1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 // * A success/failure flag indicating whether constant folding was successful.
15 // This is the 'bool' return value used by most of the code in this file. A
16 // 'false' return value indicates that constant folding has failed, and any
17 // appropriate diagnostic has already been produced.
18 //
19 // * An evaluated result, valid only if constant folding has not failed.
20 //
21 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 // where it is possible to determine the evaluated result regardless.
24 //
25 // * A set of notes indicating why the evaluation was not a constant expression
26 // (under the C++11 rules only, at the moment), or, if folding failed too,
27 // why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/CharUnits.h"
40 #include "clang/AST/Expr.h"
41 #include "clang/AST/RecordLayout.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/TypeLoc.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50
51 using namespace clang;
52 using llvm::APSInt;
53 using llvm::APFloat;
54
55 static bool IsGlobalLValue(APValue::LValueBase B);
56
57 namespace {
58 struct LValue;
59 struct CallStackFrame;
60 struct EvalInfo;
61
getType(APValue::LValueBase B)62 static QualType getType(APValue::LValueBase B) {
63 if (!B) return QualType();
64 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65 return D->getType();
66 return B.get<const Expr*>()->getType();
67 }
68
69 /// Get an LValue path entry, which is known to not be an array index, as a
70 /// field or base class.
71 static
getAsBaseOrMember(APValue::LValuePathEntry E)72 APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
73 APValue::BaseOrMemberType Value;
74 Value.setFromOpaqueValue(E.BaseOrMember);
75 return Value;
76 }
77
78 /// Get an LValue path entry, which is known to not be an array index, as a
79 /// field declaration.
getAsField(APValue::LValuePathEntry E)80 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
81 return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
82 }
83 /// Get an LValue path entry, which is known to not be an array index, as a
84 /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)85 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
86 return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
87 }
88 /// Determine whether this LValue path entry for a base class names a virtual
89 /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)90 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
91 return getAsBaseOrMember(E).getInt();
92 }
93
94 /// Find the path length and type of the most-derived subobject in the given
95 /// path, and find the size of the containing array, if any.
96 static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type)97 unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
98 ArrayRef<APValue::LValuePathEntry> Path,
99 uint64_t &ArraySize, QualType &Type) {
100 unsigned MostDerivedLength = 0;
101 Type = Base;
102 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
103 if (Type->isArrayType()) {
104 const ConstantArrayType *CAT =
105 cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
106 Type = CAT->getElementType();
107 ArraySize = CAT->getSize().getZExtValue();
108 MostDerivedLength = I + 1;
109 } else if (Type->isAnyComplexType()) {
110 const ComplexType *CT = Type->castAs<ComplexType>();
111 Type = CT->getElementType();
112 ArraySize = 2;
113 MostDerivedLength = I + 1;
114 } else if (const FieldDecl *FD = getAsField(Path[I])) {
115 Type = FD->getType();
116 ArraySize = 0;
117 MostDerivedLength = I + 1;
118 } else {
119 // Path[I] describes a base class.
120 ArraySize = 0;
121 }
122 }
123 return MostDerivedLength;
124 }
125
126 // The order of this enum is important for diagnostics.
127 enum CheckSubobjectKind {
128 CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
129 CSK_This, CSK_Real, CSK_Imag
130 };
131
132 /// A path from a glvalue to a subobject of that glvalue.
133 struct SubobjectDesignator {
134 /// True if the subobject was named in a manner not supported by C++11. Such
135 /// lvalues can still be folded, but they are not core constant expressions
136 /// and we cannot perform lvalue-to-rvalue conversions on them.
137 bool Invalid : 1;
138
139 /// Is this a pointer one past the end of an object?
140 bool IsOnePastTheEnd : 1;
141
142 /// The length of the path to the most-derived object of which this is a
143 /// subobject.
144 unsigned MostDerivedPathLength : 30;
145
146 /// The size of the array of which the most-derived object is an element, or
147 /// 0 if the most-derived object is not an array element.
148 uint64_t MostDerivedArraySize;
149
150 /// The type of the most derived object referred to by this address.
151 QualType MostDerivedType;
152
153 typedef APValue::LValuePathEntry PathEntry;
154
155 /// The entries on the path from the glvalue to the designated subobject.
156 SmallVector<PathEntry, 8> Entries;
157
SubobjectDesignator__anon0c5100020111::SubobjectDesignator158 SubobjectDesignator() : Invalid(true) {}
159
SubobjectDesignator__anon0c5100020111::SubobjectDesignator160 explicit SubobjectDesignator(QualType T)
161 : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
162 MostDerivedArraySize(0), MostDerivedType(T) {}
163
SubobjectDesignator__anon0c5100020111::SubobjectDesignator164 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
165 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
166 MostDerivedPathLength(0), MostDerivedArraySize(0) {
167 if (!Invalid) {
168 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
169 ArrayRef<PathEntry> VEntries = V.getLValuePath();
170 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
171 if (V.getLValueBase())
172 MostDerivedPathLength =
173 findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
174 V.getLValuePath(), MostDerivedArraySize,
175 MostDerivedType);
176 }
177 }
178
setInvalid__anon0c5100020111::SubobjectDesignator179 void setInvalid() {
180 Invalid = true;
181 Entries.clear();
182 }
183
184 /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon0c5100020111::SubobjectDesignator185 bool isOnePastTheEnd() const {
186 if (IsOnePastTheEnd)
187 return true;
188 if (MostDerivedArraySize &&
189 Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
190 return true;
191 return false;
192 }
193
194 /// Check that this refers to a valid subobject.
isValidSubobject__anon0c5100020111::SubobjectDesignator195 bool isValidSubobject() const {
196 if (Invalid)
197 return false;
198 return !isOnePastTheEnd();
199 }
200 /// Check that this refers to a valid subobject, and if not, produce a
201 /// relevant diagnostic and set the designator as invalid.
202 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
203
204 /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon0c5100020111::SubobjectDesignator205 void addArrayUnchecked(const ConstantArrayType *CAT) {
206 PathEntry Entry;
207 Entry.ArrayIndex = 0;
208 Entries.push_back(Entry);
209
210 // This is a most-derived object.
211 MostDerivedType = CAT->getElementType();
212 MostDerivedArraySize = CAT->getSize().getZExtValue();
213 MostDerivedPathLength = Entries.size();
214 }
215 /// Update this designator to refer to the given base or member of this
216 /// object.
addDeclUnchecked__anon0c5100020111::SubobjectDesignator217 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
218 PathEntry Entry;
219 APValue::BaseOrMemberType Value(D, Virtual);
220 Entry.BaseOrMember = Value.getOpaqueValue();
221 Entries.push_back(Entry);
222
223 // If this isn't a base class, it's a new most-derived object.
224 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
225 MostDerivedType = FD->getType();
226 MostDerivedArraySize = 0;
227 MostDerivedPathLength = Entries.size();
228 }
229 }
230 /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon0c5100020111::SubobjectDesignator231 void addComplexUnchecked(QualType EltTy, bool Imag) {
232 PathEntry Entry;
233 Entry.ArrayIndex = Imag;
234 Entries.push_back(Entry);
235
236 // This is technically a most-derived object, though in practice this
237 // is unlikely to matter.
238 MostDerivedType = EltTy;
239 MostDerivedArraySize = 2;
240 MostDerivedPathLength = Entries.size();
241 }
242 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
243 /// Add N to the address of this subobject.
adjustIndex__anon0c5100020111::SubobjectDesignator244 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
245 if (Invalid) return;
246 if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
247 Entries.back().ArrayIndex += N;
248 if (Entries.back().ArrayIndex > MostDerivedArraySize) {
249 diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
250 setInvalid();
251 }
252 return;
253 }
254 // [expr.add]p4: For the purposes of these operators, a pointer to a
255 // nonarray object behaves the same as a pointer to the first element of
256 // an array of length one with the type of the object as its element type.
257 if (IsOnePastTheEnd && N == (uint64_t)-1)
258 IsOnePastTheEnd = false;
259 else if (!IsOnePastTheEnd && N == 1)
260 IsOnePastTheEnd = true;
261 else if (N != 0) {
262 diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
263 setInvalid();
264 }
265 }
266 };
267
268 /// A stack frame in the constexpr call stack.
269 struct CallStackFrame {
270 EvalInfo &Info;
271
272 /// Parent - The caller of this stack frame.
273 CallStackFrame *Caller;
274
275 /// CallLoc - The location of the call expression for this call.
276 SourceLocation CallLoc;
277
278 /// Callee - The function which was called.
279 const FunctionDecl *Callee;
280
281 /// Index - The call index of this call.
282 unsigned Index;
283
284 /// This - The binding for the this pointer in this call, if any.
285 const LValue *This;
286
287 /// ParmBindings - Parameter bindings for this function call, indexed by
288 /// parameters' function scope indices.
289 const APValue *Arguments;
290
291 // Note that we intentionally use std::map here so that references to
292 // values are stable.
293 typedef std::map<const Expr*, APValue> MapTy;
294 typedef MapTy::const_iterator temp_iterator;
295 /// Temporaries - Temporary lvalues materialized within this stack frame.
296 MapTy Temporaries;
297
298 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
299 const FunctionDecl *Callee, const LValue *This,
300 const APValue *Arguments);
301 ~CallStackFrame();
302 };
303
304 /// A partial diagnostic which we might know in advance that we are not going
305 /// to emit.
306 class OptionalDiagnostic {
307 PartialDiagnostic *Diag;
308
309 public:
OptionalDiagnostic(PartialDiagnostic * Diag=0)310 explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
311
312 template<typename T>
operator <<(const T & v)313 OptionalDiagnostic &operator<<(const T &v) {
314 if (Diag)
315 *Diag << v;
316 return *this;
317 }
318
operator <<(const APSInt & I)319 OptionalDiagnostic &operator<<(const APSInt &I) {
320 if (Diag) {
321 SmallVector<char, 32> Buffer;
322 I.toString(Buffer);
323 *Diag << StringRef(Buffer.data(), Buffer.size());
324 }
325 return *this;
326 }
327
operator <<(const APFloat & F)328 OptionalDiagnostic &operator<<(const APFloat &F) {
329 if (Diag) {
330 SmallVector<char, 32> Buffer;
331 F.toString(Buffer);
332 *Diag << StringRef(Buffer.data(), Buffer.size());
333 }
334 return *this;
335 }
336 };
337
338 /// EvalInfo - This is a private struct used by the evaluator to capture
339 /// information about a subexpression as it is folded. It retains information
340 /// about the AST context, but also maintains information about the folded
341 /// expression.
342 ///
343 /// If an expression could be evaluated, it is still possible it is not a C
344 /// "integer constant expression" or constant expression. If not, this struct
345 /// captures information about how and why not.
346 ///
347 /// One bit of information passed *into* the request for constant folding
348 /// indicates whether the subexpression is "evaluated" or not according to C
349 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
350 /// evaluate the expression regardless of what the RHS is, but C only allows
351 /// certain things in certain situations.
352 struct EvalInfo {
353 ASTContext &Ctx;
354
355 /// EvalStatus - Contains information about the evaluation.
356 Expr::EvalStatus &EvalStatus;
357
358 /// CurrentCall - The top of the constexpr call stack.
359 CallStackFrame *CurrentCall;
360
361 /// CallStackDepth - The number of calls in the call stack right now.
362 unsigned CallStackDepth;
363
364 /// NextCallIndex - The next call index to assign.
365 unsigned NextCallIndex;
366
367 /// BottomFrame - The frame in which evaluation started. This must be
368 /// initialized after CurrentCall and CallStackDepth.
369 CallStackFrame BottomFrame;
370
371 /// EvaluatingDecl - This is the declaration whose initializer is being
372 /// evaluated, if any.
373 const VarDecl *EvaluatingDecl;
374
375 /// EvaluatingDeclValue - This is the value being constructed for the
376 /// declaration whose initializer is being evaluated, if any.
377 APValue *EvaluatingDeclValue;
378
379 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
380 /// notes attached to it will also be stored, otherwise they will not be.
381 bool HasActiveDiagnostic;
382
383 /// CheckingPotentialConstantExpression - Are we checking whether the
384 /// expression is a potential constant expression? If so, some diagnostics
385 /// are suppressed.
386 bool CheckingPotentialConstantExpression;
387
388 bool IntOverflowCheckMode;
389
EvalInfo__anon0c5100020111::EvalInfo390 EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
391 bool OverflowCheckMode=false)
392 : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
393 CallStackDepth(0), NextCallIndex(1),
394 BottomFrame(*this, SourceLocation(), 0, 0, 0),
395 EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
396 CheckingPotentialConstantExpression(false),
397 IntOverflowCheckMode(OverflowCheckMode) {}
398
setEvaluatingDecl__anon0c5100020111::EvalInfo399 void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
400 EvaluatingDecl = VD;
401 EvaluatingDeclValue = &Value;
402 }
403
getLangOpts__anon0c5100020111::EvalInfo404 const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
405
CheckCallLimit__anon0c5100020111::EvalInfo406 bool CheckCallLimit(SourceLocation Loc) {
407 // Don't perform any constexpr calls (other than the call we're checking)
408 // when checking a potential constant expression.
409 if (CheckingPotentialConstantExpression && CallStackDepth > 1)
410 return false;
411 if (NextCallIndex == 0) {
412 // NextCallIndex has wrapped around.
413 Diag(Loc, diag::note_constexpr_call_limit_exceeded);
414 return false;
415 }
416 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
417 return true;
418 Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
419 << getLangOpts().ConstexprCallDepth;
420 return false;
421 }
422
getCallFrame__anon0c5100020111::EvalInfo423 CallStackFrame *getCallFrame(unsigned CallIndex) {
424 assert(CallIndex && "no call index in getCallFrame");
425 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
426 // be null in this loop.
427 CallStackFrame *Frame = CurrentCall;
428 while (Frame->Index > CallIndex)
429 Frame = Frame->Caller;
430 return (Frame->Index == CallIndex) ? Frame : 0;
431 }
432
433 private:
434 /// Add a diagnostic to the diagnostics list.
addDiag__anon0c5100020111::EvalInfo435 PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
436 PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
437 EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
438 return EvalStatus.Diag->back().second;
439 }
440
441 /// Add notes containing a call stack to the current point of evaluation.
442 void addCallStack(unsigned Limit);
443
444 public:
445 /// Diagnose that the evaluation cannot be folded.
Diag__anon0c5100020111::EvalInfo446 OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
447 = diag::note_invalid_subexpr_in_const_expr,
448 unsigned ExtraNotes = 0) {
449 // If we have a prior diagnostic, it will be noting that the expression
450 // isn't a constant expression. This diagnostic is more important.
451 // FIXME: We might want to show both diagnostics to the user.
452 if (EvalStatus.Diag) {
453 unsigned CallStackNotes = CallStackDepth - 1;
454 unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
455 if (Limit)
456 CallStackNotes = std::min(CallStackNotes, Limit + 1);
457 if (CheckingPotentialConstantExpression)
458 CallStackNotes = 0;
459
460 HasActiveDiagnostic = true;
461 EvalStatus.Diag->clear();
462 EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
463 addDiag(Loc, DiagId);
464 if (!CheckingPotentialConstantExpression)
465 addCallStack(Limit);
466 return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
467 }
468 HasActiveDiagnostic = false;
469 return OptionalDiagnostic();
470 }
471
Diag__anon0c5100020111::EvalInfo472 OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
473 = diag::note_invalid_subexpr_in_const_expr,
474 unsigned ExtraNotes = 0) {
475 if (EvalStatus.Diag)
476 return Diag(E->getExprLoc(), DiagId, ExtraNotes);
477 HasActiveDiagnostic = false;
478 return OptionalDiagnostic();
479 }
480
getIntOverflowCheckMode__anon0c5100020111::EvalInfo481 bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
482
483 /// Diagnose that the evaluation does not produce a C++11 core constant
484 /// expression.
485 template<typename LocArg>
CCEDiag__anon0c5100020111::EvalInfo486 OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
487 = diag::note_invalid_subexpr_in_const_expr,
488 unsigned ExtraNotes = 0) {
489 // Don't override a previous diagnostic.
490 if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
491 HasActiveDiagnostic = false;
492 return OptionalDiagnostic();
493 }
494 return Diag(Loc, DiagId, ExtraNotes);
495 }
496
497 /// Add a note to a prior diagnostic.
Note__anon0c5100020111::EvalInfo498 OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
499 if (!HasActiveDiagnostic)
500 return OptionalDiagnostic();
501 return OptionalDiagnostic(&addDiag(Loc, DiagId));
502 }
503
504 /// Add a stack of notes to a prior diagnostic.
addNotes__anon0c5100020111::EvalInfo505 void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
506 if (HasActiveDiagnostic) {
507 EvalStatus.Diag->insert(EvalStatus.Diag->end(),
508 Diags.begin(), Diags.end());
509 }
510 }
511
512 /// Should we continue evaluation as much as possible after encountering a
513 /// construct which can't be folded?
keepEvaluatingAfterFailure__anon0c5100020111::EvalInfo514 bool keepEvaluatingAfterFailure() {
515 // Should return true in IntOverflowCheckMode, so that we check for
516 // overflow even if some subexpressions can't be evaluated as constants.
517 return IntOverflowCheckMode ||
518 (CheckingPotentialConstantExpression &&
519 EvalStatus.Diag && EvalStatus.Diag->empty());
520 }
521 };
522
523 /// Object used to treat all foldable expressions as constant expressions.
524 struct FoldConstant {
525 bool Enabled;
526
FoldConstant__anon0c5100020111::FoldConstant527 explicit FoldConstant(EvalInfo &Info)
528 : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
529 !Info.EvalStatus.HasSideEffects) {
530 }
531 // Treat the value we've computed since this object was created as constant.
Fold__anon0c5100020111::FoldConstant532 void Fold(EvalInfo &Info) {
533 if (Enabled && !Info.EvalStatus.Diag->empty() &&
534 !Info.EvalStatus.HasSideEffects)
535 Info.EvalStatus.Diag->clear();
536 }
537 };
538
539 /// RAII object used to suppress diagnostics and side-effects from a
540 /// speculative evaluation.
541 class SpeculativeEvaluationRAII {
542 EvalInfo &Info;
543 Expr::EvalStatus Old;
544
545 public:
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=0)546 SpeculativeEvaluationRAII(EvalInfo &Info,
547 SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
548 : Info(Info), Old(Info.EvalStatus) {
549 Info.EvalStatus.Diag = NewDiag;
550 }
~SpeculativeEvaluationRAII()551 ~SpeculativeEvaluationRAII() {
552 Info.EvalStatus = Old;
553 }
554 };
555 }
556
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)557 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
558 CheckSubobjectKind CSK) {
559 if (Invalid)
560 return false;
561 if (isOnePastTheEnd()) {
562 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
563 << CSK;
564 setInvalid();
565 return false;
566 }
567 return true;
568 }
569
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)570 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
571 const Expr *E, uint64_t N) {
572 if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
573 Info.CCEDiag(E, diag::note_constexpr_array_index)
574 << static_cast<int>(N) << /*array*/ 0
575 << static_cast<unsigned>(MostDerivedArraySize);
576 else
577 Info.CCEDiag(E, diag::note_constexpr_array_index)
578 << static_cast<int>(N) << /*non-array*/ 1;
579 setInvalid();
580 }
581
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,const APValue * Arguments)582 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
583 const FunctionDecl *Callee, const LValue *This,
584 const APValue *Arguments)
585 : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
586 Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
587 Info.CurrentCall = this;
588 ++Info.CallStackDepth;
589 }
590
~CallStackFrame()591 CallStackFrame::~CallStackFrame() {
592 assert(Info.CurrentCall == this && "calls retired out of order");
593 --Info.CallStackDepth;
594 Info.CurrentCall = Caller;
595 }
596
597 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)598 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
599 unsigned ArgIndex = 0;
600 bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
601 !isa<CXXConstructorDecl>(Frame->Callee) &&
602 cast<CXXMethodDecl>(Frame->Callee)->isInstance();
603
604 if (!IsMemberCall)
605 Out << *Frame->Callee << '(';
606
607 for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
608 E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
609 if (ArgIndex > (unsigned)IsMemberCall)
610 Out << ", ";
611
612 const ParmVarDecl *Param = *I;
613 const APValue &Arg = Frame->Arguments[ArgIndex];
614 Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
615
616 if (ArgIndex == 0 && IsMemberCall)
617 Out << "->" << *Frame->Callee << '(';
618 }
619
620 Out << ')';
621 }
622
addCallStack(unsigned Limit)623 void EvalInfo::addCallStack(unsigned Limit) {
624 // Determine which calls to skip, if any.
625 unsigned ActiveCalls = CallStackDepth - 1;
626 unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
627 if (Limit && Limit < ActiveCalls) {
628 SkipStart = Limit / 2 + Limit % 2;
629 SkipEnd = ActiveCalls - Limit / 2;
630 }
631
632 // Walk the call stack and add the diagnostics.
633 unsigned CallIdx = 0;
634 for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
635 Frame = Frame->Caller, ++CallIdx) {
636 // Skip this call?
