:
5846   case CK_NullToMemberPointer:
5847   case CK_BaseToDerivedMemberPointer:
5848   case CK_DerivedToBaseMemberPointer:
5849   case CK_MemberPointerToBoolean:
5850   case CK_ReinterpretMemberPointer:
5851   case CK_ConstructorConversion:
5852   case CK_IntegralToPointer:
5853   case CK_PointerToIntegral:
5854   case CK_PointerToBoolean:
5855   case CK_ToVoid:
5856   case CK_VectorSplat:
5857   case CK_IntegralCast:
5858   case CK_IntegralToBoolean:
5859   case CK_IntegralToFloating:
5860   case CK_FloatingToIntegral:
5861   case CK_FloatingToBoolean:
5862   case CK_FloatingCast:
5863   case CK_CPointerToObjCPointerCast:
5864   case CK_BlockPointerToObjCPointerCast:
5865   case CK_AnyPointerToBlockPointerCast:
5866   case CK_ObjCObjectLValueCast:
5867   case CK_FloatingComplexToReal:
5868   case CK_FloatingComplexToBoolean:
5869   case CK_IntegralComplexToReal:
5870   case CK_IntegralComplexToBoolean:
5871   case CK_ARCProduceObject:
5872   case CK_ARCConsumeObject:
5873   case CK_ARCReclaimReturnedObject:
5874   case CK_ARCExtendBlockObject:
5875   case CK_CopyAndAutoreleaseBlockObject:
5876   case CK_BuiltinFnToFnPtr:
5877   case CK_ZeroToOCLEvent:
5878     llvm_unreachable("invalid cast kind for complex value");
5879 
5880   case CK_LValueToRValue:
5881   case CK_AtomicToNonAtomic:
5882   case CK_NonAtomicToAtomic:
5883   case CK_NoOp:
5884     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5885 
5886   case CK_Dependent:
5887   case CK_LValueBitCast:
5888   case CK_UserDefinedConversion:
5889     return Error(E);
5890 
5891   case CK_FloatingRealToComplex: {
5892     APFloat &Real = Result.FloatReal;
5893     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
5894       return false;
5895 
5896     Result.makeComplexFloat();
5897     Result.FloatImag = APFloat(Real.getSemantics());
5898     return true;
5899   }
5900 
5901   case CK_FloatingComplexCast: {
5902     if (!Visit(E->getSubExpr()))
5903       return false;
5904 
5905     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5906     QualType From
5907       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5908 
5909     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
5910            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
5911   }
5912 
5913   case CK_FloatingComplexToIntegralComplex: {
5914     if (!Visit(E->getSubExpr()))
5915       return false;
5916 
5917     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5918     QualType From
5919       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5920     Result.makeComplexInt();
5921     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
5922                                 To, Result.IntReal) &&
5923            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
5924                                 To, Result.IntImag);
5925   }
5926 
5927   case CK_IntegralRealToComplex: {
5928     APSInt &Real = Result.IntReal;
5929     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
5930       return false;
5931 
5932     Result.makeComplexInt();
5933     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
5934     return true;
5935   }
5936 
5937   case CK_IntegralComplexCast: {
5938     if (!Visit(E->getSubExpr()))
5939       return false;
5940 
5941     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5942     QualType From
5943       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5944 
5945     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
5946     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
5947     return true;
5948   }
5949 
5950   case CK_IntegralComplexToFloatingComplex: {
5951     if (!Visit(E->getSubExpr()))
5952       return false;
5953 
5954     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
5955     QualType From
5956       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
5957     Result.makeComplexFloat();
5958     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
5959                                 To, Result.FloatReal) &&
5960            HandleIntToFloatCast(Info, E, From, Result.IntImag,
5961                                 To, Result.FloatImag);
5962   }
5963   }
5964 
5965   llvm_unreachable("unknown cast resulting in complex value");
5966 }
5967 
VisitBinaryOperator(const BinaryOperator * E)5968 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5969   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5970     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5971 
5972   bool LHSOK = Visit(E->getLHS());
5973   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5974     return false;
5975 
5976   ComplexValue RHS;
5977   if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
5978     return false;
5979 
5980   assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
5981          "Invalid operands to binary operator.");
5982   switch (E->getOpcode()) {
5983   default: return Error(E);
5984   case BO_Add:
5985     if (Result.isComplexFloat()) {
5986       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
5987                                        APFloat::rmNearestTiesToEven);
5988       Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
5989                                        APFloat::rmNearestTiesToEven);
5990     } else {
5991       Result.getComplexIntReal() += RHS.getComplexIntReal();
5992       Result.getComplexIntImag() += RHS.getComplexIntImag();
5993     }
5994     break;
5995   case BO_Sub:
5996     if (Result.isComplexFloat()) {
5997       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
5998                                             APFloat::rmNearestTiesToEven);
5999       Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
6000                                             APFloat::rmNearestTiesToEven);
6001     } else {
6002       Result.getComplexIntReal() -= RHS.getComplexIntReal();
6003       Result.getComplexIntImag() -= RHS.getComplexIntImag();
6004     }
6005     break;
6006   case BO_Mul:
6007     if (Result.isComplexFloat()) {
6008       ComplexValue LHS = Result;
6009       APFloat &LHS_r = LHS.getComplexFloatReal();
6010       APFloat &LHS_i = LHS.getComplexFloatImag();
6011       APFloat &RHS_r = RHS.getComplexFloatReal();