637 if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
638 if (CallIdx == SkipStart) {
639 // Note that we're skipping calls.
640 addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
641 << unsigned(ActiveCalls - Limit);
642 }
643 continue;
644 }
645
646 SmallVector<char, 128> Buffer;
647 llvm::raw_svector_ostream Out(Buffer);
648 describeCall(Frame, Out);
649 addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
650 }
651 }
652
653 namespace {
654 struct ComplexValue {
655 private:
656 bool IsInt;
657
658 public:
659 APSInt IntReal, IntImag;
660 APFloat FloatReal, FloatImag;
661
ComplexValue__anon0c5100020211::ComplexValue662 ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
663
makeComplexFloat__anon0c5100020211::ComplexValue664 void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon0c5100020211::ComplexValue665 bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon0c5100020211::ComplexValue666 APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon0c5100020211::ComplexValue667 APFloat &getComplexFloatImag() { return FloatImag; }
668
makeComplexInt__anon0c5100020211::ComplexValue669 void makeComplexInt() { IsInt = true; }
isComplexInt__anon0c5100020211::ComplexValue670 bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon0c5100020211::ComplexValue671 APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon0c5100020211::ComplexValue672 APSInt &getComplexIntImag() { return IntImag; }
673
moveInto__anon0c5100020211::ComplexValue674 void moveInto(APValue &v) const {
675 if (isComplexFloat())
676 v = APValue(FloatReal, FloatImag);
677 else
678 v = APValue(IntReal, IntImag);
679 }
setFrom__anon0c5100020211::ComplexValue680 void setFrom(const APValue &v) {
681 assert(v.isComplexFloat() || v.isComplexInt());
682 if (v.isComplexFloat()) {
683 makeComplexFloat();
684 FloatReal = v.getComplexFloatReal();
685 FloatImag = v.getComplexFloatImag();
686 } else {
687 makeComplexInt();
688 IntReal = v.getComplexIntReal();
689 IntImag = v.getComplexIntImag();
690 }
691 }
692 };
693
694 struct LValue {
695 APValue::LValueBase Base;
696 CharUnits Offset;
697 unsigned CallIndex;
698 SubobjectDesignator Designator;
699
getLValueBase__anon0c5100020211::LValue700 const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon0c5100020211::LValue701 CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon0c5100020211::LValue702 const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon0c5100020211::LValue703 unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon0c5100020211::LValue704 SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon0c5100020211::LValue705 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
706
moveInto__anon0c5100020211::LValue707 void moveInto(APValue &V) const {
708 if (Designator.Invalid)
709 V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
710 else
711 V = APValue(Base, Offset, Designator.Entries,
712 Designator.IsOnePastTheEnd, CallIndex);
713 }
setFrom__anon0c5100020211::LValue714 void setFrom(ASTContext &Ctx, const APValue &V) {
715 assert(V.isLValue());
716 Base = V.getLValueBase();
717 Offset = V.getLValueOffset();
718 CallIndex = V.getLValueCallIndex();
719 Designator = SubobjectDesignator(Ctx, V);
720 }
721
set__anon0c5100020211::LValue722 void set(APValue::LValueBase B, unsigned I = 0) {
723 Base = B;
724 Offset = CharUnits::Zero();
725 CallIndex = I;
726 Designator = SubobjectDesignator(getType(B));
727 }
728
729 // Check that this LValue is not based on a null pointer. If it is, produce
730 // a diagnostic and mark the designator as invalid.
checkNullPointer__anon0c5100020211::LValue731 bool checkNullPointer(EvalInfo &Info, const Expr *E,
732 CheckSubobjectKind CSK) {
733 if (Designator.Invalid)
734 return false;
735 if (!Base) {
736 Info.CCEDiag(E, diag::note_constexpr_null_subobject)
737 << CSK;
738 Designator.setInvalid();
739 return false;
740 }
741 return true;
742 }
743
744 // Check this LValue refers to an object. If not, set the designator to be
745 // invalid and emit a diagnostic.
checkSubobject__anon0c5100020211::LValue746 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
747 // Outside C++11, do not build a designator referring to a subobject of
748 // any object: we won't use such a designator for anything.
749 if (!Info.getLangOpts().CPlusPlus11)
750 Designator.setInvalid();
751 return checkNullPointer(Info, E, CSK) &&
752 Designator.checkSubobject(Info, E, CSK);
753 }
754
addDecl__anon0c5100020211::LValue755 void addDecl(EvalInfo &Info, const Expr *E,
756 const Decl *D, bool Virtual = false) {
757 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
758 Designator.addDeclUnchecked(D, Virtual);
759 }
addArray__anon0c5100020211::LValue760 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
761 if (checkSubobject(Info, E, CSK_ArrayToPointer))
762 Designator.addArrayUnchecked(CAT);
763 }
addComplex__anon0c5100020211::LValue764 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
765 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
766 Designator.addComplexUnchecked(EltTy, Imag);
767 }
adjustIndex__anon0c5100020211::LValue768 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
769 if (checkNullPointer(Info, E, CSK_ArrayIndex))
770 Designator.adjustIndex(Info, E, N);
771 }
772 };
773
774 struct MemberPtr {
MemberPtr__anon0c5100020211::MemberPtr775 MemberPtr() {}
MemberPtr__anon0c5100020211::MemberPtr776 explicit MemberPtr(const ValueDecl *Decl) :
777 DeclAndIsDerivedMember(Decl, false), Path() {}
778
779 /// The member or (direct or indirect) field referred to by this member
780 /// pointer, or 0 if this is a null member pointer.
getDecl__anon0c5100020211::MemberPtr781 const ValueDecl *getDecl() const {
782 return DeclAndIsDerivedMember.getPointer();
783 }
784 /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon0c5100020211::MemberPtr785 bool isDerivedMember() const {
786 return DeclAndIsDerivedMember.getInt();
787 }
788 /// Get the class which the declaration actually lives in.
getContainingRecord__anon0c5100020211::MemberPtr789 const CXXRecordDecl *getContainingRecord() const {
790 return cast<CXXRecordDecl>(
791 DeclAndIsDerivedMember.getPointer()->getDeclContext());
792 }
793
moveInto__anon0c5100020211::MemberPtr794 void moveInto(APValue &V) const {
795 V = APValue(getDecl(), isDerivedMember(), Path);
796 }
setFrom__anon0c5100020211::MemberPtr797 void setFrom(const APValue &V) {
798 assert(V.isMemberPointer());
799 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
800 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
801 Path.clear();
802 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
803 Path.insert(Path.end(), P.begin(), P.end());
804 }
805
806 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
807 /// whether the member is a member of some class derived from the class type
808 /// of the member pointer.
809 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
810 /// Path - The path of base/derived classes from the member declaration's
811 /// class (exclusive) to the class type of the member pointer (inclusive).
812 SmallVector<const CXXRecordDecl*, 4> Path;
813
814 /// Perform a cast towards the class of the Decl (either up or down the
815 /// hierarchy).
castBack__anon0c5100020211::MemberPtr816 bool castBack(const CXXRecordDecl *Class) {
817 assert(!Path.empty());
818 const CXXRecordDecl *Expected;
819 if (Path.size() >= 2)
820 Expected = Path[Path.size() - 2];
821 else
822 Expected = getContainingRecord();
823 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
824 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
825 // if B does not contain the original member and is not a base or
826 // derived class of the class containing the original member, the result
827 // of the cast is undefined.
828 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
829 // (D::*). We consider that to be a language defect.
830 return false;
831 }
832 Path.pop_back();
833 return true;
834 }
835 /// Perform a base-to-derived member pointer cast.
castToDerived__anon0c5100020211::MemberPtr836 bool castToDerived(const CXXRecordDecl *Derived) {
837 if (!getDecl())
838 return true;
839 if (!isDerivedMember()) {
840 Path.push_back(Derived);
841 return true;
842 }
843 if (!castBack(Derived))
844 return false;
845 if (Path.empty())
846 DeclAndIsDerivedMember.setInt(false);
847 return true;
848 }
849 /// Perform a derived-to-base member pointer cast.
castToBase__anon0c5100020211::MemberPtr850 bool castToBase(const CXXRecordDecl *Base) {
851 if (!getDecl())
852 return true;
853 if (Path.empty())
854 DeclAndIsDerivedMember.setInt(true);
855 if (isDerivedMember()) {
856 Path.push_back(Base);
857 return true;
858 }
859 return castBack(Base);
860 }
861 };
862
863 /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)864 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
865 if (!LHS.getDecl() || !RHS.getDecl())
866 return !LHS.getDecl() && !RHS.getDecl();
867 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
868 return false;
869 return LHS.Path == RHS.Path;
870 }
871
872 /// Kinds of constant expression checking, for diagnostics.
873 enum CheckConstantExpressionKind {
874 CCEK_Constant, ///< A normal constant.
875 CCEK_ReturnValue, ///< A constexpr function return value.
876 CCEK_MemberInit ///< A constexpr constructor mem-initializer.
877 };
878 }
879
880 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
881 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
882 const LValue &This, const Expr *E,
883 CheckConstantExpressionKind CCEK = CCEK_Constant,
884 bool AllowNonLiteralTypes = false);
885 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
886 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
887 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
888 EvalInfo &Info);
889 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
890 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
891 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
892 EvalInfo &Info);
893 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
894 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
895
896 //===----------------------------------------------------------------------===//
897 // Misc utilities
898 //===----------------------------------------------------------------------===//
899
900 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)901 static bool IsStringLiteralCall(const CallExpr *E) {
902 unsigned Builtin = E->isBuiltinCall();
903 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
904 Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
905 }
906
IsGlobalLValue(APValue::LValueBase B)907 static bool IsGlobalLValue(APValue::LValueBase B) {
908 // C++11 [expr.const]p3 An address constant expression is a prvalue core
909 // constant expression of pointer type that evaluates to...
910
911 // ... a null pointer value, or a prvalue core constant expression of type
912 // std::nullptr_t.
913 if (!B) return true;
914
915 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
916 // ... the address of an object with static storage duration,
917 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
918 return VD->hasGlobalStorage();
919 // ... the address of a function,
920 return isa<FunctionDecl>(D);
921 }
922
923 const Expr *E = B.get<const Expr*>();
924 switch (E->getStmtClass()) {
925 default:
926 return false;
927 case Expr::CompoundLiteralExprClass: {
928 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
929 return CLE->isFileScope() && CLE->isLValue();
930 }
931 // A string literal has static storage duration.
932 case Expr::StringLiteralClass:
933 case Expr::PredefinedExprClass:
934 case Expr::ObjCStringLiteralClass:
935 case Expr::ObjCEncodeExprClass:
936 case Expr::CXXTypeidExprClass:
937 case Expr::CXXUuidofExprClass:
938 return true;
939 case Expr::CallExprClass:
940 return IsStringLiteralCall(cast<CallExpr>(E));
941 // For GCC compatibility, &&label has static storage duration.
942 case Expr::AddrLabelExprClass:
943 return true;
944 // A Block literal expression may be used as the initialization value for
945 // Block variables at global or local static scope.
946 case Expr::BlockExprClass:
947 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
948 case Expr::ImplicitValueInitExprClass:
949 // FIXME:
950 // We can never form an lvalue with an implicit value initialization as its
951 // base through expression evaluation, so these only appear in one case: the
952 // implicit variable declaration we invent when checking whether a constexpr
953 // constructor can produce a constant expression. We must assume that such
954 // an expression might be a global lvalue.
955 return true;
956 }
957 }
958
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)959 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
960 assert(Base && "no location for a null lvalue");
961 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
962 if (VD)
963 Info.Note(VD->getLocation(), diag::note_declared_at);
964 else
965 Info.Note(Base.get<const Expr*>()->getExprLoc(),
966 diag::note_constexpr_temporary_here);
967 }
968
969 /// Check that this reference or pointer core constant expression is a valid
970 /// value for an address or reference constant expression. Return true if we
971 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)972 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
973 QualType Type, const LValue &LVal) {
974 bool IsReferenceType = Type->isReferenceType();
975
976 APValue::LValueBase Base = LVal.getLValueBase();
977 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
978
979 // Check that the object is a global. Note that the fake 'this' object we
980 // manufacture when checking potential constant expressions is conservatively
981 // assumed to be global here.
982 if (!IsGlobalLValue(Base)) {
983 if (Info.getLangOpts().CPlusPlus11) {
984 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
985 Info.Diag(Loc, diag::note_constexpr_non_global, 1)
986 << IsReferenceType << !Designator.Entries.empty()
987 << !!VD << VD;
988 NoteLValueLocation(Info, Base);
989 } else {
990 Info.Diag(Loc);
991 }
992 // Don't allow references to temporaries to escape.
993 return false;
994 }
995 assert((Info.CheckingPotentialConstantExpression ||
996 LVal.getLValueCallIndex() == 0) &&
997 "have call index for global lvalue");
998
999 // Check if this is a thread-local variable.
1000 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1001 if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1002 if (Var->isThreadSpecified())
1003 return false;
1004 }
1005 }
1006
1007 // Allow address constant expressions to be past-the-end pointers. This is
1008 // an extension: the standard requires them to point to an object.
1009 if (!IsReferenceType)
1010 return true;
1011
1012 // A reference constant expression must refer to an object.
1013 if (!Base) {
1014 // FIXME: diagnostic
1015 Info.CCEDiag(Loc);
1016 return true;
1017 }
1018
1019 // Does this refer one past the end of some object?
1020 if (Designator.isOnePastTheEnd()) {
1021 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1022 Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1023 << !Designator.Entries.empty() << !!VD << VD;
1024 NoteLValueLocation(Info, Base);
1025 }
1026
1027 return true;
1028 }
1029
1030 /// Check that this core constant expression is of literal type, and if not,
1031 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E)1032 static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
1033 if (!E->isRValue() || E->getType()->isLiteralType())
1034 return true;
1035
1036 // Prvalue constant expressions must be of literal types.
1037 if (Info.getLangOpts().CPlusPlus11)
1038 Info.Diag(E, diag::note_constexpr_nonliteral)
1039 << E->getType();
1040 else
1041 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1042 return false;
1043 }
1044
1045 /// Check that this core constant expression value is a valid value for a
1046 /// constant expression. If not, report an appropriate diagnostic. Does not
1047 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1048 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1049 QualType Type, const APValue &Value) {
1050 // Core issue 1454: For a literal constant expression of array or class type,
1051 // each subobject of its value shall have been initialized by a constant
1052 // expression.
1053 if (Value.isArray()) {
1054 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1055 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1056 if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1057 Value.getArrayInitializedElt(I)))
1058 return false;
1059 }
1060 if (!Value.hasArrayFiller())
1061 return true;
1062 return CheckConstantExpression(Info, DiagLoc, EltTy,
1063 Value.getArrayFiller());
1064 }
1065 if (Value.isUnion() && Value.getUnionField()) {
1066 return CheckConstantExpression(Info, DiagLoc,
1067 Value.getUnionField()->getType(),
1068 Value.getUnionValue());
1069 }
1070 if (Value.isStruct()) {
1071 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1072 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1073 unsigned BaseIndex = 0;
1074 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1075 End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1076 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1077 Value.getStructBase(BaseIndex)))
1078 return false;
1079 }
1080 }
1081 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1082 I != E; ++I) {
1083 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1084 Value.getStructField(I->getFieldIndex())))
1085 return false;
1086 }
1087 }
1088
1089 if (Value.isLValue()) {
1090 LValue LVal;
1091 LVal.setFrom(Info.Ctx, Value);
1092 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1093 }
1094
1095 // Everything else is fine.
1096 return true;
1097 }
1098
GetLValueBaseDecl(const LValue & LVal)1099 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1100 return LVal.Base.dyn_cast<const ValueDecl*>();
1101 }
1102
IsLiteralLValue(const LValue & Value)1103 static bool IsLiteralLValue(const LValue &Value) {
1104 return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
1105 }
1106
IsWeakLValue(const LValue & Value)1107 static bool IsWeakLValue(const LValue &Value) {
1108 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1109 return Decl && Decl->isWeak();
1110 }
1111
EvalPointerValueAsBool(const APValue & Value,bool & Result)1112 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1113 // A null base expression indicates a null pointer. These are always
1114 // evaluatable, and they are false unless the offset is zero.
1115 if (!Value.getLValueBase()) {
1116 Result = !Value.getLValueOffset().isZero();
1117 return true;
1118 }
1119
1120 // We have a non-null base. These are generally known to be true, but if it's
1121 // a weak declaration it can be null at runtime.
1122 Result = true;
1123 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1124 return !Decl || !Decl->isWeak();
1125 }
1126
HandleConversionToBool(const APValue & Val,bool & Result)1127 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1128 switch (Val.getKind()) {
1129 case APValue::Uninitialized:
1130 return false;
1131 case APValue::Int:
1132 Result = Val.getInt().getBoolValue();
1133 return true;
1134 case APValue::Float:
1135 Result = !Val.getFloat().isZero();
1136 return true;
1137 case APValue::ComplexInt:
1138 Result = Val.getComplexIntReal().getBoolValue() ||
1139 Val.getComplexIntImag().getBoolValue();
1140 return true;
1141 case APValue::ComplexFloat:
1142 Result = !Val.getComplexFloatReal().isZero() ||
1143 !Val.getComplexFloatImag().isZero();
1144 return true;
1145 case APValue::LValue:
1146 return EvalPointerValueAsBool(Val, Result);
1147 case APValue::MemberPointer:
1148 Result = Val.getMemberPointerDecl();
1149 return true;
1150 case APValue::Vector:
1151 case APValue::Array:
1152 case APValue::Struct:
1153 case APValue::Union:
1154 case APValue::AddrLabelDiff:
1155 return false;
1156 }
1157
1158 llvm_unreachable("unknown APValue kind");
1159 }
1160
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1161 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1162 EvalInfo &Info) {
1163 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1164 APValue Val;
1165 if (!Evaluate(Val, Info, E))
1166 return false;
1167 return HandleConversionToBool(Val, Result);
1168 }
1169
1170 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1171 static void HandleOverflow(EvalInfo &Info, const Expr *E,
1172 const T &SrcValue, QualType DestType) {
1173 Info.CCEDiag(E, diag::note_constexpr_overflow)
1174 << SrcValue << DestType;
1175 }
1176
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1177 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1178 QualType SrcType, const APFloat &Value,
1179 QualType DestType, APSInt &Result) {
1180 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1181 // Determine whether we are converting to unsigned or signed.
1182 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1183
1184 Result = APSInt(DestWidth, !DestSigned);
1185 bool ignored;
1186 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1187 & APFloat::opInvalidOp)
1188 HandleOverflow(Info, E, Value, DestType);
1189 return true;
1190 }
1191
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1192 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1193 QualType SrcType, QualType DestType,
1194 APFloat &Result) {
1195 APFloat Value = Result;
1196 bool ignored;
1197 if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1198 APFloat::rmNearestTiesToEven, &ignored)
1199 & APFloat::opOverflow)
1200 HandleOverflow(Info, E, Value, DestType);
1201 return true;
1202 }
1203
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,APSInt & Value)1204 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1205 QualType DestType, QualType SrcType,
1206 APSInt &Value) {
1207 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1208 APSInt Result = Value;
1209 // Figure out if this is a truncate, extend or noop cast.
1210 // If the input is signed, do a sign extend, noop, or truncate.
1211 Result = Result.extOrTrunc(DestWidth);
1212 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1213 return Result;
1214 }
1215
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1216 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1217 QualType SrcType, const APSInt &Value,
1218 QualType DestType, APFloat &Result) {
1219 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1220 if (Result.convertFromAPInt(Value, Value.isSigned(),
1221 APFloat::rmNearestTiesToEven)
1222 & APFloat::opOverflow)
1223 HandleOverflow(Info, E, Value, DestType);
1224 return true;
1225 }
1226
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1227 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1228 llvm::APInt &Res) {
1229 APValue SVal;
1230 if (!Evaluate(SVal, Info, E))
1231 return false;
1232 if (SVal.isInt()) {
1233 Res = SVal.getInt();
1234 return true;
1235 }
1236 if (SVal.isFloat()) {
1237 Res = SVal.getFloat().bitcastToAPInt();
1238 return true;
1239 }
1240 if (SVal.isVector()) {
1241 QualType VecTy = E->getType();
1242 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1243 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1244 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1245 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1246 Res = llvm::APInt::getNullValue(VecSize);
1247 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1248 APValue &Elt = SVal.getVectorElt(i);
1249 llvm::APInt EltAsInt;
1250 if (Elt.isInt()) {
1251 EltAsInt = Elt.getInt();
1252 } else if (Elt.isFloat()) {
1253 EltAsInt = Elt.getFloat().bitcastToAPInt();
1254 } else {
1255 // Don't try to handle vectors of anything other than int or float
1256 // (not sure if it's possible to hit this case).
1257 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1258 return false;
1259 }
1260 unsigned BaseEltSize = EltAsInt.getBitWidth();
1261 if (BigEndian)
1262 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1263 else
1264 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1265 }
1266 return true;
1267 }
1268 // Give up if the input isn't an int, float, or vector. For example, we
1269 // reject "(v4i16)(intptr_t)&a".
1270 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1271 return false;
1272 }
1273
1274 /// Cast an lvalue referring to a base subobject to a derived class, by
1275 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1276 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1277 const RecordDecl *TruncatedType,
1278 unsigned TruncatedElements) {
1279 SubobjectDesignator &D = Result.Designator;
1280
1281 // Check we actually point to a derived class object.
1282 if (TruncatedElements == D.Entries.size())
1283 return true;
1284 assert(TruncatedElements >= D.MostDerivedPathLength &&
1285 "not casting to a derived class");
1286 if (!Result.checkSubobject(Info, E, CSK_Derived))
1287 return false;
1288
1289 // Truncate the path to the subobject, and remove any derived-to-base offsets.
1290 const RecordDecl *RD = TruncatedType;
1291 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1292 if (RD->isInvalidDecl()) return false;
1293 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1294 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1295 if (isVirtualBaseClass(D.Entries[I]))
1296 Result.Offset -= Layout.getVBaseClassOffset(Base);
1297 else
1298 Result.Offset -= Layout.getBaseClassOffset(Base);
1299 RD = Base;
1300 }
1301 D.Entries.resize(TruncatedElements);
1302 return true;
1303 }
1304
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=0)1305 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1306 const CXXRecordDecl *Derived,
1307 const CXXRecordDecl *Base,
1308 const ASTRecordLayout *RL = 0) {
1309 if (!RL) {
1310 if (Derived->isInvalidDecl()) return false;
1311 RL = &Info.Ctx.getASTRecordLayout(Derived);
1312 }
1313
1314 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1315 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1316 return true;
1317 }
1318
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1319 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1320 const CXXRecordDecl *DerivedDecl,
1321 const CXXBaseSpecifier *Base) {
1322 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1323
1324 if (!Base->isVirtual())
1325 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1326
1327 SubobjectDesignator &D = Obj.Designator;
1328 if (D.Invalid)
1329 return false;
1330
1331 // Extract most-derived object and corresponding type.
1332 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1333 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1334 return false;
1335
1336 // Find the virtual base class.
1337 if (DerivedDecl->isInvalidDecl()) return false;
1338 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1339 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1340 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1341 return true;
1342 }
1343
1344 /// Update LVal to refer to the given field, which must be a member of the type
1345 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=0)1346 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1347 const FieldDecl *FD,
1348 const ASTRecordLayout *RL = 0) {
1349 if (!RL) {
1350 if (FD->getParent()->isInvalidDecl()) return false;
1351 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1352 }
1353
1354 unsigned I = FD->getFieldIndex();
1355 LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1356 LVal.addDecl(Info, E, FD);
1357 return true;
1358 }
1359
1360 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)1361 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1362 LValue &LVal,
1363 const IndirectFieldDecl *IFD) {
1364 for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1365 CE = IFD->chain_end(); C != CE; ++C)
1366 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1367 return false;
1368 return true;
1369 }
1370
1371 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)1372 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1373 QualType Type, CharUnits &Size) {
1374 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1375 // extension.
1376 if (Type->isVoidType() || Type->isFunctionType()) {
1377 Size = CharUnits::One();
1378 return true;
1379 }
1380
1381 if (!Type->isConstantSizeType()) {
1382 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1383 // FIXME: Better diagnostic.
1384 Info.Diag(Loc);
1385 return false;
1386 }
1387
1388 Size = Info.Ctx.getTypeSizeInChars(Type);
1389 return true;
1390 }
1391
1392 /// Update a pointer value to model pointer arithmetic.
1393 /// \param Info - Information about the ongoing evaluation.
1394 /// \param E - The expression being evaluated, for diagnostic purposes.
1395 /// \param LVal - The pointer value to be updated.
1396 /// \param EltTy - The pointee type represented by LVal.
1397 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)1398 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1399 LValue &LVal, QualType EltTy,
1400 int64_t Adjustment) {
1401 CharUnits SizeOfPointee;
1402 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1403 return false;
1404
1405 // Compute the new offset in the appropriate width.
1406 LVal.Offset += Adjustment * SizeOfPointee;
1407 LVal.adjustIndex(Info, E, Adjustment);
1408 return true;
1409 }
1410
1411 /// Update an lvalue to refer to a component of a complex number.
1412 /// \param Info - Information about the ongoing evaluation.
1413 /// \param LVal - The lvalue to be updated.
1414 /// \param EltTy - The complex number's component type.
1415 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)1416 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1417 LValue &LVal, QualType EltTy,
1418 bool Imag) {
1419 if (Imag) {
1420 CharUnits SizeOfComponent;
1421 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1422 return false;
1423 LVal.Offset += SizeOfComponent;
1424 }
1425 LVal.addComplex(Info, E, EltTy, Imag);
1426 return true;
1427 }
1428
1429 /// Try to evaluate the initializer for a variable declaration.
EvaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue & Result)1430 static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1431 const VarDecl *VD,
1432 CallStackFrame *Frame, APValue &Result) {
1433 // If this is a parameter to an active constexpr function call, perform
1434 // argument substitution.
1435 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1436 // Assume arguments of a potential constant expression are unknown
1437 // constant expressions.
1438 if (Info.CheckingPotentialConstantExpression)
1439 return false;
1440 if (!Frame || !Frame->Arguments) {
1441 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1442 return false;
1443 }
1444 Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
1445 return true;
1446 }
1447
1448 // Dig out the initializer, and use the declaration which it's attached to.
1449 const Expr *Init = VD->getAnyInitializer(VD);
1450 if (!Init || Init->isValueDependent()) {
1451 // If we're checking a potential constant expression, the variable could be
1452 // initialized later.
1453 if (!Info.CheckingPotentialConstantExpression)
1454 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1455 return false;
1456 }
1457
1458 // If we're currently evaluating the initializer of this declaration, use that
1459 // in-flight value.
1460 if (Info.EvaluatingDecl == VD) {
1461 Result = *Info.EvaluatingDeclValue;
1462 return !Result.isUninit();
1463 }
1464
1465 // Never evaluate the initializer of a weak variable. We can't be sure that
1466 // this is the definition which will be used.
1467 if (VD->isWeak()) {
1468 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1469 return false;
1470 }
1471
1472 // Check that we can fold the initializer. In C++, we will have already done
1473 // this in the cases where it matters for conformance.
1474 SmallVector<PartialDiagnosticAt, 8> Notes;
1475 if (!VD->evaluateValue(Notes)) {
1476 Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1477 Notes.size() + 1) << VD;
1478 Info.Note(VD->getLocation(), diag::note_declared_at);
1479 Info.addNotes(Notes);
1480 return false;
1481 } else if (!VD->checkInitIsICE()) {
1482 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1483 Notes.size() + 1) << VD;
1484 Info.Note(VD->getLocation(), diag::note_declared_at);
1485 Info.addNotes(Notes);
1486 }
1487
1488 Result = *VD->getEvaluatedValue();
1489 return true;
1490 }
1491
IsConstNonVolatile(QualType T)1492 static bool IsConstNonVolatile(QualType T) {
1493 Qualifiers Quals = T.getQualifiers();
1494 return Quals.hasConst() && !Quals.hasVolatile();
1495 }
1496
1497 /// Get the base index of the given base class within an APValue representing
1498 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)1499 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1500 const CXXRecordDecl *Base) {
1501 Base = Base->getCanonicalDecl();
1502 unsigned Index = 0;
1503 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1504 E = Derived->bases_end(); I != E; ++I, ++Index) {
1505 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1506 return Index;
1507 }
1508
1509 llvm_unreachable("base class missing from derived class's bases list");
1510 }
1511
1512 /// Extract the value of a character from a string literal. CharType is used to
1513 /// determine the expected signedness of the result -- a string literal used to
1514 /// initialize an array of 'signed char' or 'unsigned char' might contain chars
1515 /// of the wrong signedness.
ExtractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index,QualType CharType)1516 static APSInt ExtractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1517 uint64_t Index, QualType CharType) {
1518 // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1519 const StringLiteral *S = dyn_cast<StringLiteral>(Lit);
1520 assert(S && "unexpected string literal expression kind");
1521 assert(CharType->isIntegerType() && "unexpected character type");
1522
1523 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1524 CharType->isUnsignedIntegerType());
1525 if (Index < S->getLength())
1526 Value = S->getCodeUnit(Index);
1527 return Value;
1528 }
1529
1530 /// Extract the designated sub-object of an rvalue.
ExtractSubobject(EvalInfo & Info,const Expr * E,APValue & Obj,QualType ObjType,const SubobjectDesignator & Sub,QualType SubType)1531 static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
1532 APValue &Obj, QualType ObjType,
1533 const SubobjectDesignator &Sub, QualType SubType) {
1534 if (Sub.Invalid)
1535 // A diagnostic will have already been produced.
1536 return false;
1537 if (Sub.isOnePastTheEnd()) {
1538 Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
1539 (unsigned)diag::note_constexpr_read_past_end :
1540 (unsigned)diag::note_invalid_subexpr_in_const_expr);
1541 return false;
1542 }
1543 if (Sub.Entries.empty())
1544 return true;
1545 if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
1546 // This object might be initialized later.
1547 return false;
1548
1549 APValue *O = &Obj;
1550 // Walk the designator's path to find the subobject.
1551 for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
1552 if (ObjType->isArrayType()) {
1553 // Next subobject is an array element.
1554 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
1555 assert(CAT && "vla in literal type?");
1556 uint64_t Index = Sub.Entries[I].ArrayIndex;
1557 if (CAT->getSize().ule(Index)) {
1558 // Note, it should not be possible to form a pointer with a valid
1559 // designator which points more than one past the end of the array.
1560 Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
1561 (unsigned)diag::note_constexpr_read_past_end :
1562 (unsigned)diag::note_invalid_subexpr_in_const_expr);
1563 return false;
1564 }
1565 // An array object is represented as either an Array APValue or as an
1566 // LValue which refers to a string literal.
1567 if (O->isLValue()) {
1568 assert(I == N - 1 && "extracting subobject of character?");
1569 assert(!O->hasLValuePath() || O->getLValuePath().empty());
1570 Obj = APValue(ExtractStringLiteralCharacter(
1571 Info, O->getLValueBase().get<const Expr*>(), Index, SubType));
1572 return true;
1573 } else if (O->getArrayInitializedElts() > Index)
1574 O = &O->getArrayInitializedElt(Index);
1575 else
1576 O = &O->getArrayFiller();
1577 ObjType = CAT->getElementType();
1578 } else if (ObjType->isAnyComplexType()) {
1579 // Next subobject is a complex number.
1580 uint64_t Index = Sub.Entries[I].ArrayIndex;
1581 if (Index > 1) {
1582 Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
1583 (unsigned)diag::note_constexpr_read_past_end :
1584 (unsigned)diag::note_invalid_subexpr_in_const_expr);
1585 return false;
1586 }
1587 assert(I == N - 1 && "extracting subobject of scalar?");
1588 if (O->isComplexInt()) {
1589 Obj = APValue(Index ? O->getComplexIntImag()
1590 : O->getComplexIntReal());
1591 } else {
1592 assert(O->isComplexFloat());
1593 Obj = APValue(Index ? O->getComplexFloatImag()
1594 : O->getComplexFloatReal());
1595 }
1596 return true;
1597 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
1598 if (Field->isMutable()) {
1599 Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
1600 << Field;
1601 Info.Note(Field->getLocation(), diag::note_declared_at);
1602 return false;
1603 }
1604
1605 // Next subobject is a class, struct or union field.
1606 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
1607 if (RD->isUnion()) {
1608 const FieldDecl *UnionField = O->getUnionField();
1609 if (!UnionField ||
1610 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
1611 Info.Diag(E, diag::note_constexpr_read_inactive_union_member)
1612 << Field << !UnionField << UnionField;
1613 return false;
1614 }
1615 O = &O->getUnionValue();
1616 } else
1617 O = &O->getStructField(Field->getFieldIndex());
1618 ObjType = Field->getType();
1619
1620 if (ObjType.isVolatileQualified()) {
1621 if (Info.getLangOpts().CPlusPlus) {
1622 // FIXME: Include a description of the path to the volatile subobject.
1623 Info.Diag(E, diag::note_constexpr_ltor_volatile_obj, 1)
1624 << 2 << Field;
1625 Info.Note(Field->getLocation(), diag::note_declared_at);
1626 } else {
1627 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1628 }
1629 return false;
1630 }
1631 } else {
1632 // Next subobject is a base class.
1633 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
1634 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
1635 O = &O->getStructBase(getBaseIndex(Derived, Base));
1636 ObjType = Info.Ctx.getRecordType(Base);
1637 }
1638
1639 if (O->isUninit()) {
1640 if (!Info.CheckingPotentialConstantExpression)
1641 Info.Diag(E, diag::note_constexpr_read_uninit);
1642 return false;
1643 }
1644 }
1645
1646 // This may look super-stupid, but it serves an important purpose: if we just
1647 // swapped Obj and *O, we'd create an object which had itself as a subobject.
1648 // To avoid the leak, we ensure that Tmp ends up owning the original complete
1649 // object, which is destroyed by Tmp's destructor.
1650 APValue Tmp;
1651 O->swap(Tmp);
1652 Obj.swap(Tmp);
1653 return true;
1654 }
1655
1656 /// Find the position where two subobject designators diverge, or equivalently
1657 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)1658 static unsigned FindDesignatorMismatch(QualType ObjType,
1659 const SubobjectDesignator &A,
1660 const SubobjectDesignator &B,
1661 bool &WasArrayIndex) {
1662 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
1663 for (/**/; I != N; ++I) {
1664 if (!ObjType.isNull() &&
1665 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
1666 // Next subobject is an array element.
1667 if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
1668 WasArrayIndex = true;
1669 return I;
1670 }
1671 if (ObjType->isAnyComplexType())
1672 ObjType = ObjType->castAs<ComplexType>()->getElementType();
1673 else
1674 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
1675 } else {
1676 if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
1677 WasArrayIndex = false;
1678 return I;
1679 }
1680 if (const FieldDecl *FD = getAsField(A.Entries[I]))
1681 // Next subobject is a field.
1682 ObjType = FD->getType();
1683 else
1684 // Next subobject is a base class.
1685 ObjType = QualType();
1686 }
1687 }
1688 WasArrayIndex = false;
1689 return I;
1690 }
1691
1692 /// Determine whether the given subobject designators refer to elements of the
1693 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)1694 static bool AreElementsOfSameArray(QualType ObjType,
1695 const SubobjectDesignator &A,
1696 const SubobjectDesignator &B) {
1697 if (A.Entries.size() != B.Entries.size())
1698 return false;
1699
1700 bool IsArray = A.MostDerivedArraySize != 0;
1701 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
1702 // A is a subobject of the array element.
1703 return false;
1704
1705 // If A (and B) designates an array element, the last entry will be the array
1706 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
1707 // of length 1' case, and the entire path must match.
1708 bool WasArrayIndex;
1709 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
1710 return CommonLength >= A.Entries.size() - IsArray;
1711 }
1712
1713 /// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
1714 /// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
1715 /// for looking up the glvalue referred to by an entity of reference type.
1716 ///
1717 /// \param Info - Information about the ongoing evaluation.
1718 /// \param Conv - The expression for which we are performing the conversion.
1719 /// Used for diagnostics.
1720 /// \param Type - The type we expect this conversion to produce, before
1721 /// stripping cv-qualifiers in the case of a non-clas type.
1722 /// \param LVal - The glvalue on which we are attempting to perform this action.
1723 /// \param RVal - The produced value will be placed here.
HandleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)1724 static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
1725 QualType Type,
1726 const LValue &LVal, APValue &RVal) {
1727 if (LVal.Designator.Invalid)
1728 // A diagnostic will have already been produced.
1729 return false;
1730
1731 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
1732
1733 if (!LVal.Base) {
1734 // FIXME: Indirection through a null pointer deserves a specific diagnostic.
1735 Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1736 return false;
1737 }
1738
1739 CallStackFrame *Frame = 0;
1740 if (LVal.CallIndex) {
1741 Frame = Info.getCallFrame(LVal.CallIndex);
1742 if (!Frame) {
1743 Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1744 NoteLValueLocation(Info, LVal.Base);
1745 return false;
1746 }
1747 }
1748
1749 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
1750 // is not a constant expression (even if the object is non-volatile). We also
1751 // apply this rule to C++98, in order to conform to the expected 'volatile'
1752 // semantics.
1753 if (Type.isVolatileQualified()) {
1754 if (Info.getLangOpts().CPlusPlus)
1755 Info.Diag(Conv, diag::note_constexpr_ltor_volatile_type) << Type;
1756 else
1757 Info.Diag(Conv);
1758 return false;
1759 }
1760
1761 if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
1762 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
1763 // In C++11, constexpr, non-volatile variables initialized with constant
1764 // expressions are constant expressions too. Inside constexpr functions,
1765 // parameters are constant expressions even if they're non-const.
1766 // In C, such things can also be folded, although they are not ICEs.
1767 const VarDecl *VD = dyn_cast<VarDecl>(D);
1768 if (VD) {
1769 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
1770 VD = VDef;
1771 }
1772 if (!VD || VD->isInvalidDecl()) {
1773 Info.Diag(Conv);
1774 return false;
1775 }
1776
1777 // DR1313: If the object is volatile-qualified but the glvalue was not,
1778 // behavior is undefined so the result is not a constant expression.
1779 QualType VT = VD->getType();
1780 if (VT.isVolatileQualified()) {
1781 if (Info.getLangOpts().CPlusPlus) {
1782 Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 1 << VD;
1783 Info.Note(VD->getLocation(), diag::note_declared_at);
1784 } else {
1785 Info.Diag(Conv);
1786 }
1787 return false;
1788 }
1789
1790 if (!isa<ParmVarDecl>(VD)) {
1791 if (VD->isConstexpr()) {
1792 // OK, we can read this variable.
1793 } else if (VT->isIntegralOrEnumerationType()) {
1794 if (!VT.isConstQualified()) {
1795 if (Info.getLangOpts().CPlusPlus) {
1796 Info.Diag(Conv, diag::note_constexpr_ltor_non_const_int, 1) << VD;
1797 Info.Note(VD->getLocation(), diag::note_declared_at);
1798 } else {
1799 Info.Diag(Conv);
1800 }
1801 return false;
1802 }
1803 } else if (VT->isFloatingType() && VT.isConstQualified()) {
1804 // We support folding of const floating-point types, in order to make
1805 // static const data members of such types (supported as an extension)
1806 // more useful.
1807 if (Info.getLangOpts().CPlusPlus11) {
1808 Info.CCEDiag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1809 Info.Note(VD->getLocation(), diag::note_declared_at);
1810 } else {
1811 Info.CCEDiag(Conv);
1812 }
1813 } else {
1814 // FIXME: Allow folding of values of any literal type in all languages.
1815 if (Info.getLangOpts().CPlusPlus11) {
1816 Info.Diag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1817 Info.Note(VD->getLocation(), diag::note_declared_at);
1818 } else {
1819 Info.Diag(Conv);
1820 }
1821 return false;
1822 }
1823 }
1824
1825 if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
1826 return false;
1827
1828 if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
1829 return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);
1830
1831 // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
1832 // conversion. This happens when the declaration and the lvalue should be
1833 // considered synonymous, for instance when initializing an array of char
1834 // from a string literal. Continue as if the initializer lvalue was the
1835 // value we were originally given.
1836 assert(RVal.getLValueOffset().isZero() &&
1837 "offset for lvalue init of non-reference");
1838 Base = RVal.getLValueBase().get<const Expr*>();
1839
1840 if (unsigned CallIndex = RVal.getLValueCallIndex()) {
1841 Frame = Info.getCallFrame(CallIndex);
1842 if (!Frame) {
1843 Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1844 NoteLValueLocation(Info, RVal.getLValueBase());
1845 return false;
1846 }
1847 } else {
1848 Frame = 0;
1849 }
1850 }
1851
1852 // Volatile temporary objects cannot be read in constant expressions.
1853 if (Base->getType().isVolatileQualified()) {
1854 if (Info.getLangOpts().CPlusPlus) {
1855 Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 0;
1856 Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
1857 } else {
1858 Info.Diag(Conv);
1859 }
1860 return false;
1861 }
1862
1863 if (Frame) {
1864 // If this is a temporary expression with a nontrivial initializer, grab the
1865 // value from the relevant stack frame.
1866 RVal = Frame->Temporaries[Base];
1867 } else if (const CompoundLiteralExpr *CLE
1868 = dyn_cast<CompoundLiteralExpr>(Base)) {
1869 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
1870 // initializer until now for such expressions. Such an expression can't be
1871 // an ICE in C, so this only matters for fold.
1872 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
1873 if (!Evaluate(RVal, Info, CLE->getInitializer()))
1874 return false;
1875 } else if (isa<StringLiteral>(Base)) {
1876 // We represent a string literal array as an lvalue pointing at the
1877 // corresponding expression, rather than building an array of chars.