6012       APFloat &RHS_i = RHS.getComplexFloatImag();
6013 
6014       APFloat Tmp = LHS_r;
6015       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6016       Result.getComplexFloatReal() = Tmp;
6017       Tmp = LHS_i;
6018       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6019       Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
6020 
6021       Tmp = LHS_r;
6022       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6023       Result.getComplexFloatImag() = Tmp;
6024       Tmp = LHS_i;
6025       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6026       Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
6027     } else {
6028       ComplexValue LHS = Result;
6029       Result.getComplexIntReal() =
6030         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
6031          LHS.getComplexIntImag() * RHS.getComplexIntImag());
6032       Result.getComplexIntImag() =
6033         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
6034          LHS.getComplexIntImag() * RHS.getComplexIntReal());
6035     }
6036     break;
6037   case BO_Div:
6038     if (Result.isComplexFloat()) {
6039       ComplexValue LHS = Result;
6040       APFloat &LHS_r = LHS.getComplexFloatReal();
6041       APFloat &LHS_i = LHS.getComplexFloatImag();
6042       APFloat &RHS_r = RHS.getComplexFloatReal();
6043       APFloat &RHS_i = RHS.getComplexFloatImag();
6044       APFloat &Res_r = Result.getComplexFloatReal();
6045       APFloat &Res_i = Result.getComplexFloatImag();
6046 
6047       APFloat Den = RHS_r;
6048       Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6049       APFloat Tmp = RHS_i;
6050       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6051       Den.add(Tmp, APFloat::rmNearestTiesToEven);
6052 
6053       Res_r = LHS_r;
6054       Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6055       Tmp = LHS_i;
6056       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6057       Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
6058       Res_r.divide(Den, APFloat::rmNearestTiesToEven);
6059 
6060       Res_i = LHS_i;
6061       Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6062       Tmp = LHS_r;
6063       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6064       Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
6065       Res_i.divide(Den, APFloat::rmNearestTiesToEven);
6066     } else {
6067       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
6068         return Error(E, diag::note_expr_divide_by_zero);
6069 
6070       ComplexValue LHS = Result;
6071       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
6072         RHS.getComplexIntImag() * RHS.getComplexIntImag();
6073       Result.getComplexIntReal() =
6074         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
6075          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
6076       Result.getComplexIntImag() =
6077         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
6078          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
6079     }
6080     break;
6081   }
6082 
6083   return true;
6084 }
6085 
VisitUnaryOperator(const UnaryOperator * E)6086 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6087   // Get the operand value into 'Result'.
6088   if (!Visit(E->getSubExpr()))
6089     return false;
6090 
6091   switch (E->getOpcode()) {
6092   default:
6093     return Error(E);
6094   case UO_Extension:
6095     return true;
6096   case UO_Plus:
6097     // The result is always just the subexpr.
6098     return true;
6099   case UO_Minus:
6100     if (Result.isComplexFloat()) {
6101       Result.getComplexFloatReal().changeSign();
6102       Result.getComplexFloatImag().changeSign();
6103     }
6104     else {
6105       Result.getComplexIntReal() = -Result.getComplexIntReal();
6106       Result.getComplexIntImag() = -Result.getComplexIntImag();
6107     }
6108     return true;
6109   case UO_Not:
6110     if (Result.isComplexFloat())
6111       Result.getComplexFloatImag().changeSign();
6112     else
6113       Result.getComplexIntImag() = -Result.getComplexIntImag();
6114     return true;
6115   }
6116 }
6117 
VisitInitListExpr(const InitListExpr * E)6118 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6119   if (E->getNumInits() == 2) {
6120     if (E->getType()->isComplexType()) {
6121       Result.makeComplexFloat();
6122       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
6123         return false;
6124       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
6125         return false;
6126     } else {
6127       Result.makeComplexInt();
6128       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
6129         return false;
6130       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
6131         return false;
6132     }
6133     return true;
6134   }
6135   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
6136 }
6137 
6138 //===----------------------------------------------------------------------===//
6139 // Void expression evaluation, primarily for a cast to void on the LHS of a
6140 // comma operator
6141 //===----------------------------------------------------------------------===//
6142 
6143 namespace {
6144 class VoidExprEvaluator
6145   : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
6146 public:
VoidExprEvaluator(EvalInfo & Info)6147   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
6148 
Success(const APValue & V,const Expr * e)6149   bool Success(const APValue &V, const Expr *e) { return true; }
6150 
VisitCastExpr(const CastExpr * E)6151   bool VisitCastExpr(const CastExpr *E) {
6152     switch (E->getCastKind()) {
6153     default:
6154       return ExprEvaluatorBaseTy::VisitCastExpr(E);
6155     case CK_ToVoid:
6156       VisitIgnoredValue(E->getSubExpr());
6157       return true;
6158     }
6159   }
6160 };
6161 } // end anonymous namespace
6162 
EvaluateVoid(const Expr * E,EvalInfo & Info)6163 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
6164   assert(E->isRValue() && E->getType()->isVoidType());
6165   return VoidExprEvaluator(Info).Visit(E);
6166 }
6167 
6168 //===----------------------------------------------------------------------===//
6169 // Top level Expr::EvaluateAsRValue method.