1878 // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1879 RVal = APValue(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
1880 } else {
1881 Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1882 return false;
1883 }
1884
1885 return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
1886 Type);
1887 }
1888
1889 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)1890 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
1891 LValue &This) {
1892 if (Object->getType()->isPointerType())
1893 return EvaluatePointer(Object, This, Info);
1894
1895 if (Object->isGLValue())
1896 return EvaluateLValue(Object, This, Info);
1897
1898 if (Object->getType()->isLiteralType())
1899 return EvaluateTemporary(Object, This, Info);
1900
1901 return false;
1902 }
1903
1904 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
1905 /// lvalue referring to the result.
1906 ///
1907 /// \param Info - Information about the ongoing evaluation.
1908 /// \param BO - The member pointer access operation.
1909 /// \param LV - Filled in with a reference to the resulting object.
1910 /// \param IncludeMember - Specifies whether the member itself is included in
1911 /// the resulting LValue subobject designator. This is not possible when
1912 /// creating a bound member function.
1913 /// \return The field or method declaration to which the member pointer refers,
1914 /// or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)1915 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
1916 const BinaryOperator *BO,
1917 LValue &LV,
1918 bool IncludeMember = true) {
1919 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
1920
1921 bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
1922 if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
1923 return 0;
1924
1925 MemberPtr MemPtr;
1926 if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
1927 return 0;
1928
1929 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
1930 // member value, the behavior is undefined.
1931 if (!MemPtr.getDecl())
1932 return 0;
1933
1934 if (!EvalObjOK)
1935 return 0;
1936
1937 if (MemPtr.isDerivedMember()) {
1938 // This is a member of some derived class. Truncate LV appropriately.
1939 // The end of the derived-to-base path for the base object must match the
1940 // derived-to-base path for the member pointer.
1941 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
1942 LV.Designator.Entries.size())
1943 return 0;
1944 unsigned PathLengthToMember =
1945 LV.Designator.Entries.size() - MemPtr.Path.size();
1946 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
1947 const CXXRecordDecl *LVDecl = getAsBaseClass(
1948 LV.Designator.Entries[PathLengthToMember + I]);
1949 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
1950 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
1951 return 0;
1952 }
1953
1954 // Truncate the lvalue to the appropriate derived class.
1955 if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
1956 PathLengthToMember))
1957 return 0;
1958 } else if (!MemPtr.Path.empty()) {
1959 // Extend the LValue path with the member pointer's path.
1960 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
1961 MemPtr.Path.size() + IncludeMember);
1962
1963 // Walk down to the appropriate base class.
1964 QualType LVType = BO->getLHS()->getType();
1965 if (const PointerType *PT = LVType->getAs<PointerType>())
1966 LVType = PT->getPointeeType();
1967 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
1968 assert(RD && "member pointer access on non-class-type expression");
1969 // The first class in the path is that of the lvalue.
1970 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
1971 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
1972 if (!HandleLValueDirectBase(Info, BO, LV, RD, Base))
1973 return 0;
1974 RD = Base;
1975 }
1976 // Finally cast to the class containing the member.
1977 if (!HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord()))
1978 return 0;
1979 }
1980
1981 // Add the member. Note that we cannot build bound member functions here.
1982 if (IncludeMember) {
1983 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
1984 if (!HandleLValueMember(Info, BO, LV, FD))
1985 return 0;
1986 } else if (const IndirectFieldDecl *IFD =
1987 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
1988 if (!HandleLValueIndirectMember(Info, BO, LV, IFD))
1989 return 0;
1990 } else {
1991 llvm_unreachable("can't construct reference to bound member function");
1992 }
1993 }
1994
1995 return MemPtr.getDecl();
1996 }
1997
1998 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
1999 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)2000 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
2001 LValue &Result) {
2002 SubobjectDesignator &D = Result.Designator;
2003 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
2004 return false;
2005
2006 QualType TargetQT = E->getType();
2007 if (const PointerType *PT = TargetQT->getAs<PointerType>())
2008 TargetQT = PT->getPointeeType();
2009
2010 // Check this cast lands within the final derived-to-base subobject path.
2011 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
2012 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2013 << D.MostDerivedType << TargetQT;
2014 return false;
2015 }
2016
2017 // Check the type of the final cast. We don't need to check the path,
2018 // since a cast can only be formed if the path is unique.
2019 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
2020 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
2021 const CXXRecordDecl *FinalType;
2022 if (NewEntriesSize == D.MostDerivedPathLength)
2023 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2024 else
2025 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2026 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2027 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2028 << D.MostDerivedType << TargetQT;
2029 return false;
2030 }
2031
2032 // Truncate the lvalue to the appropriate derived class.
2033 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2034 }
2035
2036 namespace {
2037 enum EvalStmtResult {
2038 /// Evaluation failed.
2039 ESR_Failed,
2040 /// Hit a 'return' statement.
2041 ESR_Returned,
2042 /// Evaluation succeeded.
2043 ESR_Succeeded
2044 };
2045 }
2046
2047 // Evaluate a statement.
EvaluateStmt(APValue & Result,EvalInfo & Info,const Stmt * S)2048 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
2049 const Stmt *S) {
2050 switch (S->getStmtClass()) {
2051 default:
2052 return ESR_Failed;
2053
2054 case Stmt::NullStmtClass:
2055 case Stmt::DeclStmtClass:
2056 return ESR_Succeeded;
2057
2058 case Stmt::ReturnStmtClass: {
2059 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
2060 if (!Evaluate(Result, Info, RetExpr))
2061 return ESR_Failed;
2062 return ESR_Returned;
2063 }
2064
2065 case Stmt::CompoundStmtClass: {
2066 const CompoundStmt *CS = cast<CompoundStmt>(S);
2067 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
2068 BE = CS->body_end(); BI != BE; ++BI) {
2069 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
2070 if (ESR != ESR_Succeeded)
2071 return ESR;
2072 }
2073 return ESR_Succeeded;
2074 }
2075 }
2076 }
2077
2078 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
2079 /// default constructor. If so, we'll fold it whether or not it's marked as
2080 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
2081 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)2082 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
2083 const CXXConstructorDecl *CD,
2084 bool IsValueInitialization) {
2085 if (!CD->isTrivial() || !CD->isDefaultConstructor())
2086 return false;
2087
2088 // Value-initialization does not call a trivial default constructor, so such a
2089 // call is a core constant expression whether or not the constructor is
2090 // constexpr.
2091 if (!CD->isConstexpr() && !IsValueInitialization) {
2092 if (Info.getLangOpts().CPlusPlus11) {
2093 // FIXME: If DiagDecl is an implicitly-declared special member function,
2094 // we should be much more explicit about why it's not constexpr.
2095 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
2096 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
2097 Info.Note(CD->getLocation(), diag::note_declared_at);
2098 } else {
2099 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
2100 }
2101 }
2102 return true;
2103 }
2104
2105 /// CheckConstexprFunction - Check that a function can be called in a constant
2106 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition)2107 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
2108 const FunctionDecl *Declaration,
2109 const FunctionDecl *Definition) {
2110 // Potential constant expressions can contain calls to declared, but not yet
2111 // defined, constexpr functions.
2112 if (Info.CheckingPotentialConstantExpression && !Definition &&
2113 Declaration->isConstexpr())
2114 return false;
2115
2116 // Can we evaluate this function call?
2117 if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
2118 return true;
2119
2120 if (Info.getLangOpts().CPlusPlus11) {
2121 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
2122 // FIXME: If DiagDecl is an implicitly-declared special member function, we
2123 // should be much more explicit about why it's not constexpr.
2124 Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
2125 << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
2126 << DiagDecl;
2127 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
2128 } else {
2129 Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
2130 }
2131 return false;
2132 }
2133
2134 namespace {
2135 typedef SmallVector<APValue, 8> ArgVector;
2136 }
2137
2138 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)2139 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
2140 EvalInfo &Info) {
2141 bool Success = true;
2142 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
2143 I != E; ++I) {
2144 if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
2145 // If we're checking for a potential constant expression, evaluate all
2146 // initializers even if some of them fail.
2147 if (!Info.keepEvaluatingAfterFailure())
2148 return false;
2149 Success = false;
2150 }
2151 }
2152 return Success;
2153 }
2154
2155 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result)2156 static bool HandleFunctionCall(SourceLocation CallLoc,
2157 const FunctionDecl *Callee, const LValue *This,
2158 ArrayRef<const Expr*> Args, const Stmt *Body,
2159 EvalInfo &Info, APValue &Result) {
2160 ArgVector ArgValues(Args.size());
2161 if (!EvaluateArgs(Args, ArgValues, Info))
2162 return false;
2163
2164 if (!Info.CheckCallLimit(CallLoc))
2165 return false;
2166
2167 CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
2168 return EvaluateStmt(Result, Info, Body) == ESR_Returned;
2169 }
2170
2171 /// Evaluate a constructor call.
HandleConstructorCall(SourceLocation CallLoc,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)2172 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
2173 ArrayRef<const Expr*> Args,
2174 const CXXConstructorDecl *Definition,
2175 EvalInfo &Info, APValue &Result) {
2176 ArgVector ArgValues(Args.size());
2177 if (!EvaluateArgs(Args, ArgValues, Info))
2178 return false;
2179
2180 if (!Info.CheckCallLimit(CallLoc))
2181 return false;
2182
2183 const CXXRecordDecl *RD = Definition->getParent();
2184 if (RD->getNumVBases()) {
2185 Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
2186 return false;
2187 }
2188
2189 CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
2190
2191 // If it's a delegating constructor, just delegate.
2192 if (Definition->isDelegatingConstructor()) {
2193 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
2194 return EvaluateInPlace(Result, Info, This, (*I)->getInit());
2195 }
2196
2197 // For a trivial copy or move constructor, perform an APValue copy. This is
2198 // essential for unions, where the operations performed by the constructor
2199 // cannot be represented by ctor-initializers.
2200 if (Definition->isDefaulted() &&
2201 ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
2202 (Definition->isMoveConstructor() && Definition->isTrivial()))) {
2203 LValue RHS;
2204 RHS.setFrom(Info.Ctx, ArgValues[0]);
2205 return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
2206 RHS, Result);
2207 }
2208
2209 // Reserve space for the struct members.
2210 if (!RD->isUnion() && Result.isUninit())
2211 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
2212 std::distance(RD->field_begin(), RD->field_end()));
2213
2214 if (RD->isInvalidDecl()) return false;
2215 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2216
2217 bool Success = true;
2218 unsigned BasesSeen = 0;
2219 #ifndef NDEBUG
2220 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
2221 #endif
2222 for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
2223 E = Definition->init_end(); I != E; ++I) {
2224 LValue Subobject = This;
2225 APValue *Value = &Result;
2226
2227 // Determine the subobject to initialize.
2228 if ((*I)->isBaseInitializer()) {
2229 QualType BaseType((*I)->getBaseClass(), 0);
2230 #ifndef NDEBUG
2231 // Non-virtual base classes are initialized in the order in the class
2232 // definition. We have already checked for virtual base classes.
2233 assert(!BaseIt->isVirtual() && "virtual base for literal type");
2234 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
2235 "base class initializers not in expected order");
2236 ++BaseIt;
2237 #endif
2238 if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
2239 BaseType->getAsCXXRecordDecl(), &Layout))
2240 return false;
2241 Value = &Result.getStructBase(BasesSeen++);
2242 } else if (FieldDecl *FD = (*I)->getMember()) {
2243 if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
2244 return false;
2245 if (RD->isUnion()) {
2246 Result = APValue(FD);
2247 Value = &Result.getUnionValue();
2248 } else {
2249 Value = &Result.getStructField(FD->getFieldIndex());
2250 }
2251 } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
2252 // Walk the indirect field decl's chain to find the object to initialize,
2253 // and make sure we've initialized every step along it.
2254 for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
2255 CE = IFD->chain_end();
2256 C != CE; ++C) {
2257 FieldDecl *FD = cast<FieldDecl>(*C);
2258 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
2259 // Switch the union field if it differs. This happens if we had
2260 // preceding zero-initialization, and we're now initializing a union
2261 // subobject other than the first.
2262 // FIXME: In this case, the values of the other subobjects are
2263 // specified, since zero-initialization sets all padding bits to zero.
2264 if (Value->isUninit() ||
2265 (Value->isUnion() && Value->getUnionField() != FD)) {
2266 if (CD->isUnion())
2267 *Value = APValue(FD);
2268 else
2269 *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
2270 std::distance(CD->field_begin(), CD->field_end()));
2271 }
2272 if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
2273 return false;
2274 if (CD->isUnion())
2275 Value = &Value->getUnionValue();
2276 else
2277 Value = &Value->getStructField(FD->getFieldIndex());
2278 }
2279 } else {
2280 llvm_unreachable("unknown base initializer kind");
2281 }
2282
2283 if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
2284 (*I)->isBaseInitializer()
2285 ? CCEK_Constant : CCEK_MemberInit)) {
2286 // If we're checking for a potential constant expression, evaluate all
2287 // initializers even if some of them fail.
2288 if (!Info.keepEvaluatingAfterFailure())
2289 return false;
2290 Success = false;
2291 }
2292 }
2293
2294 return Success;
2295 }
2296
2297 //===----------------------------------------------------------------------===//
2298 // Generic Evaluation
2299 //===----------------------------------------------------------------------===//
2300 namespace {
2301
2302 // FIXME: RetTy is always bool. Remove it.
2303 template <class Derived, typename RetTy=bool>
2304 class ExprEvaluatorBase
2305 : public ConstStmtVisitor<Derived, RetTy> {
2306 private:
DerivedSuccess(const APValue & V,const Expr * E)2307 RetTy DerivedSuccess(const APValue &V, const Expr *E) {
2308 return static_cast<Derived*>(this)->Success(V, E);
2309 }
DerivedZeroInitialization(const Expr * E)2310 RetTy DerivedZeroInitialization(const Expr *E) {
2311 return static_cast<Derived*>(this)->ZeroInitialization(E);
2312 }
2313
2314 // Check whether a conditional operator with a non-constant condition is a
2315 // potential constant expression. If neither arm is a potential constant
2316 // expression, then the conditional operator is not either.
2317 template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)2318 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
2319 assert(Info.CheckingPotentialConstantExpression);
2320
2321 // Speculatively evaluate both arms.
2322 {
2323 SmallVector<PartialDiagnosticAt, 8> Diag;
2324 SpeculativeEvaluationRAII Speculate(Info, &Diag);
2325
2326 StmtVisitorTy::Visit(E->getFalseExpr());
2327 if (Diag.empty())
2328 return;
2329
2330 Diag.clear();
2331 StmtVisitorTy::Visit(E->getTrueExpr());
2332 if (Diag.empty())
2333 return;
2334 }
2335
2336 Error(E, diag::note_constexpr_conditional_never_const);
2337 }
2338
2339
2340 template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)2341 bool HandleConditionalOperator(const ConditionalOperator *E) {
2342 bool BoolResult;
2343 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
2344 if (Info.CheckingPotentialConstantExpression)
2345 CheckPotentialConstantConditional(E);
2346 return false;
2347 }
2348
2349 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
2350 return StmtVisitorTy::Visit(EvalExpr);
2351 }
2352
2353 protected:
2354 EvalInfo &Info;
2355 typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
2356 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
2357
CCEDiag(const Expr * E,diag::kind D)2358 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
2359 return Info.CCEDiag(E, D);
2360 }
2361
ZeroInitialization(const Expr * E)2362 RetTy ZeroInitialization(const Expr *E) { return Error(E); }
2363
2364 public:
ExprEvaluatorBase(EvalInfo & Info)2365 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
2366
getEvalInfo()2367 EvalInfo &getEvalInfo() { return Info; }
2368
2369 /// Report an evaluation error. This should only be called when an error is
2370 /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)2371 bool Error(const Expr *E, diag::kind D) {
2372 Info.Diag(E, D);
2373 return false;
2374 }
Error(const Expr * E)2375 bool Error(const Expr *E) {
2376 return Error(E, diag::note_invalid_subexpr_in_const_expr);
2377 }
2378
VisitStmt(const Stmt *)2379 RetTy VisitStmt(const Stmt *) {
2380 llvm_unreachable("Expression evaluator should not be called on stmts");
2381 }
VisitExpr(const Expr * E)2382 RetTy VisitExpr(const Expr *E) {
2383 return Error(E);
2384 }
2385
VisitParenExpr(const ParenExpr * E)2386 RetTy VisitParenExpr(const ParenExpr *E)
2387 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)2388 RetTy VisitUnaryExtension(const UnaryOperator *E)
2389 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)2390 RetTy VisitUnaryPlus(const UnaryOperator *E)
2391 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)2392 RetTy VisitChooseExpr(const ChooseExpr *E)
2393 { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)2394 RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
2395 { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)2396 RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
2397 { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)2398 RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
2399 { return StmtVisitorTy::Visit(E->getExpr()); }
2400 // We cannot create any objects for which cleanups are required, so there is
2401 // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)2402 RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
2403 { return StmtVisitorTy::Visit(E->getSubExpr()); }
2404
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)2405 RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
2406 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
2407 return static_cast<Derived*>(this)->VisitCastExpr(E);
2408 }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)2409 RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
2410 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
2411 return static_cast<Derived*>(this)->VisitCastExpr(E);
2412 }
2413
VisitBinaryOperator(const BinaryOperator * E)2414 RetTy VisitBinaryOperator(const BinaryOperator *E) {
2415 switch (E->getOpcode()) {
2416 default:
2417 return Error(E);
2418
2419 case BO_Comma:
2420 VisitIgnoredValue(E->getLHS());
2421 return StmtVisitorTy::Visit(E->getRHS());
2422
2423 case BO_PtrMemD:
2424 case BO_PtrMemI: {
2425 LValue Obj;
2426 if (!HandleMemberPointerAccess(Info, E, Obj))
2427 return false;
2428 APValue Result;
2429 if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
2430 return false;
2431 return DerivedSuccess(Result, E);
2432 }
2433 }
2434 }
2435
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)2436 RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
2437 // Evaluate and cache the common expression. We treat it as a temporary,
2438 // even though it's not quite the same thing.
2439 if (!Evaluate(Info.CurrentCall->Temporaries[E->getOpaqueValue()],
2440 Info, E->getCommon()))
2441 return false;
2442
2443 return HandleConditionalOperator(E);
2444 }
2445
VisitConditionalOperator(const ConditionalOperator * E)2446 RetTy VisitConditionalOperator(const ConditionalOperator *E) {
2447 bool IsBcpCall = false;
2448 // If the condition (ignoring parens) is a __builtin_constant_p call,
2449 // the result is a constant expression if it can be folded without
2450 // side-effects. This is an important GNU extension. See GCC PR38377
2451 // for discussion.
2452 if (const CallExpr *CallCE =
2453 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
2454 if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
2455 IsBcpCall = true;
2456
2457 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
2458 // constant expression; we can't check whether it's potentially foldable.
2459 if (Info.CheckingPotentialConstantExpression && IsBcpCall)
2460 return false;
2461
2462 FoldConstant Fold(Info);
2463
2464 if (!HandleConditionalOperator(E))
2465 return false;
2466
2467 if (IsBcpCall)
2468 Fold.Fold(Info);
2469
2470 return true;
2471 }
2472
VisitOpaqueValueExpr(const OpaqueValueExpr * E)2473 RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2474 APValue &Value = Info.CurrentCall->Temporaries[E];
2475 if (Value.isUninit()) {
2476 const Expr *Source = E->getSourceExpr();
2477 if (!Source)
2478 return Error(E);
2479 if (Source == E) { // sanity checking.
2480 assert(0 && "OpaqueValueExpr recursively refers to itself");
2481 return Error(E);
2482 }
2483 return StmtVisitorTy::Visit(Source);
2484 }
2485 return DerivedSuccess(Value, E);
2486 }
2487
VisitCallExpr(const CallExpr * E)2488 RetTy VisitCallExpr(const CallExpr *E) {
2489 const Expr *Callee = E->getCallee()->IgnoreParens();
2490 QualType CalleeType = Callee->getType();
2491
2492 const FunctionDecl *FD = 0;
2493 LValue *This = 0, ThisVal;
2494 ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
2495 bool HasQualifier = false;
2496
2497 // Extract function decl and 'this' pointer from the callee.
2498 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
2499 const ValueDecl *Member = 0;
2500 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
2501 // Explicit bound member calls, such as x.f() or p->g();
2502 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
2503 return false;
2504 Member = ME->getMemberDecl();
2505 This = &ThisVal;
2506 HasQualifier = ME->hasQualifier();
2507 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
2508 // Indirect bound member calls ('.*' or '->*').