6170 //===----------------------------------------------------------------------===//
6171 
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)6172 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
6173   // In C, function designators are not lvalues, but we evaluate them as if they
6174   // are.
6175   if (E->isGLValue() || E->getType()->isFunctionType()) {
6176     LValue LV;
6177     if (!EvaluateLValue(E, LV, Info))
6178       return false;
6179     LV.moveInto(Result);
6180   } else if (E->getType()->isVectorType()) {
6181     if (!EvaluateVector(E, Result, Info))
6182       return false;
6183   } else if (E->getType()->isIntegralOrEnumerationType()) {
6184     if (!IntExprEvaluator(Info, Result).Visit(E))
6185       return false;
6186   } else if (E->getType()->hasPointerRepresentation()) {
6187     LValue LV;
6188     if (!EvaluatePointer(E, LV, Info))
6189       return false;
6190     LV.moveInto(Result);
6191   } else if (E->getType()->isRealFloatingType()) {
6192     llvm::APFloat F(0.0);
6193     if (!EvaluateFloat(E, F, Info))
6194       return false;
6195     Result = APValue(F);
6196   } else if (E->getType()->isAnyComplexType()) {
6197     ComplexValue C;
6198     if (!EvaluateComplex(E, C, Info))
6199       return false;
6200     C.moveInto(Result);
6201   } else if (E->getType()->isMemberPointerType()) {
6202     MemberPtr P;
6203     if (!EvaluateMemberPointer(E, P, Info))
6204       return false;
6205     P.moveInto(Result);
6206     return true;
6207   } else if (E->getType()->isArrayType()) {
6208     LValue LV;
6209     LV.set(E, Info.CurrentCall->Index);
6210     if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
6211       return false;
6212     Result = Info.CurrentCall->Temporaries[E];
6213   } else if (E->getType()->isRecordType()) {
6214     LValue LV;
6215     LV.set(E, Info.CurrentCall->Index);
6216     if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
6217       return false;
6218     Result = Info.CurrentCall->Temporaries[E];
6219   } else if (E->getType()->isVoidType()) {
6220     if (!Info.getLangOpts().CPlusPlus11)
6221       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
6222         << E->getType();
6223     if (!EvaluateVoid(E, Info))
6224       return false;
6225   } else if (Info.getLangOpts().CPlusPlus11) {
6226     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
6227     return false;
6228   } else {
6229     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6230     return false;
6231   }
6232 
6233   return true;
6234 }
6235 
6236 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
6237 /// cases, the in-place evaluation is essential, since later initializers for
6238 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,CheckConstantExpressionKind CCEK,bool AllowNonLiteralTypes)6239 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
6240                             const Expr *E, CheckConstantExpressionKind CCEK,
6241                             bool AllowNonLiteralTypes) {
6242   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
6243     return false;
6244 
6245   if (E->isRValue()) {
6246     // Evaluate arrays and record types in-place, so that later initializers can
6247     // refer to earlier-initialized members of the object.
6248     if (E->getType()->isArrayType())
6249       return EvaluateArray(E, This, Result, Info);
6250     else if (E->getType()->isRecordType())
6251       return EvaluateRecord(E, This, Result, Info);
6252   }
6253 
6254   // For any other type, in-place evaluation is unimportant.
6255   return Evaluate(Result, Info, E);
6256 }
6257 
6258 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
6259 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)6260 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
6261   if (!CheckLiteralType(Info, E))
6262     return false;
6263 
6264   if (!::Evaluate(Result, Info, E))
6265     return false;
6266 
6267   if (E->isGLValue()) {
6268     LValue LV;
6269     LV.setFrom(Info.Ctx, Result);
6270     if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
6271       return false;
6272   }
6273 
6274   // Check this core constant expression is a constant expression.
6275   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
6276 }
6277 
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)6278 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
6279                                  const ASTContext &Ctx, bool &IsConst) {
6280   // Fast-path evaluations of integer literals, since we sometimes see files
6281   // containing vast quantities of these.
6282   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
6283     Result.Val = APValue(APSInt(L->getValue(),
6284                                 L->getType()->isUnsignedIntegerType()));
6285     IsConst = true;
6286     return true;
6287   }
6288 
6289   // FIXME: Evaluating values of large array and record types can cause
6290   // performance problems. Only do so in C++11 for now.
6291   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
6292                           Exp->getType()->isRecordType()) &&
6293       !Ctx.getLangOpts().CPlusPlus11) {
6294     IsConst = false;
6295     return true;
6296   }
6297   return false;
6298 }
6299 
6300 
6301 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
6302 /// any crazy technique (that has nothing to do with language standards) that
6303 /// we want to.  If this function returns true, it returns the folded constant
6304 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
6305 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const6306 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
6307   bool IsConst;
6308   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
6309     return IsConst;
6310 
6311   EvalInfo Info(Ctx, Result);
6312   return ::EvaluateAsRValue(Info, this, Result.Val);
6313 }
6314 
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const6315 bool Expr::EvaluateAsBooleanCondition(bool &Result,
6316                                       const ASTContext &Ctx) const {
6317   EvalResult Scratch;
6318   return EvaluateAsRValue(Scratch, Ctx) &&
6319          HandleConversionToBool(Scratch.Val, Result);
6320 }
6321 
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const6322 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
6323                          SideEffectsKind AllowSideEffects) const {
6324   if (!getType()->isIntegralOrEnumerationType())
6325     return false;
6326 
6327   EvalResult ExprResult;
6328   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
6329       (!AllowSideEffects && ExprResult.HasSideEffects))
6330     return false;
6331 
6332   Result = ExprResult.Val.getInt();
6333   return true;
6334 }
6335 
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const6336 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
6337   EvalInfo Info(Ctx, Result);
6338 
6339   LValue LV;
6340   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
6341       !CheckLValueConstantExpression(Info, getExprLoc(),
6342                                      Ctx.getLValueReferenceType(getType()), LV))
6343     return false;
6344 
6345   LV.moveInto(Result.Val);
6346   return true;
6347 }
6348 
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const6349 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
6350                                  const VarDecl *VD,
6351                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
6352   // FIXME: Evaluating initializers for large array and record types can cause
6353   // performance problems. Only do so in C++11 for now.
6354   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6355       !Ctx.getLangOpts().CPlusPlus11)
6356     return false;
6357 
6358   Expr::EvalStatus EStatus;
6359   EStatus.Diag = &Notes;
6360 
6361   EvalInfo InitInfo(Ctx, EStatus);
6362   InitInfo.setEvaluatingDecl(VD, Value);
6363 
6364   LValue LVal;
6365   LVal.set(VD);
6366 
6367   // C++11 [basic.start.init]p2:
6368   //  Variables with static storage duration or thread storage duration shall be
6369   //  zero-initialized before any other initialization takes place.
6370   // This behavior is not present in C.
6371   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
6372       !VD->getType()->isReferenceType()) {
6373     ImplicitValueInitExpr VIE(VD->getType());
6374     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
6375                          /*AllowNonLiteralTypes=*/true))
6376       return false;
6377   }
6378 
6379   if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
6380                          /*AllowNonLiteralTypes=*/true) ||
6381       EStatus.HasSideEffects)
6382     return false;
6383 
6384   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
6385                                  Value);
6386 }
6387 
6388 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
6389 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx) const6390 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
6391   EvalResult Result;
6392   return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
6393 }
6394 
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const6395 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
6396                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
6397   EvalResult EvalResult;
6398   EvalResult.Diag = Diag;
6399   bool Result = EvaluateAsRValue(EvalResult, Ctx);
6400   (void)Result;
6401   assert(Result && "Could not evaluate expression");
6402   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
6403 
6404   return EvalResult.Val.getInt();
6405 }
6406 
EvaluateForOverflow(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diags) const6407 void Expr::EvaluateForOverflow(const ASTContext &Ctx,
6408                     SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
6409   bool IsConst;
6410   EvalResult EvalResult;
6411   EvalResult.Diag = Diags;
6412   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
6413     EvalInfo Info(Ctx, EvalResult, true);
6414     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
6415   }
6416 }
6417 
isGlobalLValue() const6418  bool Expr::EvalResult::isGlobalLValue() const {
6419    assert(Val.isLValue());
6420    return IsGlobalLValue(Val.getLValueBase());
6421  }
6422 
6423 
6424 /// isIntegerConstantExpr - this recursive routine will test if an expression is
6425 /// an integer constant expression.
6426 
6427 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
6428 /// comma, etc
6429 
6430 // CheckICE - This function does the fundamental ICE checking: the returned
6431 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
6432 // and a (possibly null) SourceLocation indicating the location of the problem.
6433 //
6434 // Note that to reduce code duplication, this helper does no evaluation
6435 // itself; the caller checks whether the expression is evaluatable, and
6436 // in the rare cases where CheckICE actually cares about the evaluated
6437 // value, it calls into Evalute.