2509 Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
2510 if (!Member) return false;
2511 This = &ThisVal;
2512 } else
2513 return Error(Callee);
2514
2515 FD = dyn_cast<FunctionDecl>(Member);
2516 if (!FD)
2517 return Error(Callee);
2518 } else if (CalleeType->isFunctionPointerType()) {
2519 LValue Call;
2520 if (!EvaluatePointer(Callee, Call, Info))
2521 return false;
2522
2523 if (!Call.getLValueOffset().isZero())
2524 return Error(Callee);
2525 FD = dyn_cast_or_null<FunctionDecl>(
2526 Call.getLValueBase().dyn_cast<const ValueDecl*>());
2527 if (!FD)
2528 return Error(Callee);
2529
2530 // Overloaded operator calls to member functions are represented as normal
2531 // calls with '*this' as the first argument.
2532 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
2533 if (MD && !MD->isStatic()) {
2534 // FIXME: When selecting an implicit conversion for an overloaded
2535 // operator delete, we sometimes try to evaluate calls to conversion
2536 // operators without a 'this' parameter!
2537 if (Args.empty())
2538 return Error(E);
2539
2540 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
2541 return false;
2542 This = &ThisVal;
2543 Args = Args.slice(1);
2544 }
2545
2546 // Don't call function pointers which have been cast to some other type.
2547 if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
2548 return Error(E);
2549 } else
2550 return Error(E);
2551
2552 if (This && !This->checkSubobject(Info, E, CSK_This))
2553 return false;
2554
2555 // DR1358 allows virtual constexpr functions in some cases. Don't allow
2556 // calls to such functions in constant expressions.
2557 if (This && !HasQualifier &&
2558 isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
2559 return Error(E, diag::note_constexpr_virtual_call);
2560
2561 const FunctionDecl *Definition = 0;
2562 Stmt *Body = FD->getBody(Definition);
2563 APValue Result;
2564
2565 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
2566 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
2567 Info, Result))
2568 return false;
2569
2570 return DerivedSuccess(Result, E);
2571 }
2572
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)2573 RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2574 return StmtVisitorTy::Visit(E->getInitializer());
2575 }
VisitInitListExpr(const InitListExpr * E)2576 RetTy VisitInitListExpr(const InitListExpr *E) {
2577 if (E->getNumInits() == 0)
2578 return DerivedZeroInitialization(E);
2579 if (E->getNumInits() == 1)
2580 return StmtVisitorTy::Visit(E->getInit(0));
2581 return Error(E);
2582 }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)2583 RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
2584 return DerivedZeroInitialization(E);
2585 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)2586 RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
2587 return DerivedZeroInitialization(E);
2588 }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)2589 RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
2590 return DerivedZeroInitialization(E);
2591 }
2592
2593 /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)2594 RetTy VisitMemberExpr(const MemberExpr *E) {
2595 assert(!E->isArrow() && "missing call to bound member function?");
2596
2597 APValue Val;
2598 if (!Evaluate(Val, Info, E->getBase()))
2599 return false;
2600
2601 QualType BaseTy = E->getBase()->getType();
2602
2603 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
2604 if (!FD) return Error(E);
2605 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
2606 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2607 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2608
2609 SubobjectDesignator Designator(BaseTy);
2610 Designator.addDeclUnchecked(FD);
2611
2612 return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
2613 DerivedSuccess(Val, E);
2614 }
2615
VisitCastExpr(const CastExpr * E)2616 RetTy VisitCastExpr(const CastExpr *E) {
2617 switch (E->getCastKind()) {
2618 default:
2619 break;
2620
2621 case CK_AtomicToNonAtomic:
2622 case CK_NonAtomicToAtomic:
2623 case CK_NoOp:
2624 case CK_UserDefinedConversion:
2625 return StmtVisitorTy::Visit(E->getSubExpr());
2626
2627 case CK_LValueToRValue: {
2628 LValue LVal;
2629 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
2630 return false;
2631 APValue RVal;
2632 // Note, we use the subexpression's type in order to retain cv-qualifiers.
2633 if (!HandleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
2634 LVal, RVal))
2635 return false;
2636 return DerivedSuccess(RVal, E);
2637 }
2638 }
2639
2640 return Error(E);
2641 }
2642
2643 /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)2644 void VisitIgnoredValue(const Expr *E) {
2645 APValue Scratch;
2646 if (!Evaluate(Scratch, Info, E))
2647 Info.EvalStatus.HasSideEffects = true;
2648 }
2649 };
2650
2651 }
2652
2653 //===----------------------------------------------------------------------===//
2654 // Common base class for lvalue and temporary evaluation.
2655 //===----------------------------------------------------------------------===//
2656 namespace {
2657 template<class Derived>
2658 class LValueExprEvaluatorBase
2659 : public ExprEvaluatorBase<Derived, bool> {
2660 protected:
2661 LValue &Result;
2662 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
2663 typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
2664
Success(APValue::LValueBase B)2665 bool Success(APValue::LValueBase B) {
2666 Result.set(B);
2667 return true;
2668 }
2669
2670 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)2671 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
2672 ExprEvaluatorBaseTy(Info), Result(Result) {}
2673
Success(const APValue & V,const Expr * E)2674 bool Success(const APValue &V, const Expr *E) {
2675 Result.setFrom(this->Info.Ctx, V);
2676 return true;
2677 }
2678
VisitMemberExpr(const MemberExpr * E)2679 bool VisitMemberExpr(const MemberExpr *E) {
2680 // Handle non-static data members.
2681 QualType BaseTy;
2682 if (E->isArrow()) {
2683 if (!EvaluatePointer(E->getBase(), Result, this->Info))
2684 return false;
2685 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
2686 } else if (E->getBase()->isRValue()) {
2687 assert(E->getBase()->getType()->isRecordType());
2688 if (!EvaluateTemporary(E->getBase(), Result, this->Info))
2689 return false;
2690 BaseTy = E->getBase()->getType();
2691 } else {
2692 if (!this->Visit(E->getBase()))
2693 return false;
2694 BaseTy = E->getBase()->getType();
2695 }
2696
2697 const ValueDecl *MD = E->getMemberDecl();
2698 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
2699 assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2700 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2701 (void)BaseTy;
2702 if (!HandleLValueMember(this->Info, E, Result, FD))
2703 return false;
2704 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
2705 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
2706 return false;
2707 } else
2708 return this->Error(E);
2709
2710 if (MD->getType()->isReferenceType()) {
2711 APValue RefValue;
2712 if (!HandleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
2713 RefValue))
2714 return false;
2715 return Success(RefValue, E);
2716 }
2717 return true;
2718 }
2719
VisitBinaryOperator(const BinaryOperator * E)2720 bool VisitBinaryOperator(const BinaryOperator *E) {
2721 switch (E->getOpcode()) {
2722 default:
2723 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
2724
2725 case BO_PtrMemD:
2726 case BO_PtrMemI:
2727 return HandleMemberPointerAccess(this->Info, E, Result);
2728 }
2729 }
2730
VisitCastExpr(const CastExpr * E)2731 bool VisitCastExpr(const CastExpr *E) {
2732 switch (E->getCastKind()) {
2733 default:
2734 return ExprEvaluatorBaseTy::VisitCastExpr(E);
2735
2736 case CK_DerivedToBase:
2737 case CK_UncheckedDerivedToBase: {
2738 if (!this->Visit(E->getSubExpr()))
2739 return false;
2740
2741 // Now figure out the necessary offset to add to the base LV to get from
2742 // the derived class to the base class.
2743 QualType Type = E->getSubExpr()->getType();
2744
2745 for (CastExpr::path_const_iterator PathI = E->path_begin(),
2746 PathE = E->path_end(); PathI != PathE; ++PathI) {
2747 if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
2748 *PathI))
2749 return false;
2750 Type = (*PathI)->getType();
2751 }
2752
2753 return true;
2754 }
2755 }
2756 }
2757 };
2758 }
2759
2760 //===----------------------------------------------------------------------===//
2761 // LValue Evaluation
2762 //
2763 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
2764 // function designators (in C), decl references to void objects (in C), and
2765 // temporaries (if building with -Wno-address-of-temporary).
2766 //
2767 // LValue evaluation produces values comprising a base expression of one of the
2768 // following types:
2769 // - Declarations
2770 // * VarDecl
2771 // * FunctionDecl
2772 // - Literals
2773 // * CompoundLiteralExpr in C
2774 // * StringLiteral
2775 // * CXXTypeidExpr
2776 // * PredefinedExpr
2777 // * ObjCStringLiteralExpr
2778 // * ObjCEncodeExpr
2779 // * AddrLabelExpr
2780 // * BlockExpr
2781 // * CallExpr for a MakeStringConstant builtin
2782 // - Locals and temporaries
2783 // * Any Expr, with a CallIndex indicating the function in which the temporary
2784 // was evaluated.
2785 // plus an offset in bytes.
2786 //===----------------------------------------------------------------------===//
2787 namespace {
2788 class LValueExprEvaluator
2789 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
2790 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)2791 LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
2792 LValueExprEvaluatorBaseTy(Info, Result) {}
2793
2794 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
2795
2796 bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)2797 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
2798 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2799 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
2800 bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)2801 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)2802 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
2803 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2804 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
2805 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
2806 bool VisitUnaryDeref(const UnaryOperator *E);
2807 bool VisitUnaryReal(const UnaryOperator *E);
2808 bool VisitUnaryImag(const UnaryOperator *E);
2809
VisitCastExpr(const CastExpr * E)2810 bool VisitCastExpr(const CastExpr *E) {
2811 switch (E->getCastKind()) {
2812 default:
2813 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
2814
2815 case CK_LValueBitCast:
2816 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
2817 if (!Visit(E->getSubExpr()))
2818 return false;
2819 Result.Designator.setInvalid();
2820 return true;
2821
2822 case CK_BaseToDerived:
2823 if (!Visit(E->getSubExpr()))
2824 return false;
2825 return HandleBaseToDerivedCast(Info, E, Result);
2826 }
2827 }
2828 };
2829 } // end anonymous namespace
2830
2831 /// Evaluate an expression as an lvalue. This can be legitimately called on
2832 /// expressions which are not glvalues, in a few cases:
2833 /// * function designators in C,
2834 /// * "extern void" objects,
2835 /// * temporaries, if building with -Wno-address-of-temporary.
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)2836 static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
2837 assert((E->isGLValue() || E->getType()->isFunctionType() ||
2838 E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
2839 "can't evaluate expression as an lvalue");
2840 return LValueExprEvaluator(Info, Result).Visit(E);
2841 }
2842
VisitDeclRefExpr(const DeclRefExpr * E)2843 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
2844 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
2845 return Success(FD);
2846 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
2847 return VisitVarDecl(E, VD);
2848 return Error(E);
2849 }
2850
VisitVarDecl(const Expr * E,const VarDecl * VD)2851 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
2852 if (!VD->getType()->isReferenceType()) {
2853 if (isa<ParmVarDecl>(VD)) {
2854 Result.set(VD, Info.CurrentCall->Index);
2855 return true;
2856 }
2857 return Success(VD);
2858 }
2859
2860 APValue V;
2861 if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
2862 return false;
2863 return Success(V, E);
2864 }
2865
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)2866 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
2867 const MaterializeTemporaryExpr *E) {
2868 if (E->GetTemporaryExpr()->isRValue()) {
2869 if (E->getType()->isRecordType())
2870 return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
2871
2872 Result.set(E, Info.CurrentCall->Index);
2873 return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
2874 Result, E->GetTemporaryExpr());
2875 }
2876
2877 // Materialization of an lvalue temporary occurs when we need to force a copy
2878 // (for instance, if it's a bitfield).
2879 // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
2880 if (!Visit(E->GetTemporaryExpr()))
2881 return false;
2882 if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
2883 Info.CurrentCall->Temporaries[E]))
2884 return false;
2885 Result.set(E, Info.CurrentCall->Index);
2886 return true;
2887 }
2888
2889 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)2890 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2891 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2892 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
2893 // only see this when folding in C, so there's no standard to follow here.
2894 return Success(E);
2895 }
2896
VisitCXXTypeidExpr(const CXXTypeidExpr * E)2897 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2898 if (!E->isPotentiallyEvaluated())
2899 return Success(E);
2900
2901 Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
2902 << E->getExprOperand()->getType()
2903 << E->getExprOperand()->getSourceRange();
2904 return false;
2905 }
2906
VisitCXXUuidofExpr(const CXXUuidofExpr * E)2907 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
2908 return Success(E);
2909 }
2910
VisitMemberExpr(const MemberExpr * E)2911 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
2912 // Handle static data members.
2913 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
2914 VisitIgnoredValue(E->getBase());
2915 return VisitVarDecl(E, VD);
2916 }
2917
2918 // Handle static member functions.
2919 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
2920 if (MD->isStatic()) {
2921 VisitIgnoredValue(E->getBase());
2922 return Success(MD);
2923 }
2924 }
2925
2926 // Handle non-static data members.
2927 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
2928 }
2929
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)2930 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2931 // FIXME: Deal with vectors as array subscript bases.
2932 if (E->getBase()->getType()->isVectorType())
2933 return Error(E);
2934
2935 if (!EvaluatePointer(E->getBase(), Result, Info))
2936 return false;
2937
2938 APSInt Index;
2939 if (!EvaluateInteger(E->getIdx(), Index, Info))
2940 return false;
2941 int64_t IndexValue
2942 = Index.isSigned() ? Index.getSExtValue()
2943 : static_cast<int64_t>(Index.getZExtValue());
2944
2945 return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
2946 }
2947
VisitUnaryDeref(const UnaryOperator * E)2948 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
2949 return EvaluatePointer(E->getSubExpr(), Result, Info);
2950 }
2951
VisitUnaryReal(const UnaryOperator * E)2952 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
2953 if (!Visit(E->getSubExpr()))
2954 return false;
2955 // __real is a no-op on scalar lvalues.
2956 if (E->getSubExpr()->getType()->isAnyComplexType())
2957 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
2958 return true;
2959 }
2960
VisitUnaryImag(const UnaryOperator * E)2961 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
2962 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
2963 "lvalue __imag__ on scalar?");
2964 if (!Visit(E->getSubExpr()))
2965 return false;
2966 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
2967 return true;
2968 }
2969
2970 //===----------------------------------------------------------------------===//
2971 // Pointer Evaluation
2972 //===----------------------------------------------------------------------===//
2973
2974 namespace {
2975 class PointerExprEvaluator
2976 : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
2977 LValue &Result;
2978
Success(const Expr * E)2979 bool Success(const Expr *E) {
2980 Result.set(E);
2981 return true;
2982 }
2983 public:
2984
PointerExprEvaluator(EvalInfo & info,LValue & Result)2985 PointerExprEvaluator(EvalInfo &info, LValue &Result)
2986 : ExprEvaluatorBaseTy(info), Result(Result) {}
2987
Success(const APValue & V,const Expr * E)2988 bool Success(const APValue &V, const Expr *E) {
2989 Result.setFrom(Info.Ctx, V);
2990 return true;
2991 }
ZeroInitialization(const Expr * E)2992 bool ZeroInitialization(const Expr *E) {
2993 return Success((Expr*)0);
2994 }
2995
2996 bool VisitBinaryOperator(const BinaryOperator *E);
2997 bool VisitCastExpr(const CastExpr* E);
2998 bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)2999 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
3000 { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)3001 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
3002 { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)3003 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
3004 { return Success(E); }
3005 bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)3006 bool VisitBlockExpr(const BlockExpr *E) {
3007 if (!E->getBlockDecl()->hasCaptures())
3008 return Success(E);
3009 return Error(E);
3010 }
VisitCXXThisExpr(const CXXThisExpr * E)3011 bool VisitCXXThisExpr(const CXXThisExpr *E) {
3012 if (!Info.CurrentCall->This)
3013 return Error(E);
3014 Result = *Info.CurrentCall->This;
3015 return true;
3016 }
3017
3018 // FIXME: Missing: @protocol, @selector
3019 };
3020 } // end anonymous namespace
3021
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)3022 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
3023 assert(E->isRValue() && E->getType()->hasPointerRepresentation());
3024 return PointerExprEvaluator(Info, Result).Visit(E);
3025 }
3026
VisitBinaryOperator(const BinaryOperator * E)3027 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
3028 if (E->getOpcode() != BO_Add &&
3029 E->getOpcode() != BO_Sub)
3030 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
3031
3032 const Expr *PExp = E->getLHS();
3033 const Expr *IExp = E->getRHS();
3034 if (IExp->getType()->isPointerType())
3035 std::swap(PExp, IExp);
3036
3037 bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
3038 if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
3039 return false;
3040
3041 llvm::APSInt Offset;
3042 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
3043 return false;
3044 int64_t AdditionalOffset
3045 = Offset.isSigned() ? Offset.getSExtValue()
3046 : static_cast<int64_t>(Offset.getZExtValue());
3047 if (E->getOpcode() == BO_Sub)
3048 AdditionalOffset = -AdditionalOffset;
3049
3050 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
3051 return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
3052 AdditionalOffset);
3053 }
3054
VisitUnaryAddrOf(const UnaryOperator * E)3055 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3056 return EvaluateLValue(E->getSubExpr(), Result, Info);
3057 }
3058
VisitCastExpr(const CastExpr * E)3059 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
3060 const Expr* SubExpr = E->getSubExpr();
3061
3062 switch (E->getCastKind()) {
3063 default:
3064 break;
3065
3066 case CK_BitCast:
3067 case CK_CPointerToObjCPointerCast:
3068 case CK_BlockPointerToObjCPointerCast:
3069 case CK_AnyPointerToBlockPointerCast:
3070 if (!Visit(SubExpr))
3071 return false;
3072 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
3073 // permitted in constant expressions in C++11. Bitcasts from cv void* are
3074 // also static_casts, but we disallow them as a resolution to DR1312.
3075 if (!E->getType()->isVoidPointerType()) {
3076 Result.Designator.setInvalid();
3077 if (SubExpr->getType()->isVoidPointerType())
3078 CCEDiag(E, diag::note_constexpr_invalid_cast)
3079 << 3 << SubExpr->getType();
3080 else
3081 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3082 }
3083 return true;
3084
3085 case CK_DerivedToBase:
3086 case CK_UncheckedDerivedToBase: {
3087 if (!EvaluatePointer(E->getSubExpr(), Result, Info))
3088 return false;
3089 if (!Result.Base && Result.Offset.isZero())
3090 return true;
3091
3092 // Now figure out the necessary offset to add to the base LV to get from
3093 // the derived class to the base class.
3094 QualType Type =
3095 E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3096
3097 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3098 PathE = E->path_end(); PathI != PathE; ++PathI) {
3099 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3100 *PathI))
3101 return false;
3102 Type = (*PathI)->getType();
3103 }
3104
3105 return true;
3106 }
3107
3108 case CK_BaseToDerived:
3109 if (!Visit(E->getSubExpr()))
3110 return false;
3111 if (!Result.Base && Result.Offset.isZero())
3112 return true;
3113 return HandleBaseToDerivedCast(Info, E, Result);
3114
3115 case CK_NullToPointer:
3116 VisitIgnoredValue(E->getSubExpr());
3117 return ZeroInitialization(E);
3118
3119 case CK_IntegralToPointer: {
3120 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3121
3122 APValue Value;
3123 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
3124 break;
3125
3126 if (Value.isInt()) {
3127 unsigned Size = Info.Ctx.getTypeSize(E->getType());
3128 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
3129 Result.Base = (Expr*)0;
3130 Result.Offset = CharUnits::fromQuantity(N);
3131 Result.CallIndex = 0;
3132 Result.Designator.setInvalid();
3133 return true;
3134 } else {
3135 // Cast is of an lvalue, no need to change value.
3136 Result.setFrom(Info.Ctx, Value);
3137 return true;
3138 }
3139 }
3140 case CK_ArrayToPointerDecay:
3141 if (SubExpr->isGLValue()) {
3142 if (!EvaluateLValue(SubExpr, Result, Info))
3143 return false;
3144 } else {
3145 Result.set(SubExpr, Info.CurrentCall->Index);
3146 if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
3147 Info, Result, SubExpr))
3148 return false;
3149 }
3150 // The result is a pointer to the first element of the array.