6438 
6439 namespace {
6440 
6441 enum ICEKind {
6442   /// This expression is an ICE.
6443   IK_ICE,
6444   /// This expression is not an ICE, but if it isn't evaluated, it's
6445   /// a legal subexpression for an ICE. This return value is used to handle
6446   /// the comma operator in C99 mode, and non-constant subexpressions.
6447   IK_ICEIfUnevaluated,
6448   /// This expression is not an ICE, and is not a legal subexpression for one.
6449   IK_NotICE
6450 };
6451 
6452 struct ICEDiag {
6453   ICEKind Kind;
6454   SourceLocation Loc;
6455 
ICEDiag__anon0c5100021411::ICEDiag6456   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
6457 };
6458 
6459 }
6460 
NoDiag()6461 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
6462 
Worst(ICEDiag A,ICEDiag B)6463 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
6464 
CheckEvalInICE(const Expr * E,ASTContext & Ctx)6465 static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
6466   Expr::EvalResult EVResult;
6467   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
6468       !EVResult.Val.isInt())
6469     return ICEDiag(IK_NotICE, E->getLocStart());
6470 
6471   return NoDiag();
6472 }
6473 
CheckICE(const Expr * E,ASTContext & Ctx)6474 static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
6475   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
6476   if (!E->getType()->isIntegralOrEnumerationType())
6477     return ICEDiag(IK_NotICE, E->getLocStart());
6478 
6479   switch (E->getStmtClass()) {
6480 #define ABSTRACT_STMT(Node)
6481 #define STMT(Node, Base) case Expr::Node##Class:
6482 #define EXPR(Node, Base)
6483 #include "clang/AST/StmtNodes.inc"
6484   case Expr::PredefinedExprClass:
6485   case Expr::FloatingLiteralClass:
6486   case Expr::ImaginaryLiteralClass:
6487   case Expr::StringLiteralClass:
6488   case Expr::ArraySubscriptExprClass:
6489   case Expr::MemberExprClass:
6490   case Expr::CompoundAssignOperatorClass:
6491   case Expr::CompoundLiteralExprClass:
6492   case Expr::ExtVectorElementExprClass:
6493   case Expr::DesignatedInitExprClass:
6494   case Expr::ImplicitValueInitExprClass:
6495   case Expr::ParenListExprClass:
6496   case Expr::VAArgExprClass:
6497   case Expr::AddrLabelExprClass:
6498   case Expr::StmtExprClass:
6499   case Expr::CXXMemberCallExprClass:
6500   case Expr::CUDAKernelCallExprClass:
6501   case Expr::CXXDynamicCastExprClass:
6502   case Expr::CXXTypeidExprClass:
6503   case Expr::CXXUuidofExprClass:
6504   case Expr::CXXNullPtrLiteralExprClass:
6505   case Expr::UserDefinedLiteralClass:
6506   case Expr::CXXThisExprClass:
6507   case Expr::CXXThrowExprClass:
6508   case Expr::CXXNewExprClass:
6509   case Expr::CXXDeleteExprClass:
6510   case Expr::CXXPseudoDestructorExprClass:
6511   case Expr::UnresolvedLookupExprClass:
6512   case Expr::DependentScopeDeclRefExprClass:
6513   case Expr::CXXConstructExprClass:
6514   case Expr::CXXBindTemporaryExprClass:
6515   case Expr::ExprWithCleanupsClass:
6516   case Expr::CXXTemporaryObjectExprClass:
6517   case Expr::CXXUnresolvedConstructExprClass:
6518   case Expr::CXXDependentScopeMemberExprClass:
6519   case Expr::UnresolvedMemberExprClass:
6520   case Expr::ObjCStringLiteralClass:
6521   case Expr::ObjCBoxedExprClass:
6522   case Expr::ObjCArrayLiteralClass:
6523   case Expr::ObjCDictionaryLiteralClass:
6524   case Expr::ObjCEncodeExprClass:
6525   case Expr::ObjCMessageExprClass:
6526   case Expr::ObjCSelectorExprClass:
6527   case Expr::ObjCProtocolExprClass:
6528   case Expr::ObjCIvarRefExprClass:
6529   case Expr::ObjCPropertyRefExprClass:
6530   case Expr::ObjCSubscriptRefExprClass:
6531   case Expr::ObjCIsaExprClass:
6532   case Expr::ShuffleVectorExprClass:
6533   case Expr::BlockExprClass:
6534   case Expr::NoStmtClass:
6535   case Expr::OpaqueValueExprClass:
6536   case Expr::PackExpansionExprClass:
6537   case Expr::SubstNonTypeTemplateParmPackExprClass:
6538   case Expr::FunctionParmPackExprClass:
6539   case Expr::AsTypeExprClass:
6540   case Expr::ObjCIndirectCopyRestoreExprClass:
6541   case Expr::MaterializeTemporaryExprClass:
6542   case Expr::PseudoObjectExprClass:
6543   case Expr::AtomicExprClass:
6544   case Expr::InitListExprClass:
6545   case Expr::LambdaExprClass:
6546     return ICEDiag(IK_NotICE, E->getLocStart());
6547 
6548   case Expr::SizeOfPackExprClass:
6549   case Expr::GNUNullExprClass:
6550     // GCC considers the GNU __null value to be an integral constant expression.
6551     return NoDiag();
6552 
6553   case Expr::SubstNonTypeTemplateParmExprClass:
6554     return
6555       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
6556 
6557   case Expr::ParenExprClass:
6558     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
6559   case Expr::GenericSelectionExprClass:
6560     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
6561   case Expr::IntegerLiteralClass:
6562   case Expr::CharacterLiteralClass:
6563   case Expr::ObjCBoolLiteralExprClass:
6564   case Expr::CXXBoolLiteralExprClass:
6565   case Expr::CXXScalarValueInitExprClass:
6566   case Expr::UnaryTypeTraitExprClass:
6567   case Expr::BinaryTypeTraitExprClass:
6568   case Expr::TypeTraitExprClass:
6569   case Expr::ArrayTypeTraitExprClass:
6570   case Expr::ExpressionTraitExprClass:
6571   case Expr::CXXNoexceptExprClass:
6572     return NoDiag();
6573   case Expr::CallExprClass:
6574   case Expr::CXXOperatorCallExprClass: {
6575     // C99 6.6/3 allows function calls within unevaluated subexpressions of
6576     // constant expressions, but they can never be ICEs because an ICE cannot
6577     // contain an operand of (pointer to) function type.
6578     const CallExpr *CE = cast<CallExpr>(E);
6579     if (CE->isBuiltinCall())
6580       return CheckEvalInICE(E, Ctx);
6581     return ICEDiag(IK_NotICE, E->getLocStart());
6582   }
6583   case Expr::DeclRefExprClass: {
6584     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
6585       return NoDiag();
6586     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
6587     if (Ctx.getLangOpts().CPlusPlus &&
6588         D && IsConstNonVolatile(D->getType())) {
6589       // Parameter variables are never constants.  Without this check,
6590       // getAnyInitializer() can find a default argument, which leads
6591       // to chaos.
6592       if (isa<ParmVarDecl>(D))
6593         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
6594 
6595       // C++ 7.1.5.1p2
6596       //   A variable of non-volatile const-qualified integral or enumeration
6597       //   type initialized by an ICE can be used in ICEs.
6598       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
6599         if (!Dcl->getType()->isIntegralOrEnumerationType())
6600           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
6601 
6602         const VarDecl *VD;
6603         // Look for a declaration of this variable that has an initializer, and
6604         // check whether it is an ICE.
6605         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
6606           return NoDiag();
6607         else
6608           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
6609       }
6610     }
6611     return ICEDiag(IK_NotICE, E->getLocStart());
6612   }
6613   case Expr::UnaryOperatorClass: {
6614     const UnaryOperator *Exp = cast<UnaryOperator>(E);
6615     switch (Exp->getOpcode()) {
6616     case UO_PostInc:
6617     case UO_PostDec:
6618     case UO_PreInc:
6619     case UO_PreDec:
6620     case UO_AddrOf:
6621     case UO_Deref:
6622       // C99 6.6/3 allows increment and decrement within unevaluated
6623       // subexpressions of constant expressions, but they can never be ICEs
6624       // because an ICE cannot contain an lvalue operand.
6625       return ICEDiag(IK_NotICE, E->getLocStart());
6626     case UO_Extension:
6627     case UO_LNot:
6628     case UO_Plus:
6629     case UO_Minus:
6630     case UO_Not:
6631     case UO_Real:
6632     case UO_Imag:
6633       return CheckICE(Exp->getSubExpr(), Ctx);
6634     }
6635 
6636     // OffsetOf falls through here.
6637   }
6638   case Expr::OffsetOfExprClass: {
6639     // Note that per C99, offsetof must be an ICE. And AFAIK, using
6640     // EvaluateAsRValue matches the proposed gcc behavior for cases like
6641     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
6642     // compliance: we should warn earlier for offsetof expressions with
6643     // array subscripts that aren't ICEs, and if the array subscripts
6644     // are ICEs, the value of the offsetof must be an integer constant.