3151 if (const ConstantArrayType *CAT
3152 = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
3153 Result.addArray(Info, E, CAT);
3154 else
3155 Result.Designator.setInvalid();
3156 return true;
3157
3158 case CK_FunctionToPointerDecay:
3159 return EvaluateLValue(SubExpr, Result, Info);
3160 }
3161
3162 return ExprEvaluatorBaseTy::VisitCastExpr(E);
3163 }
3164
VisitCallExpr(const CallExpr * E)3165 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
3166 if (IsStringLiteralCall(E))
3167 return Success(E);
3168
3169 return ExprEvaluatorBaseTy::VisitCallExpr(E);
3170 }
3171
3172 //===----------------------------------------------------------------------===//
3173 // Member Pointer Evaluation
3174 //===----------------------------------------------------------------------===//
3175
3176 namespace {
3177 class MemberPointerExprEvaluator
3178 : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
3179 MemberPtr &Result;
3180
Success(const ValueDecl * D)3181 bool Success(const ValueDecl *D) {
3182 Result = MemberPtr(D);
3183 return true;
3184 }
3185 public:
3186
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)3187 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
3188 : ExprEvaluatorBaseTy(Info), Result(Result) {}
3189
Success(const APValue & V,const Expr * E)3190 bool Success(const APValue &V, const Expr *E) {
3191 Result.setFrom(V);
3192 return true;
3193 }
ZeroInitialization(const Expr * E)3194 bool ZeroInitialization(const Expr *E) {
3195 return Success((const ValueDecl*)0);
3196 }
3197
3198 bool VisitCastExpr(const CastExpr *E);
3199 bool VisitUnaryAddrOf(const UnaryOperator *E);
3200 };
3201 } // end anonymous namespace
3202
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)3203 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
3204 EvalInfo &Info) {
3205 assert(E->isRValue() && E->getType()->isMemberPointerType());
3206 return MemberPointerExprEvaluator(Info, Result).Visit(E);
3207 }
3208
VisitCastExpr(const CastExpr * E)3209 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
3210 switch (E->getCastKind()) {
3211 default:
3212 return ExprEvaluatorBaseTy::VisitCastExpr(E);
3213
3214 case CK_NullToMemberPointer:
3215 VisitIgnoredValue(E->getSubExpr());
3216 return ZeroInitialization(E);
3217
3218 case CK_BaseToDerivedMemberPointer: {
3219 if (!Visit(E->getSubExpr()))
3220 return false;
3221 if (E->path_empty())
3222 return true;
3223 // Base-to-derived member pointer casts store the path in derived-to-base
3224 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
3225 // the wrong end of the derived->base arc, so stagger the path by one class.
3226 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
3227 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
3228 PathI != PathE; ++PathI) {
3229 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3230 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
3231 if (!Result.castToDerived(Derived))
3232 return Error(E);
3233 }
3234 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
3235 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
3236 return Error(E);
3237 return true;
3238 }
3239
3240 case CK_DerivedToBaseMemberPointer:
3241 if (!Visit(E->getSubExpr()))
3242 return false;
3243 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3244 PathE = E->path_end(); PathI != PathE; ++PathI) {
3245 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3246 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3247 if (!Result.castToBase(Base))
3248 return Error(E);
3249 }
3250 return true;
3251 }
3252 }
3253
VisitUnaryAddrOf(const UnaryOperator * E)3254 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3255 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
3256 // member can be formed.
3257 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
3258 }
3259
3260 //===----------------------------------------------------------------------===//
3261 // Record Evaluation
3262 //===----------------------------------------------------------------------===//
3263
3264 namespace {
3265 class RecordExprEvaluator
3266 : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
3267 const LValue &This;
3268 APValue &Result;
3269 public:
3270
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)3271 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
3272 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
3273
Success(const APValue & V,const Expr * E)3274 bool Success(const APValue &V, const Expr *E) {
3275 Result = V;
3276 return true;
3277 }
3278 bool ZeroInitialization(const Expr *E);
3279
3280 bool VisitCastExpr(const CastExpr *E);
3281 bool VisitInitListExpr(const InitListExpr *E);
3282 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3283 };
3284 }
3285
3286 /// Perform zero-initialization on an object of non-union class type.
3287 /// C++11 [dcl.init]p5:
3288 /// To zero-initialize an object or reference of type T means:
3289 /// [...]
3290 /// -- if T is a (possibly cv-qualified) non-union class type,
3291 /// each non-static data member and each base-class subobject is
3292 /// zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)3293 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
3294 const RecordDecl *RD,
3295 const LValue &This, APValue &Result) {
3296 assert(!RD->isUnion() && "Expected non-union class type");
3297 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
3298 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
3299 std::distance(RD->field_begin(), RD->field_end()));
3300
3301 if (RD->isInvalidDecl()) return false;
3302 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3303
3304 if (CD) {
3305 unsigned Index = 0;
3306 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
3307 End = CD->bases_end(); I != End; ++I, ++Index) {
3308 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
3309 LValue Subobject = This;
3310 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
3311 return false;
3312 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
3313 Result.getStructBase(Index)))
3314 return false;
3315 }
3316 }
3317
3318 for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
3319 I != End; ++I) {
3320 // -- if T is a reference type, no initialization is performed.
3321 if (I->getType()->isReferenceType())
3322 continue;
3323
3324 LValue Subobject = This;
3325 if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
3326 return false;
3327
3328 ImplicitValueInitExpr VIE(I->getType());
3329 if (!EvaluateInPlace(
3330 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
3331 return false;
3332 }
3333
3334 return true;
3335 }
3336
ZeroInitialization(const Expr * E)3337 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
3338 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3339 if (RD->isInvalidDecl()) return false;
3340 if (RD->isUnion()) {
3341 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3342 // object's first non-static named data member is zero-initialized
3343 RecordDecl::field_iterator I = RD->field_begin();
3344 if (I == RD->field_end()) {
3345 Result = APValue((const FieldDecl*)0);
3346 return true;
3347 }
3348
3349 LValue Subobject = This;
3350 if (!HandleLValueMember(Info, E, Subobject, *I))
3351 return false;
3352 Result = APValue(*I);
3353 ImplicitValueInitExpr VIE(I->getType());
3354 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
3355 }
3356
3357 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
3358 Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
3359 return false;
3360 }
3361
3362 return HandleClassZeroInitialization(Info, E, RD, This, Result);
3363 }
3364
VisitCastExpr(const CastExpr * E)3365 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
3366 switch (E->getCastKind()) {
3367 default:
3368 return ExprEvaluatorBaseTy::VisitCastExpr(E);
3369
3370 case CK_ConstructorConversion:
3371 return Visit(E->getSubExpr());
3372
3373 case CK_DerivedToBase:
3374 case CK_UncheckedDerivedToBase: {
3375 APValue DerivedObject;
3376 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
3377 return false;
3378 if (!DerivedObject.isStruct())
3379 return Error(E->getSubExpr());
3380
3381 // Derived-to-base rvalue conversion: just slice off the derived part.
3382 APValue *Value = &DerivedObject;
3383 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
3384 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3385 PathE = E->path_end(); PathI != PathE; ++PathI) {
3386 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
3387 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3388 Value = &Value->getStructBase(getBaseIndex(RD, Base));
3389 RD = Base;
3390 }
3391 Result = *Value;
3392 return true;
3393 }
3394 }
3395 }
3396
VisitInitListExpr(const InitListExpr * E)3397 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3398 // Cannot constant-evaluate std::initializer_list inits.
3399 if (E->initializesStdInitializerList())
3400 return false;
3401
3402 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3403 if (RD->isInvalidDecl()) return false;
3404 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3405
3406 if (RD->isUnion()) {
3407 const FieldDecl *Field = E->getInitializedFieldInUnion();
3408 Result = APValue(Field);
3409 if (!Field)
3410 return true;
3411
3412 // If the initializer list for a union does not contain any elements, the
3413 // first element of the union is value-initialized.
3414 ImplicitValueInitExpr VIE(Field->getType());
3415 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
3416
3417 LValue Subobject = This;
3418 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
3419 return false;
3420 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
3421 }
3422
3423 assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
3424 "initializer list for class with base classes");
3425 Result = APValue(APValue::UninitStruct(), 0,
3426 std::distance(RD->field_begin(), RD->field_end()));
3427 unsigned ElementNo = 0;
3428 bool Success = true;
3429 for (RecordDecl::field_iterator Field = RD->field_begin(),
3430 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
3431 // Anonymous bit-fields are not considered members of the class for
3432 // purposes of aggregate initialization.
3433 if (Field->isUnnamedBitfield())
3434 continue;
3435
3436 LValue Subobject = This;
3437
3438 bool HaveInit = ElementNo < E->getNumInits();
3439
3440 // FIXME: Diagnostics here should point to the end of the initializer
3441 // list, not the start.
3442 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
3443 Subobject, *Field, &Layout))
3444 return false;
3445
3446 // Perform an implicit value-initialization for members beyond the end of
3447 // the initializer list.
3448 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
3449
3450 if (!EvaluateInPlace(
3451 Result.getStructField(Field->getFieldIndex()),
3452 Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
3453 if (!Info.keepEvaluatingAfterFailure())
3454 return false;
3455 Success = false;
3456 }
3457 }
3458
3459 return Success;
3460 }
3461
VisitCXXConstructExpr(const CXXConstructExpr * E)3462 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3463 const CXXConstructorDecl *FD = E->getConstructor();
3464 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
3465
3466 bool ZeroInit = E->requiresZeroInitialization();
3467 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3468 // If we've already performed zero-initialization, we're already done.
3469 if (!Result.isUninit())
3470 return true;
3471
3472 if (ZeroInit)
3473 return ZeroInitialization(E);
3474
3475 const CXXRecordDecl *RD = FD->getParent();
3476 if (RD->isUnion())
3477 Result = APValue((FieldDecl*)0);
3478 else
3479 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3480 std::distance(RD->field_begin(), RD->field_end()));
3481 return true;
3482 }
3483
3484 const FunctionDecl *Definition = 0;
3485 FD->getBody(Definition);
3486
3487 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3488 return false;
3489
3490 // Avoid materializing a temporary for an elidable copy/move constructor.
3491 if (E->isElidable() && !ZeroInit)
3492 if (const MaterializeTemporaryExpr *ME
3493 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
3494 return Visit(ME->GetTemporaryExpr());
3495
3496 if (ZeroInit && !ZeroInitialization(E))
3497 return false;
3498
3499 ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3500 return HandleConstructorCall(E->getExprLoc(), This, Args,
3501 cast<CXXConstructorDecl>(Definition), Info,
3502 Result);
3503 }
3504
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)3505 static bool EvaluateRecord(const Expr *E, const LValue &This,
3506 APValue &Result, EvalInfo &Info) {
3507 assert(E->isRValue() && E->getType()->isRecordType() &&
3508 "can't evaluate expression as a record rvalue");
3509 return RecordExprEvaluator(Info, This, Result).Visit(E);
3510 }
3511
3512 //===----------------------------------------------------------------------===//
3513 // Temporary Evaluation
3514 //
3515 // Temporaries are represented in the AST as rvalues, but generally behave like
3516 // lvalues. The full-object of which the temporary is a subobject is implicitly
3517 // materialized so that a reference can bind to it.
3518 //===----------------------------------------------------------------------===//
3519 namespace {
3520 class TemporaryExprEvaluator
3521 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
3522 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)3523 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
3524 LValueExprEvaluatorBaseTy(Info, Result) {}
3525
3526 /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)3527 bool VisitConstructExpr(const Expr *E) {
3528 Result.set(E, Info.CurrentCall->Index);
3529 return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
3530 }
3531
VisitCastExpr(const CastExpr * E)3532 bool VisitCastExpr(const CastExpr *E) {
3533 switch (E->getCastKind()) {
3534 default:
3535 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
3536
3537 case CK_ConstructorConversion:
3538 return VisitConstructExpr(E->getSubExpr());
3539 }
3540 }
VisitInitListExpr(const InitListExpr * E)3541 bool VisitInitListExpr(const InitListExpr *E) {
3542 return VisitConstructExpr(E);
3543 }
VisitCXXConstructExpr(const CXXConstructExpr * E)3544 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
3545 return VisitConstructExpr(E);
3546 }
VisitCallExpr(const CallExpr * E)3547 bool VisitCallExpr(const CallExpr *E) {
3548 return VisitConstructExpr(E);
3549 }
3550 };
3551 } // end anonymous namespace
3552
3553 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)3554 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
3555 assert(E->isRValue() && E->getType()->isRecordType());
3556 return TemporaryExprEvaluator(Info, Result).Visit(E);
3557 }
3558
3559 //===----------------------------------------------------------------------===//
3560 // Vector Evaluation
3561 //===----------------------------------------------------------------------===//
3562
3563 namespace {
3564 class VectorExprEvaluator
3565 : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
3566 APValue &Result;
3567 public:
3568
VectorExprEvaluator(EvalInfo & info,APValue & Result)3569 VectorExprEvaluator(EvalInfo &info, APValue &Result)
3570 : ExprEvaluatorBaseTy(info), Result(Result) {}
3571
Success(const ArrayRef<APValue> & V,const Expr * E)3572 bool Success(const ArrayRef<APValue> &V, const Expr *E) {
3573 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
3574 // FIXME: remove this APValue copy.
3575 Result = APValue(V.data(), V.size());
3576 return true;
3577 }
Success(const APValue & V,const Expr * E)3578 bool Success(const APValue &V, const Expr *E) {
3579 assert(V.isVector());
3580 Result = V;
3581 return true;
3582 }
3583 bool ZeroInitialization(const Expr *E);
3584
VisitUnaryReal(const UnaryOperator * E)3585 bool VisitUnaryReal(const UnaryOperator *E)
3586 { return Visit(E->getSubExpr()); }
3587 bool VisitCastExpr(const CastExpr* E);
3588 bool VisitInitListExpr(const InitListExpr *E);
3589 bool VisitUnaryImag(const UnaryOperator *E);
3590 // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
3591 // binary comparisons, binary and/or/xor,
3592 // shufflevector, ExtVectorElementExpr
3593 };
3594 } // end anonymous namespace
3595
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)3596 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
3597 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
3598 return VectorExprEvaluator(Info, Result).Visit(E);
3599 }
3600
VisitCastExpr(const CastExpr * E)3601 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
3602 const VectorType *VTy = E->getType()->castAs<VectorType>();
3603 unsigned NElts = VTy->getNumElements();
3604
3605 const Expr *SE = E->getSubExpr();
3606 QualType SETy = SE->getType();
3607
3608 switch (E->getCastKind()) {
3609 case CK_VectorSplat: {
3610 APValue Val = APValue();
3611 if (SETy->isIntegerType()) {
3612 APSInt IntResult;
3613 if (!EvaluateInteger(SE, IntResult, Info))
3614 return false;
3615 Val = APValue(IntResult);
3616 } else if (SETy->isRealFloatingType()) {
3617 APFloat F(0.0);
3618 if (!EvaluateFloat(SE, F, Info))
3619 return false;
3620 Val = APValue(F);
3621 } else {
3622 return Error(E);
3623 }
3624
3625 // Splat and create vector APValue.
3626 SmallVector<APValue, 4> Elts(NElts, Val);
3627 return Success(Elts, E);
3628 }
3629 case CK_BitCast: {
3630 // Evaluate the operand into an APInt we can extract from.
3631 llvm::APInt SValInt;
3632 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
3633 return false;
3634 // Extract the elements
3635 QualType EltTy = VTy->getElementType();
3636 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
3637 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
3638 SmallVector<APValue, 4> Elts;
3639 if (EltTy->isRealFloatingType()) {
3640 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
3641 unsigned FloatEltSize = EltSize;
3642 if (&Sem == &APFloat::x87DoubleExtended)
3643 FloatEltSize = 80;
3644 for (unsigned i = 0; i < NElts; i++) {
3645 llvm::APInt Elt;
3646 if (BigEndian)
3647 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
3648 else
3649 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
3650 Elts.push_back(APValue(APFloat(Sem, Elt)));
3651 }
3652 } else if (EltTy->isIntegerType()) {
3653 for (unsigned i = 0; i < NElts; i++) {
3654 llvm::APInt Elt;
3655 if (BigEndian)
3656 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
3657 else
3658 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
3659 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
3660 }
3661 } else {
3662 return Error(E);
3663 }
3664 return Success(Elts, E);
3665 }
3666 default:
3667 return ExprEvaluatorBaseTy::VisitCastExpr(E);
3668 }
3669 }
3670
3671 bool
VisitInitListExpr(const InitListExpr * E)3672 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3673 const VectorType *VT = E->getType()->castAs<VectorType>();
3674 unsigned NumInits = E->getNumInits();
3675 unsigned NumElements = VT->getNumElements();
3676
3677 QualType EltTy = VT->getElementType();
3678 SmallVector<APValue, 4> Elements;
3679
3680 // The number of initializers can be less than the number of
3681 // vector elements. For OpenCL, this can be due to nested vector
3682 // initialization. For GCC compatibility, missing trailing elements
3683 // should be initialized with zeroes.
3684 unsigned CountInits = 0, CountElts = 0;
3685 while (CountElts < NumElements) {
3686 // Handle nested vector initialization.
3687 if (CountInits < NumInits
3688 && E->getInit(CountInits)->getType()->isExtVectorType()) {
3689 APValue v;
3690 if (!EvaluateVector(E->getInit(CountInits), v, Info))
3691 return Error(E);
3692 unsigned vlen = v.getVectorLength();
3693 for (unsigned j = 0; j < vlen; j++)
3694 Elements.push_back(v.getVectorElt(j));
3695 CountElts += vlen;
3696 } else if (EltTy->isIntegerType()) {
3697 llvm::APSInt sInt(32);
3698 if (CountInits < NumInits) {
3699 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
3700 return false;
3701 } else // trailing integer zero.
3702 sInt = Info.Ctx.MakeIntValue(0, EltTy);
3703 Elements.push_back(APValue(sInt));
3704 CountElts++;
3705 } else {
3706 llvm::APFloat f(0.0);
3707 if (CountInits < NumInits) {
3708 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
3709 return false;
3710 } else // trailing float zero.
3711 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
3712 Elements.push_back(APValue(f));
3713 CountElts++;
3714 }
3715 CountInits++;
3716 }
3717 return Success(Elements, E);
3718 }
3719
3720 bool
ZeroInitialization(const Expr * E)3721 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
3722 const VectorType *VT = E->getType()->getAs<VectorType>();
3723 QualType EltTy = VT->getElementType();
3724 APValue ZeroElement;
3725 if (EltTy->isIntegerType())
3726 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
3727 else
3728 ZeroElement =
3729 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
3730
3731 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
3732 return Success(Elements, E);
3733 }
3734
VisitUnaryImag(const UnaryOperator * E)3735 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
3736 VisitIgnoredValue(E->getSubExpr());
3737 return ZeroInitialization(E);
3738 }
3739
3740 //===----------------------------------------------------------------------===//
3741 // Array Evaluation
3742 //===----------------------------------------------------------------------===//
3743
3744 namespace {
3745 class ArrayExprEvaluator
3746 : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
3747 const LValue &This;
3748 APValue &Result;
3749 public:
3750
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)3751 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
3752 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
3753
Success(const APValue & V,const Expr * E)3754 bool Success(const APValue &V, const Expr *E) {
3755 assert((V.isArray() || V.isLValue()) &&
3756 "expected array or string literal");
3757 Result = V;
3758 return true;
3759 }
3760
ZeroInitialization(const Expr * E)3761 bool ZeroInitialization(const Expr *E) {
3762 const ConstantArrayType *CAT =
3763 Info.Ctx.getAsConstantArrayType(E->getType());
3764 if (!CAT)
3765 return Error(E);
3766
3767 Result = APValue(APValue::UninitArray(), 0,
3768 CAT->getSize().getZExtValue());
3769 if (!Result.hasArrayFiller()) return true;
3770
3771 // Zero-initialize all elements.
3772 LValue Subobject = This;
3773 Subobject.addArray(Info, E, CAT);
3774 ImplicitValueInitExpr VIE(CAT->getElementType());
3775 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
3776 }
3777
3778 bool VisitInitListExpr(const InitListExpr *E);
3779 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3780 };
3781 } // end anonymous namespace
3782
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)3783 static bool EvaluateArray(const Expr *E, const LValue &This,
3784 APValue &Result, EvalInfo &Info) {
3785 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
3786 return ArrayExprEvaluator(Info, This, Result).Visit(E);
3787 }
3788
VisitInitListExpr(const InitListExpr * E)3789 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3790 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
3791 if (!CAT)
3792 return Error(E);
3793
3794 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
3795 // an appropriately-typed string literal enclosed in braces.
3796 if (E->isStringLiteralInit()) {
3797 LValue LV;
3798 if (!EvaluateLValue(E->getInit(0), LV, Info))
3799 return false;
3800 APValue Val;
3801 LV.moveInto(Val);
3802 return Success(Val, E);
3803 }
3804
3805 bool Success = true;
3806
3807 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
3808 "zero-initialized array shouldn't have any initialized elts");
3809 APValue Filler;
3810 if (Result.isArray() && Result.hasArrayFiller())
3811 Filler = Result.getArrayFiller();
3812
3813 Result = APValue(APValue::UninitArray(), E->getNumInits(),
3814 CAT->getSize().getZExtValue());
3815
3816 // If the array was previously zero-initialized, preserve the
3817 // zero-initialized values.