6645     return CheckEvalInICE(E, Ctx);
6646   }
6647   case Expr::UnaryExprOrTypeTraitExprClass: {
6648     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
6649     if ((Exp->getKind() ==  UETT_SizeOf) &&
6650         Exp->getTypeOfArgument()->isVariableArrayType())
6651       return ICEDiag(IK_NotICE, E->getLocStart());
6652     return NoDiag();
6653   }
6654   case Expr::BinaryOperatorClass: {
6655     const BinaryOperator *Exp = cast<BinaryOperator>(E);
6656     switch (Exp->getOpcode()) {
6657     case BO_PtrMemD:
6658     case BO_PtrMemI:
6659     case BO_Assign:
6660     case BO_MulAssign:
6661     case BO_DivAssign:
6662     case BO_RemAssign:
6663     case BO_AddAssign:
6664     case BO_SubAssign:
6665     case BO_ShlAssign:
6666     case BO_ShrAssign:
6667     case BO_AndAssign:
6668     case BO_XorAssign:
6669     case BO_OrAssign:
6670       // C99 6.6/3 allows assignments within unevaluated subexpressions of
6671       // constant expressions, but they can never be ICEs because an ICE cannot
6672       // contain an lvalue operand.
6673       return ICEDiag(IK_NotICE, E->getLocStart());
6674 
6675     case BO_Mul:
6676     case BO_Div:
6677     case BO_Rem:
6678     case BO_Add:
6679     case BO_Sub:
6680     case BO_Shl:
6681     case BO_Shr:
6682     case BO_LT:
6683     case BO_GT:
6684     case BO_LE:
6685     case BO_GE:
6686     case BO_EQ:
6687     case BO_NE:
6688     case BO_And:
6689     case BO_Xor:
6690     case BO_Or:
6691     case BO_Comma: {
6692       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6693       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6694       if (Exp->getOpcode() == BO_Div ||
6695           Exp->getOpcode() == BO_Rem) {
6696         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
6697         // we don't evaluate one.
6698         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
6699           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
6700           if (REval == 0)
6701             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
6702           if (REval.isSigned() && REval.isAllOnesValue()) {
6703             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
6704             if (LEval.isMinSignedValue())
6705               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
6706           }
6707         }
6708       }
6709       if (Exp->getOpcode() == BO_Comma) {
6710         if (Ctx.getLangOpts().C99) {
6711           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
6712           // if it isn't evaluated.
6713           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
6714             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
6715         } else {
6716           // In both C89 and C++, commas in ICEs are illegal.
6717           return ICEDiag(IK_NotICE, E->getLocStart());
6718         }
6719       }
6720       return Worst(LHSResult, RHSResult);
6721     }
6722     case BO_LAnd:
6723     case BO_LOr: {
6724       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6725       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6726       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
6727         // Rare case where the RHS has a comma "side-effect"; we need
6728         // to actually check the condition to see whether the side
6729         // with the comma is evaluated.
6730         if ((Exp->getOpcode() == BO_LAnd) !=
6731             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
6732           return RHSResult;
6733         return NoDiag();
6734       }
6735 
6736       return Worst(LHSResult, RHSResult);
6737     }
6738     }
6739   }
6740   case Expr::ImplicitCastExprClass:
6741   case Expr::CStyleCastExprClass:
6742   case Expr::CXXFunctionalCastExprClass:
6743   case Expr::CXXStaticCastExprClass:
6744   case Expr::CXXReinterpretCastExprClass:
6745   case Expr::CXXConstCastExprClass:
6746   case Expr::ObjCBridgedCastExprClass: {
6747     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
6748     if (isa<ExplicitCastExpr>(E)) {
6749       if (const FloatingLiteral *FL
6750             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
6751         unsigned DestWidth = Ctx.getIntWidth(E->getType());
6752         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
6753         APSInt IgnoredVal(DestWidth, !DestSigned);
6754         bool Ignored;
6755         // If the value does not fit in the destination type, the behavior is
6756         // undefined, so we are not required to treat it as a constant
6757         // expression.
6758         if (FL->getValue().convertToInteger(IgnoredVal,
6759                                             llvm::APFloat::rmTowardZero,
6760                                             &Ignored) & APFloat::opInvalidOp)
6761           return ICEDiag(IK_NotICE, E->getLocStart());
6762         return NoDiag();
6763       }
6764     }
6765     switch (cast<CastExpr>(E)->getCastKind()) {
6766     case CK_LValueToRValue:
6767     case CK_AtomicToNonAtomic:
6768     case CK_NonAtomicToAtomic:
6769     case CK_NoOp:
6770     case CK_IntegralToBoolean:
6771     case CK_IntegralCast:
6772       return CheckICE(SubExpr, Ctx);
6773     default:
6774       return ICEDiag(IK_NotICE, E->getLocStart());
6775     }
6776   }
6777   case Expr::BinaryConditionalOperatorClass: {
6778     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
6779     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
6780     if (CommonResult.Kind == IK_NotICE) return CommonResult;
6781     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6782     if (FalseResult.Kind == IK_NotICE) return FalseResult;
6783     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
6784     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
6785         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
6786     return FalseResult;
6787   }
6788   case Expr::ConditionalOperatorClass: {
6789     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
6790     // If the condition (ignoring parens) is a __builtin_constant_p call,
6791     // then only the true side is actually considered in an integer constant
6792     // expression, and it is fully evaluated.  This is an important GNU
6793     // extension.  See GCC PR38377 for discussion.
6794     if (const CallExpr *CallCE
6795         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
6796       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
6797         return CheckEvalInICE(E, Ctx);
6798     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
6799     if (CondResult.Kind == IK_NotICE)
6800       return CondResult;
6801 
6802     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
6803     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6804 
6805     if (TrueResult.Kind == IK_NotICE)
6806       return TrueResult;
6807     if (FalseResult.Kind == IK_NotICE)
6808       return FalseResult;
6809     if (CondResult.Kind == IK_ICEIfUnevaluated)
6810       return CondResult;
6811     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
6812       return NoDiag();
6813     // Rare case where the diagnostics depend on which side is evaluated
6814     // Note that if we get here, CondResult is 0, and at least one of
6815     // TrueResult and FalseResult is non-zero.
6816     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
6817       return FalseResult;
6818     return TrueResult;
6819   }
6820   case Expr::CXXDefaultArgExprClass:
6821     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
6822   case Expr::ChooseExprClass: {
6823     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
6824   }
6825   }
6826 
6827   llvm_unreachable("Invalid StmtClass!");
6828 }
6829 
6830 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)6831 static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
6832                                                     const Expr *E,
6833                                                     llvm::APSInt *Value,
6834                                                     SourceLocation *Loc) {
6835   if (!E->getType()->isIntegralOrEnumerationType()) {
6836     if (Loc) *Loc = E->getExprLoc();
6837     return false;
6838   }
6839 
6840   APValue Result;
6841   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
6842     return false;
6843 
6844   assert(Result.isInt() && "pointer cast to int is not an ICE");
6845   if (Value) *Value = Result.getInt();
6846   return true;
6847 }
6848 
isIntegerConstantExpr(ASTContext & Ctx,SourceLocation * Loc) const6849 bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
6850   if (Ctx.getLangOpts().CPlusPlus11)
6851     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
6852 
6853   ICEDiag D = CheckICE(this, Ctx);
6854   if (D.Kind != IK_ICE) {
6855     if (Loc) *Loc = D.Loc;
6856     return false;
6857   }
6858   return true;
6859 }
6860 
isIntegerConstantExpr(llvm::APSInt & Value,ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const6861 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
6862                                  SourceLocation *Loc, bool isEvaluated) const {
6863   if (Ctx.getLangOpts().CPlusPlus11)
6864     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
6865 
6866   if (!isIntegerConstantExpr(Ctx, Loc))
6867     return false;
6868   if (!EvaluateAsInt(Value, Ctx))
6869     llvm_unreachable("ICE cannot be evaluated!");
6870   return true;
6871 }
6872 
isCXX98IntegralConstantExpr(ASTContext & Ctx) const6873 bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
6874   return CheckICE(this, Ctx).Kind == IK_ICE;
6875 }
6876 
isCXX11ConstantExpr(ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const6877 bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
6878                                SourceLocation *Loc) const {
6879   // We support this checking in C++98 mode in order to diagnose compatibility
6880   // issues.
6881   assert(Ctx.getLangOpts().CPlusPlus);
6882 
6883   // Build evaluation settings.
6884   Expr::EvalStatus Status;
6885   SmallVector<PartialDiagnosticAt, 8> Diags;
6886   Status.Diag = &Diags;
6887   EvalInfo Info(Ctx, Status);
6888 
6889   APValue Scratch;
6890   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
6891 
6892   if (!Diags.empty()) {
6893     IsConstExpr = false;
6894     if (Loc) *Loc = Diags[0].first;
6895   } else if (!IsConstExpr) {
6896     // FIXME: This shouldn't happen.
6897     if (Loc) *Loc = getExprLoc();
6898   }
6899 
6900   return IsConstExpr;
6901 }
6902 
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)6903 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
6904                                    SmallVectorImpl<
6905                                      PartialDiagnosticAt> &Diags) {
6906   // FIXME: It would be useful to check constexpr function templates, but at the
6907   // moment the constant expression evaluator cannot cope with the non-rigorous
6908   // ASTs which we build for dependent expressions.
6909   if (FD->isDependentContext())
6910     return true;
6911 
6912   Expr::EvalStatus Status;
6913   Status.Diag = &Diags;
6914 
6915   EvalInfo Info(FD->getASTContext(), Status);
6916   Info.CheckingPotentialConstantExpression = true;
6917 
6918   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6919   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
6920 
6921   // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
6922   // is a temporary being used as the 'this' pointer.
6923   LValue This;
6924   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
6925   This.set(&VIE, Info.CurrentCall->Index);
6926 
6927   ArrayRef<const Expr*> Args;
6928 
6929   SourceLocation Loc = FD->getLocation();
6930 
6931   APValue Scratch;
6932   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
6933     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
6934   else
6935     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
6936                        Args, FD->getBody(), Info, Scratch);
6937 
6938   return Diags.empty();
6939 }
6940