3818 if (!Filler.isUninit()) {
3819 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
3820 Result.getArrayInitializedElt(I) = Filler;
3821 if (Result.hasArrayFiller())
3822 Result.getArrayFiller() = Filler;
3823 }
3824
3825 LValue Subobject = This;
3826 Subobject.addArray(Info, E, CAT);
3827 unsigned Index = 0;
3828 for (InitListExpr::const_iterator I = E->begin(), End = E->end();
3829 I != End; ++I, ++Index) {
3830 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
3831 Info, Subobject, cast<Expr>(*I)) ||
3832 !HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
3833 CAT->getElementType(), 1)) {
3834 if (!Info.keepEvaluatingAfterFailure())
3835 return false;
3836 Success = false;
3837 }
3838 }
3839
3840 if (!Result.hasArrayFiller()) return Success;
3841 assert(E->hasArrayFiller() && "no array filler for incomplete init list");
3842 // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3843 // but sometimes does:
3844 // struct S { constexpr S() : p(&p) {} void *p; };
3845 // S s[10] = {};
3846 return EvaluateInPlace(Result.getArrayFiller(), Info,
3847 Subobject, E->getArrayFiller()) && Success;
3848 }
3849
VisitCXXConstructExpr(const CXXConstructExpr * E)3850 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3851 // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3852 // but sometimes does:
3853 // struct S { constexpr S() : p(&p) {} void *p; };
3854 // S s[10];
3855 LValue Subobject = This;
3856
3857 APValue *Value = &Result;
3858 bool HadZeroInit = true;
3859 QualType ElemTy = E->getType();
3860 while (const ConstantArrayType *CAT =
3861 Info.Ctx.getAsConstantArrayType(ElemTy)) {
3862 Subobject.addArray(Info, E, CAT);
3863 HadZeroInit &= !Value->isUninit();
3864 if (!HadZeroInit)
3865 *Value = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
3866 if (!Value->hasArrayFiller())
3867 return true;
3868 Value = &Value->getArrayFiller();
3869 ElemTy = CAT->getElementType();
3870 }
3871
3872 if (!ElemTy->isRecordType())
3873 return Error(E);
3874
3875 const CXXConstructorDecl *FD = E->getConstructor();
3876
3877 bool ZeroInit = E->requiresZeroInitialization();
3878 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3879 if (HadZeroInit)
3880 return true;
3881
3882 if (ZeroInit) {
3883 ImplicitValueInitExpr VIE(ElemTy);
3884 return EvaluateInPlace(*Value, Info, Subobject, &VIE);
3885 }
3886
3887 const CXXRecordDecl *RD = FD->getParent();
3888 if (RD->isUnion())
3889 *Value = APValue((FieldDecl*)0);
3890 else
3891 *Value =
3892 APValue(APValue::UninitStruct(), RD->getNumBases(),
3893 std::distance(RD->field_begin(), RD->field_end()));
3894 return true;
3895 }
3896
3897 const FunctionDecl *Definition = 0;
3898 FD->getBody(Definition);
3899
3900 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3901 return false;
3902
3903 if (ZeroInit && !HadZeroInit) {
3904 ImplicitValueInitExpr VIE(ElemTy);
3905 if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
3906 return false;
3907 }
3908
3909 ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3910 return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
3911 cast<CXXConstructorDecl>(Definition),
3912 Info, *Value);
3913 }
3914
3915 //===----------------------------------------------------------------------===//
3916 // Integer Evaluation
3917 //
3918 // As a GNU extension, we support casting pointers to sufficiently-wide integer
3919 // types and back in constant folding. Integer values are thus represented
3920 // either as an integer-valued APValue, or as an lvalue-valued APValue.
3921 //===----------------------------------------------------------------------===//
3922
3923 namespace {
3924 class IntExprEvaluator
3925 : public ExprEvaluatorBase<IntExprEvaluator, bool> {
3926 APValue &Result;
3927 public:
IntExprEvaluator(EvalInfo & info,APValue & result)3928 IntExprEvaluator(EvalInfo &info, APValue &result)
3929 : ExprEvaluatorBaseTy(info), Result(result) {}
3930
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)3931 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
3932 assert(E->getType()->isIntegralOrEnumerationType() &&
3933 "Invalid evaluation result.");
3934 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
3935 "Invalid evaluation result.");
3936 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3937 "Invalid evaluation result.");
3938 Result = APValue(SI);
3939 return true;
3940 }
Success(const llvm::APSInt & SI,const Expr * E)3941 bool Success(const llvm::APSInt &SI, const Expr *E) {
3942 return Success(SI, E, Result);
3943 }
3944
Success(const llvm::APInt & I,const Expr * E,APValue & Result)3945 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
3946 assert(E->getType()->isIntegralOrEnumerationType() &&
3947 "Invalid evaluation result.");
3948 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3949 "Invalid evaluation result.");
3950 Result = APValue(APSInt(I));
3951 Result.getInt().setIsUnsigned(
3952 E->getType()->isUnsignedIntegerOrEnumerationType());
3953 return true;
3954 }
Success(const llvm::APInt & I,const Expr * E)3955 bool Success(const llvm::APInt &I, const Expr *E) {
3956 return Success(I, E, Result);
3957 }
3958
Success(uint64_t Value,const Expr * E,APValue & Result)3959 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
3960 assert(E->getType()->isIntegralOrEnumerationType() &&
3961 "Invalid evaluation result.");
3962 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
3963 return true;
3964 }
Success(uint64_t Value,const Expr * E)3965 bool Success(uint64_t Value, const Expr *E) {
3966 return Success(Value, E, Result);
3967 }
3968
Success(CharUnits Size,const Expr * E)3969 bool Success(CharUnits Size, const Expr *E) {
3970 return Success(Size.getQuantity(), E);
3971 }
3972
Success(const APValue & V,const Expr * E)3973 bool Success(const APValue &V, const Expr *E) {
3974 if (V.isLValue() || V.isAddrLabelDiff()) {
3975 Result = V;
3976 return true;
3977 }
3978 return Success(V.getInt(), E);
3979 }
3980
ZeroInitialization(const Expr * E)3981 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
3982
3983 //===--------------------------------------------------------------------===//
3984 // Visitor Methods
3985 //===--------------------------------------------------------------------===//
3986
VisitIntegerLiteral(const IntegerLiteral * E)3987 bool VisitIntegerLiteral(const IntegerLiteral *E) {
3988 return Success(E->getValue(), E);
3989 }
VisitCharacterLiteral(const CharacterLiteral * E)3990 bool VisitCharacterLiteral(const CharacterLiteral *E) {
3991 return Success(E->getValue(), E);
3992 }
3993
3994 bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)3995 bool VisitDeclRefExpr(const DeclRefExpr *E) {
3996 if (CheckReferencedDecl(E, E->getDecl()))
3997 return true;
3998
3999 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
4000 }
VisitMemberExpr(const MemberExpr * E)4001 bool VisitMemberExpr(const MemberExpr *E) {
4002 if (CheckReferencedDecl(E, E->getMemberDecl())) {
4003 VisitIgnoredValue(E->getBase());
4004 return true;
4005 }
4006
4007 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
4008 }
4009
4010 bool VisitCallExpr(const CallExpr *E);
4011 bool VisitBinaryOperator(const BinaryOperator *E);
4012 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
4013 bool VisitUnaryOperator(const UnaryOperator *E);
4014
4015 bool VisitCastExpr(const CastExpr* E);
4016 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
4017
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)4018 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4019 return Success(E->getValue(), E);
4020 }
4021
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)4022 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
4023 return Success(E->getValue(), E);
4024 }
4025
4026 // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)4027 bool VisitGNUNullExpr(const GNUNullExpr *E) {
4028 return ZeroInitialization(E);
4029 }
4030
VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr * E)4031 bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
4032 return Success(E->getValue(), E);
4033 }
4034
VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr * E)4035 bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
4036 return Success(E->getValue(), E);
4037 }
4038
VisitTypeTraitExpr(const TypeTraitExpr * E)4039 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
4040 return Success(E->getValue(), E);
4041 }
4042
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)4043 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
4044 return Success(E->getValue(), E);
4045 }
4046
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)4047 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
4048 return Success(E->getValue(), E);
4049 }
4050
4051 bool VisitUnaryReal(const UnaryOperator *E);
4052 bool VisitUnaryImag(const UnaryOperator *E);
4053
4054 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
4055 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
4056
4057 private:
4058 CharUnits GetAlignOfExpr(const Expr *E);
4059 CharUnits GetAlignOfType(QualType T);
4060 static QualType GetObjectType(APValue::LValueBase B);
4061 bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
4062 // FIXME: Missing: array subscript of vector, member of vector
4063 };
4064 } // end anonymous namespace
4065
4066 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
4067 /// produce either the integer value or a pointer.
4068 ///
4069 /// GCC has a heinous extension which folds casts between pointer types and
4070 /// pointer-sized integral types. We support this by allowing the evaluation of
4071 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
4072 /// Some simple arithmetic on such values is supported (they are treated much
4073 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)4074 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
4075 EvalInfo &Info) {
4076 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
4077 return IntExprEvaluator(Info, Result).Visit(E);
4078 }
4079
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)4080 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
4081 APValue Val;
4082 if (!EvaluateIntegerOrLValue(E, Val, Info))
4083 return false;
4084 if (!Val.isInt()) {
4085 // FIXME: It would be better to produce the diagnostic for casting
4086 // a pointer to an integer.
4087 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
4088 return false;
4089 }
4090 Result = Val.getInt();
4091 return true;
4092 }
4093
4094 /// Check whether the given declaration can be directly converted to an integral
4095 /// rvalue. If not, no diagnostic is produced; there are other things we can
4096 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)4097 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
4098 // Enums are integer constant exprs.
4099 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
4100 // Check for signedness/width mismatches between E type and ECD value.
4101 bool SameSign = (ECD->getInitVal().isSigned()
4102 == E->getType()->isSignedIntegerOrEnumerationType());
4103 bool SameWidth = (ECD->getInitVal().getBitWidth()
4104 == Info.Ctx.getIntWidth(E->getType()));
4105 if (SameSign && SameWidth)
4106 return Success(ECD->getInitVal(), E);
4107 else {
4108 // Get rid of mismatch (otherwise Success assertions will fail)
4109 // by computing a new value matching the type of E.
4110 llvm::APSInt Val = ECD->getInitVal();
4111 if (!SameSign)
4112 Val.setIsSigned(!ECD->getInitVal().isSigned());
4113 if (!SameWidth)
4114 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
4115 return Success(Val, E);
4116 }
4117 }
4118 return false;
4119 }
4120
4121 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
4122 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E)4123 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
4124 // The following enum mimics the values returned by GCC.
4125 // FIXME: Does GCC differ between lvalue and rvalue references here?
4126 enum gcc_type_class {
4127 no_type_class = -1,
4128 void_type_class, integer_type_class, char_type_class,
4129 enumeral_type_class, boolean_type_class,
4130 pointer_type_class, reference_type_class, offset_type_class,
4131 real_type_class, complex_type_class,
4132 function_type_class, method_type_class,
4133 record_type_class, union_type_class,
4134 array_type_class, string_type_class,
4135 lang_type_class
4136 };
4137
4138 // If no argument was supplied, default to "no_type_class". This isn't
4139 // ideal, however it is what gcc does.
4140 if (E->getNumArgs() == 0)
4141 return no_type_class;
4142
4143 QualType ArgTy = E->getArg(0)->getType();
4144 if (ArgTy->isVoidType())
4145 return void_type_class;
4146 else if (ArgTy->isEnumeralType())
4147 return enumeral_type_class;
4148 else if (ArgTy->isBooleanType())
4149 return boolean_type_class;
4150 else if (ArgTy->isCharType())
4151 return string_type_class; // gcc doesn't appear to use char_type_class
4152 else if (ArgTy->isIntegerType())
4153 return integer_type_class;
4154 else if (ArgTy->isPointerType())
4155 return pointer_type_class;
4156 else if (ArgTy->isReferenceType())
4157 return reference_type_class;
4158 else if (ArgTy->isRealType())
4159 return real_type_class;
4160 else if (ArgTy->isComplexType())
4161 return complex_type_class;
4162 else if (ArgTy->isFunctionType())
4163 return function_type_class;
4164 else if (ArgTy->isStructureOrClassType())
4165 return record_type_class;
4166 else if (ArgTy->isUnionType())
4167 return union_type_class;
4168 else if (ArgTy->isArrayType())
4169 return array_type_class;
4170 else if (ArgTy->isUnionType())
4171 return union_type_class;
4172 else // FIXME: offset_type_class, method_type_class, & lang_type_class?
4173 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
4174 }
4175
4176 /// EvaluateBuiltinConstantPForLValue - Determine the result of
4177 /// __builtin_constant_p when applied to the given lvalue.
4178 ///
4179 /// An lvalue is only "constant" if it is a pointer or reference to the first
4180 /// character of a string literal.
4181 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)4182 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
4183 const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
4184 return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
4185 }
4186
4187 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
4188 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)4189 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
4190 QualType ArgType = Arg->getType();
4191
4192 // __builtin_constant_p always has one operand. The rules which gcc follows
4193 // are not precisely documented, but are as follows:
4194 //
4195 // - If the operand is of integral, floating, complex or enumeration type,
4196 // and can be folded to a known value of that type, it returns 1.
4197 // - If the operand and can be folded to a pointer to the first character
4198 // of a string literal (or such a pointer cast to an integral type), it
4199 // returns 1.
4200 //
4201 // Otherwise, it returns 0.
4202 //
4203 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
4204 // its support for this does not currently work.
4205 if (ArgType->isIntegralOrEnumerationType()) {
4206 Expr::EvalResult Result;
4207 if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
4208 return false;
4209
4210 APValue &V = Result.Val;
4211 if (V.getKind() == APValue::Int)
4212 return true;
4213
4214 return EvaluateBuiltinConstantPForLValue(V);
4215 } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
4216 return Arg->isEvaluatable(Ctx);
4217 } else if (ArgType->isPointerType() || Arg->isGLValue()) {
4218 LValue LV;
4219 Expr::EvalStatus Status;
4220 EvalInfo Info(Ctx, Status);
4221 if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
4222 : EvaluatePointer(Arg, LV, Info)) &&
4223 !Status.HasSideEffects)
4224 return EvaluateBuiltinConstantPForLValue(LV);
4225 }
4226
4227 // Anything else isn't considered to be sufficiently constant.
4228 return false;
4229 }
4230
4231 /// Retrieves the "underlying object type" of the given expression,
4232 /// as used by __builtin_object_size.
GetObjectType(APValue::LValueBase B)4233 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
4234 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
4235 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4236 return VD->getType();
4237 } else if (const Expr *E = B.get<const Expr*>()) {
4238 if (isa<CompoundLiteralExpr>(E))
4239 return E->getType();
4240 }
4241
4242 return QualType();
4243 }
4244
TryEvaluateBuiltinObjectSize(const CallExpr * E)4245 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
4246 LValue Base;
4247
4248 {
4249 // The operand of __builtin_object_size is never evaluated for side-effects.
4250 // If there are any, but we can determine the pointed-to object anyway, then
4251 // ignore the side-effects.
4252 SpeculativeEvaluationRAII SpeculativeEval(Info);
4253 if (!EvaluatePointer(E->getArg(0), Base, Info))
4254 return false;
4255 }
4256
4257 // If we can prove the base is null, lower to zero now.
4258 if (!Base.getLValueBase()) return Success(0, E);
4259
4260 QualType T = GetObjectType(Base.getLValueBase());
4261 if (T.isNull() ||
4262 T->isIncompleteType() ||
4263 T->isFunctionType() ||
4264 T->isVariablyModifiedType() ||
4265 T->isDependentType())
4266 return Error(E);
4267
4268 CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
4269 CharUnits Offset = Base.getLValueOffset();
4270
4271 if (!Offset.isNegative() && Offset <= Size)
4272 Size -= Offset;
4273 else
4274 Size = CharUnits::Zero();
4275 return Success(Size, E);
4276 }
4277
VisitCallExpr(const CallExpr * E)4278 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
4279 switch (unsigned BuiltinOp = E->isBuiltinCall()) {
4280 default:
4281 return ExprEvaluatorBaseTy::VisitCallExpr(E);
4282
4283 case Builtin::BI__builtin_object_size: {
4284 if (TryEvaluateBuiltinObjectSize(E))
4285 return true;
4286
4287 // If evaluating the argument has side-effects, we can't determine the size
4288 // of the object, and so we lower it to unknown now. CodeGen relies on us to
4289 // handle all cases where the expression has side-effects.
4290 if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
4291 if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
4292 return Success(-1ULL, E);
4293 return Success(0, E);
4294 }
4295
4296 // Expression had no side effects, but we couldn't statically determine the
4297 // size of the referenced object.
4298 return Error(E);
4299 }
4300
4301 case Builtin::BI__builtin_bswap16:
4302 case Builtin::BI__builtin_bswap32:
4303 case Builtin::BI__builtin_bswap64: {
4304 APSInt Val;
4305 if (!EvaluateInteger(E->getArg(0), Val, Info))
4306 return false;
4307
4308 return Success(Val.byteSwap(), E);
4309 }
4310
4311 case Builtin::BI__builtin_classify_type:
4312 return Success(EvaluateBuiltinClassifyType(E), E);
4313
4314 case Builtin::BI__builtin_constant_p:
4315 return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
4316
4317 case Builtin::BI__builtin_eh_return_data_regno: {
4318 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
4319 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
4320 return Success(Operand, E);
4321 }
4322
4323 case Builtin::BI__builtin_expect:
4324 return Visit(E->getArg(0));
4325
4326 case Builtin::BIstrlen:
4327 // A call to strlen is not a constant expression.
4328 if (Info.getLangOpts().CPlusPlus11)
4329 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
4330 << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
4331 else
4332 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
4333 // Fall through.
4334 case Builtin::BI__builtin_strlen:
4335 // As an extension, we support strlen() and __builtin_strlen() as constant
4336 // expressions when the argument is a string literal.
4337 if (const StringLiteral *S
4338 = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
4339 // The string literal may have embedded null characters. Find the first
4340 // one and truncate there.
4341 StringRef Str = S->getString();
4342 StringRef::size_type Pos = Str.find(0);
4343 if (Pos != StringRef::npos)
4344 Str = Str.substr(0, Pos);
4345
4346 return Success(Str.size(), E);
4347 }
4348
4349 return Error(E);
4350
4351 case Builtin::BI__atomic_always_lock_free:
4352 case Builtin::BI__atomic_is_lock_free:
4353 case Builtin::BI__c11_atomic_is_lock_free: {
4354 APSInt SizeVal;
4355 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
4356 return false;
4357
4358 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
4359 // of two less than the maximum inline atomic width, we know it is
4360 // lock-free. If the size isn't a power of two, or greater than the
4361 // maximum alignment where we promote atomics, we know it is not lock-free
4362 // (at least not in the sense of atomic_is_lock_free). Otherwise,
4363 // the answer can only be determined at runtime; for example, 16-byte
4364 // atomics have lock-free implementations on some, but not all,
4365 // x86-64 processors.
4366
4367 // Check power-of-two.
4368 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
4369 if (Size.isPowerOfTwo()) {
4370 // Check against inlining width.
4371 unsigned InlineWidthBits =
4372 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
4373 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
4374 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
4375 Size == CharUnits::One() ||
4376 E->getArg(1)->isNullPointerConstant(Info.Ctx,
4377 Expr::NPC_NeverValueDependent))
4378 // OK, we will inline appropriately-aligned operations of this size,
4379 // and _Atomic(T) is appropriately-aligned.
4380 return Success(1, E);
4381
4382 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
4383 castAs<PointerType>()->getPointeeType();
4384 if (!PointeeType->isIncompleteType() &&
4385 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
4386 // OK, we will inline operations on this object.
4387 return Success(1, E);
4388 }
4389 }
4390 }
4391
4392 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
4393 Success(0, E) : Error(E);
4394 }
4395 }
4396 }
4397
HasSameBase(const LValue & A,const LValue & B)4398 static bool HasSameBase(const LValue &A, const LValue &B) {
4399 if (!A.getLValueBase())
4400 return !B.getLValueBase();
4401 if (!B.getLValueBase())
4402 return false;
4403
4404 if (A.getLValueBase().getOpaqueValue() !=
4405 B.getLValueBase().getOpaqueValue()) {
4406 const Decl *ADecl = GetLValueBaseDecl(A);
4407 if (!ADecl)
4408 return false;
4409 const Decl *BDecl = GetLValueBaseDecl(B);
4410 if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
4411 return false;
4412 }
4413
4414 return IsGlobalLValue(A.getLValueBase()) ||
4415 A.getLValueCallIndex() == B.getLValueCallIndex();
4416 }
4417
4418 /// Perform the given integer operation, which is known to need at most BitWidth
4419 /// bits, and check for overflow in the original type (if that type was not an
4420 /// unsigned type).
4421 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op)4422 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
4423 const APSInt &LHS, const APSInt &RHS,
4424 unsigned BitWidth, Operation Op) {
4425 if (LHS.isUnsigned())
4426 return Op(LHS, RHS);
4427
4428 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
4429 APSInt Result = Value.trunc(LHS.getBitWidth());
4430 if (Result.extend(BitWidth) != Value) {
4431 if (Info.getIntOverflowCheckMode())
4432 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
4433 diag::warn_integer_constant_overflow)
4434 << Result.toString(10) << E->getType();
4435 else
4436 HandleOverflow(Info, E, Value, E->getType());
4437 }
4438 return Result;
4439 }
4440
4441 namespace {
4442
4443 /// \brief Data recursive integer evaluator of certain binary operators.
4444 ///
4445 /// We use a data recursive algorithm for binary operators so that we are able
4446 /// to handle extreme cases of chained binary operators without causing stack
4447 /// overflow.
4448 class DataRecursiveIntBinOpEvaluator {
4449 struct EvalResult {
4450 APValue Val;
4451 bool Failed;
4452
EvalResult__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::EvalResult4453 EvalResult() : Failed(false) { }
4454
swap__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::EvalResult4455 void swap(EvalResult &RHS) {
4456 Val.swap(RHS.Val);
4457 Failed = RHS.Failed;
4458 RHS.Failed = false;
4459 }
4460 };
4461
4462 struct Job {
4463 const Expr *E;
4464 EvalResult LHSResult; // meaningful only for binary operator expression.
4465 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
4466
Job__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::Job4467 Job() : StoredInfo(0) { }
startSpeculativeEval__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::Job4468 void startSpeculativeEval(EvalInfo &Info) {
4469 OldEvalStatus = Info.EvalStatus;
4470 Info.EvalStatus.Diag = 0;
4471 StoredInfo = &Info;
4472 }
~Job__anon0c5100020f11::DataRecursiveIntBinOpEvaluator::Job4473 ~Job() {
4474 if (StoredInfo) {
4475 StoredInfo->EvalStatus = OldEvalStatus;
4476 }
4477 }
4478 private:
4479 EvalInfo *StoredInfo; // non-null if status changed.
4480 Expr::EvalStatus OldEvalStatus;
4481 };
4482
4483 SmallVector<Job, 16> Queue;
4484
4485 IntExprEvaluator &IntEval;
4486 EvalInfo &Info;
4487 APValue &FinalResult;
4488
4489 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)4490 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
4491 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
4492
4493 /// \brief True if \param E is a binary operator that we are going to handle
4494 /// data recursively.
4495 /// We handle binary operators that are comma, logical, or that have operands
4496 /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)4497 static bool shouldEnqueue(const BinaryOperator *E) {
4498 return E->getOpcode() == BO_Comma ||
4499 E->isLogicalOp() ||
4500 (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4501 E->getRHS()->getType()->isIntegralOrEnumerationType());
4502 }
4503
Traverse(const BinaryOperator * E)4504 bool Traverse(const BinaryOperator *E) {
4505 enqueue(E);
4506 EvalResult PrevResult;
4507 while (!Queue.empty())
4508 process(PrevResult);
4509
4510 if (PrevResult.Failed) return false;
4511
4512 FinalResult.swap(PrevResult.Val);
4513 return true;
4514 }
4515
4516 private:
Success(uint64_t Value,const Expr * E,APValue & Result)4517 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
4518 return IntEval.Success(Value, E, Result);
4519 }
Success(const APSInt & Value,const Expr * E,APValue & Result)4520 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
4521 return IntEval.Success(Value, E, Result);
4522 }
Error(const Expr * E)4523 bool Error(const Expr *E) {
4524 return IntEval.Error(E);
4525 }
Error(const Expr * E,diag::kind D)4526 bool Error(const Expr *E, diag::kind D) {
4527 return IntEval.Error(E, D);
4528 }
4529
CCEDiag(const Expr * E,diag::kind D)4530 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4531 return Info.CCEDiag(E, D);
4532 }
4533
4534 // \brief Returns true if visiting the RHS is necessary, false otherwise.
4535 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4536 bool &SuppressRHSDiags);
4537
4538 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4539 const BinaryOperator *E, APValue &Result);
4540
EvaluateExpr(const Expr * E,EvalResult & Result)4541 void EvaluateExpr(const Expr *E, EvalResult &Result) {
4542 Result.Failed = !Evaluate(Result.Val, Info, E);
4543 if (Result.Failed)
4544 Result.Val = APValue();
4545 }
4546
4547 void process(EvalResult &Result);
4548
enqueue(const Expr * E)4549 void enqueue(const Expr *E) {
4550 E = E->IgnoreParens();
4551 Queue.resize(Queue.size()+1);
4552 Queue.back().E = E;
4553 Queue.back().Kind = Job::AnyExprKind;
4554 }
4555 };
4556
4557 }
4558
4559 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)4560 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4561 bool &SuppressRHSDiags) {
4562 if (E->getOpcode() == BO_Comma) {
4563 // Ignore LHS but note if we could not evaluate it.
4564 if (LHSResult.Failed)
4565 Info.EvalStatus.HasSideEffects = true;
4566 return true;
4567 }
4568
4569 if (E->isLogicalOp()) {
4570 bool lhsResult;
4571 if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
4572 // We were able to evaluate the LHS, see if we can get away with not
4573 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
4574 if (lhsResult == (E->getOpcode() == BO_LOr)) {
4575 Success(lhsResult, E, LHSResult.Val);
4576 return false; // Ignore RHS
4577 }
4578 } else {
4579 // Since we weren't able to evaluate the left hand side, it
4580 // must have had side effects.
4581 Info.EvalStatus.HasSideEffects = true;
4582
4583 // We can't evaluate the LHS; however, sometimes the result
4584 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4585 // Don't ignore RHS and suppress diagnostics from this arm.
4586 SuppressRHSDiags = true;
4587 }
4588
4589 return true;
4590 }
4591
4592 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4593 E->getRHS()->getType()->isIntegralOrEnumerationType());
4594
4595 if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
4596 return false; // Ignore RHS;
4597
4598 return true;
4599 }
4600
4601 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)4602 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4603 const BinaryOperator *E, APValue &Result) {
4604 if (E->getOpcode() == BO_Comma) {
4605 if (RHSResult.Failed)
4606 return false;
4607 Result = RHSResult.Val;
4608 return true;
4609 }
4610
4611 if (E->isLogicalOp()) {
4612 bool lhsResult, rhsResult;
4613 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
4614 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
4615
4616 if (LHSIsOK) {
4617 if (RHSIsOK) {
4618 if (E->getOpcode() == BO_LOr)
4619 return Success(lhsResult || rhsResult, E, Result);
4620 else
4621 return Success(lhsResult && rhsResult, E, Result);
4622 }
4623 } else {
4624 if (RHSIsOK) {
4625 // We can't evaluate the LHS; however, sometimes the result
4626 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4627 if (rhsResult == (E->getOpcode() == BO_LOr))
4628 return Success(rhsResult, E, Result);
4629 }
4630 }
4631
4632 return false;
4633 }
4634
4635 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4636 E->getRHS()->getType()->isIntegralOrEnumerationType());
4637
4638 if (LHSResult.Failed || RHSResult.Failed)
4639 return false;
4640
4641 const APValue &LHSVal = LHSResult.Val;
4642 const APValue &RHSVal = RHSResult.Val;
4643
4644 // Handle cases like (unsigned long)&a + 4.
4645 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
4646 Result = LHSVal;
4647 CharUnits AdditionalOffset = CharUnits::fromQuantity(
4648 RHSVal.getInt().getZExtValue());
4649 if (E->getOpcode() == BO_Add)
4650 Result.getLValueOffset() += AdditionalOffset;
4651 else
4652 Result.getLValueOffset() -= AdditionalOffset;
4653 return true;
4654 }
4655
4656 // Handle cases like 4 + (unsigned long)&a
4657 if (E->getOpcode() == BO_Add &&
4658 RHSVal.isLValue() && LHSVal.isInt()) {
4659 Result = RHSVal;
4660 Result.getLValueOffset() += CharUnits::fromQuantity(
4661 LHSVal.getInt().getZExtValue());
4662 return true;
4663 }
4664
4665 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
4666 // Handle (intptr_t)&&A - (intptr_t)&&B.
4667 if (!LHSVal.getLValueOffset().isZero() ||
4668 !RHSVal.getLValueOffset().isZero())
4669 return false;
4670 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
4671 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
4672 if (!LHSExpr || !RHSExpr)
4673 return false;
4674 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4675 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4676 if (!LHSAddrExpr || !RHSAddrExpr)
4677 return false;
4678 // Make sure both labels come from the same function.
4679 if (LHSAddrExpr->getLabel()->getDeclContext() !=
4680 RHSAddrExpr->getLabel()->getDeclContext())
4681 return false;
4682 Result = APValue(LHSAddrExpr, RHSAddrExpr);
4683 return true;
4684 }
4685
4686 // All the following cases expect both operands to be an integer
4687 if (!LHSVal.isInt() || !RHSVal.isInt())
4688 return Error(E);
4689
4690 const APSInt &LHS = LHSVal.getInt();
4691 APSInt RHS = RHSVal.getInt();
4692
4693 switch (E->getOpcode()) {
4694 default:
4695 return Error(E);
4696 case BO_Mul:
4697 return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4698 LHS.getBitWidth() * 2,
4699 std::multiplies<APSInt>()), E,
4700 Result);
4701 case BO_Add:
4702 return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4703 LHS.getBitWidth() + 1,
4704 std::plus<APSInt>()), E, Result);
4705 case BO_Sub:
4706 return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4707 LHS.getBitWidth() + 1,
4708 std::minus<APSInt>()), E, Result);
4709 case BO_And: return Success(LHS & RHS, E, Result);
4710 case BO_Xor: return Success(LHS ^ RHS, E, Result);
4711 case BO_Or: return Success(LHS | RHS, E, Result);
4712 case BO_Div:
4713 case BO_Rem:
4714 if (RHS == 0)
4715 return Error(E, diag::note_expr_divide_by_zero);
4716 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
4717 // not actually undefined behavior in C++11 due to a language defect.
4718 if (RHS.isNegative() && RHS.isAllOnesValue() &&
4719 LHS.isSigned() && LHS.isMinSignedValue())
4720 HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
4721 return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
4722 Result);
4723 case BO_Shl: {
4724 if (Info.getLangOpts().OpenCL)
4725 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4726 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
4727 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
4728 RHS.isUnsigned());
4729 else if (RHS.isSigned() && RHS.isNegative()) {
4730 // During constant-folding, a negative shift is an opposite shift. Such
4731 // a shift is not a constant expression.
4732 CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4733 RHS = -RHS;
4734 goto shift_right;
4735 }
4736
4737 shift_left:
4738 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
4739 // the shifted type.
4740 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4741 if (SA != RHS) {
4742 CCEDiag(E, diag::note_constexpr_large_shift)
4743 << RHS << E->getType() << LHS.getBitWidth();
4744 } else if (LHS.isSigned()) {
4745 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
4746 // operand, and must not overflow the corresponding unsigned type.
4747 if (LHS.isNegative())
4748 CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
4749 else if (LHS.countLeadingZeros() < SA)
4750 CCEDiag(E, diag::note_constexpr_lshift_discards);
4751 }
4752
4753 return Success(LHS << SA, E, Result);
4754 }
4755 case BO_Shr: {
4756 if (Info.getLangOpts().OpenCL)
4757 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4758 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
4759 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
4760 RHS.isUnsigned());
4761 else if (RHS.isSigned() && RHS.isNegative()) {
4762 // During constant-folding, a negative shift is an opposite shift. Such a
4763 // shift is not a constant expression.
4764 CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4765 RHS = -RHS;
4766 goto shift_left;
4767 }
4768
4769 shift_right:
4770 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
4771 // shifted type.
4772 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4773 if (SA != RHS)
4774 CCEDiag(E, diag::note_constexpr_large_shift)
4775 << RHS << E->getType() << LHS.getBitWidth();
4776
4777 return Success(LHS >> SA, E, Result);
4778 }
4779
4780 case BO_LT: return Success(LHS < RHS, E, Result);
4781 case BO_GT: return Success(LHS > RHS, E, Result);
4782 case BO_LE: return Success(LHS <= RHS, E, Result);
4783 case BO_GE: return Success(LHS >= RHS, E, Result);
4784 case BO_EQ: return Success(LHS == RHS, E, Result);
4785 case BO_NE: return Success(LHS != RHS, E, Result);
4786 }
4787 }
4788
process(EvalResult & Result)4789 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
4790 Job &job = Queue.back();
4791
4792 switch (job.Kind) {
4793 case Job::AnyExprKind: {
4794 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
4795 if (shouldEnqueue(Bop)) {
4796 job.Kind = Job::BinOpKind;
4797 enqueue(Bop->getLHS());
4798 return;
4799 }
4800 }
4801
4802 EvaluateExpr(job.E, Result);
4803 Queue.pop_back();
4804 return;
4805 }
4806
4807 case Job::BinOpKind: {
4808 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4809 bool SuppressRHSDiags = false;
4810 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
4811 Queue.pop_back();
4812 return;
4813 }
4814 if (SuppressRHSDiags)
4815 job.startSpeculativeEval(Info);
4816 job.LHSResult.swap(Result);
4817 job.Kind = Job::BinOpVisitedLHSKind;
4818 enqueue(Bop->getRHS());
4819 return;
4820 }
4821
4822 case Job::BinOpVisitedLHSKind: {
4823 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4824 EvalResult RHS;
4825 RHS.swap(Result);
4826 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
4827 Queue.pop_back();
4828 return;
4829 }
4830 }
4831
4832 llvm_unreachable("Invalid Job::Kind!");
4833 }
4834
VisitBinaryOperator(const BinaryOperator * E)4835 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4836 if (E->isAssignmentOp())
4837 return Error(E);
4838
4839 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
4840 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
4841
4842 QualType LHSTy = E->getLHS()->getType();
4843 QualType RHSTy = E->getRHS()->getType();
4844
4845 if (LHSTy->isAnyComplexType()) {
4846 assert(RHSTy->isAnyComplexType() && "Invalid comparison");
4847 ComplexValue LHS, RHS;
4848
4849 bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
4850 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4851 return false;
4852
4853 if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
4854 return false;
4855
4856 if (LHS.isComplexFloat()) {
4857 APFloat::cmpResult CR_r =
4858 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
4859 APFloat::cmpResult CR_i =
4860 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
4861
4862 if (E->getOpcode() == BO_EQ)
4863 return Success((CR_r == APFloat::cmpEqual &&
4864 CR_i == APFloat::cmpEqual), E);
4865 else {
4866 assert(E->getOpcode() == BO_NE &&
4867 "Invalid complex comparison.");
4868 return Success(((CR_r == APFloat::cmpGreaterThan ||
4869 CR_r == APFloat::cmpLessThan ||
4870 CR_r == APFloat::cmpUnordered) ||
4871 (CR_i == APFloat::cmpGreaterThan ||
4872 CR_i == APFloat::cmpLessThan ||
4873 CR_i == APFloat::cmpUnordered)), E);
4874 }
4875 } else {
4876 if (E->getOpcode() == BO_EQ)
4877 return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
4878 LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
4879 else {
4880 assert(E->getOpcode() == BO_NE &&
4881 "Invalid compex comparison.");
4882 return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
4883 LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
4884 }
4885 }
4886 }
4887
4888 if (LHSTy->isRealFloatingType() &&
4889 RHSTy->isRealFloatingType()) {
4890 APFloat RHS(0.0), LHS(0.0);
4891
4892 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
4893 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4894 return false;
4895
4896 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
4897 return false;
4898
4899 APFloat::cmpResult CR = LHS.compare(RHS);
4900
4901 switch (E->getOpcode()) {
4902 default:
4903 llvm_unreachable("Invalid binary operator!");
4904 case BO_LT:
4905 return Success(CR == APFloat::cmpLessThan, E);
4906 case BO_GT:
4907 return Success(CR == APFloat::cmpGreaterThan, E);
4908 case BO_LE:
4909 return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
4910 case BO_GE:
4911 return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
4912 E);
4913 case BO_EQ:
4914 return Success(CR == APFloat::cmpEqual, E);
4915 case BO_NE:
4916 return Success(CR == APFloat::cmpGreaterThan
4917 || CR == APFloat::cmpLessThan
4918 || CR == APFloat::cmpUnordered, E);
4919 }
4920 }
4921
4922 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4923 if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
4924 LValue LHSValue, RHSValue;
4925
4926 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
4927 if (!LHSOK && Info.keepEvaluatingAfterFailure())
4928 return false;
4929
4930 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
4931 return false;
4932
4933 // Reject differing bases from the normal codepath; we special-case
4934 // comparisons to null.
4935 if (!HasSameBase(LHSValue, RHSValue)) {
4936 if (E->getOpcode() == BO_Sub) {
4937 // Handle &&A - &&B.
4938 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
4939 return false;
4940 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4941 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
4942 if (!LHSExpr || !RHSExpr)
4943 return false;
4944 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4945 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4946 if (!LHSAddrExpr || !RHSAddrExpr)
4947 return false;
4948 // Make sure both labels come from the same function.
4949 if (LHSAddrExpr->getLabel()->getDeclContext() !=
4950 RHSAddrExpr->getLabel()->getDeclContext())
4951 return false;
4952 Result = APValue(LHSAddrExpr, RHSAddrExpr);
4953 return true;
4954 }
4955 // Inequalities and subtractions between unrelated pointers have
4956 // unspecified or undefined behavior.
4957 if (!E->isEqualityOp())
4958 return Error(E);
4959 // A constant address may compare equal to the address of a symbol.
4960 // The one exception is that address of an object cannot compare equal
4961 // to a null pointer constant.
4962 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
4963 (!RHSValue.Base && !RHSValue.Offset.isZero()))
4964 return Error(E);
4965 // It's implementation-defined whether distinct literals will have
4966 // distinct addresses. In clang, the result of such a comparison is
4967 // unspecified, so it is not a constant expression. However, we do know
4968 // that the address of a literal will be non-null.
4969 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
4970 LHSValue.Base && RHSValue.Base)
4971 return Error(E);
4972 // We can't tell whether weak symbols will end up pointing to the same
4973 // object.
4974 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
4975 return Error(E);
4976 // Pointers with different bases cannot represent the same object.
4977 // (Note that clang defaults to -fmerge-all-constants, which can
4978 // lead to inconsistent results for comparisons involving the address
4979 // of a constant; this generally doesn't matter in practice.)
4980 return Success(E->getOpcode() == BO_NE, E);
4981 }
4982
4983 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
4984 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
4985
4986 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
4987 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
4988
4989 if (E->getOpcode() == BO_Sub) {
4990 // C++11 [expr.add]p6:
4991 // Unless both pointers point to elements of the same array object, or
4992 // one past the last element of the array object, the behavior is
4993 // undefined.
4994 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
4995 !AreElementsOfSameArray(getType(LHSValue.Base),
4996 LHSDesignator, RHSDesignator))
4997 CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
4998
4999 QualType Type = E->getLHS()->getType();
5000 QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
5001
5002 CharUnits ElementSize;
5003 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
5004 return false;
5005
5006 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
5007 // and produce incorrect results when it overflows. Such behavior
5008 // appears to be non-conforming, but is common, so perhaps we should
5009 // assume the standard intended for such cases to be undefined behavior
5010 // and check for them.
5011
5012 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
5013 // overflow in the final conversion to ptrdiff_t.
5014 APSInt LHS(
5015 llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
5016 APSInt RHS(
5017 llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
5018 APSInt ElemSize(
5019 llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
5020 APSInt TrueResult = (LHS - RHS) / ElemSize;
5021 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
5022
5023 if (Result.extend(65) != TrueResult)
5024 HandleOverflow(Info, E, TrueResult, E->getType());
5025 return Success(Result, E);
5026 }
5027
5028 // C++11 [expr.rel]p3:
5029 // Pointers to void (after pointer conversions) can be compared, with a
5030 // result defined as follows: If both pointers represent the same
5031 // address or are both the null pointer value, the result is true if the
5032 // operator is <= or >= and false otherwise; otherwise the result is
5033 // unspecified.
5034 // We interpret this as applying to pointers to *cv* void.
5035 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
5036 E->isRelationalOp())
5037 CCEDiag(E, diag::note_constexpr_void_comparison);
5038
5039 // C++11 [expr.rel]p2:
5040 // - If two pointers point to non-static data members of the same object,
5041 // or to subobjects or array elements fo such members, recursively, the
5042 // pointer to the later declared member compares greater provided the
5043 // two members have the same access control and provided their class is
5044 // not a union.
5045 // [...]
5046 // - Otherwise pointer comparisons are unspecified.
5047 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
5048 E->isRelationalOp()) {
5049 bool WasArrayIndex;
5050 unsigned Mismatch =
5051 FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
5052 RHSDesignator, WasArrayIndex);
5053 // At the point where the designators diverge, the comparison has a
5054 // specified value if:
5055 // - we are comparing array indices
5056 // - we are comparing fields of a union, or fields with the same access
5057 // Otherwise, the result is unspecified and thus the comparison is not a
5058 // constant expression.
5059 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
5060 Mismatch < RHSDesignator.Entries.size()) {
5061 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
5062 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
5063 if (!LF && !RF)
5064 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
5065 else if (!LF)
5066 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5067 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
5068 << RF->getParent() << RF;
5069 else if (!RF)
5070 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5071 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
5072 << LF->getParent() << LF;
5073 else if (!LF->getParent()->isUnion() &&
5074 LF->getAccess() != RF->getAccess())
5075 CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
5076 << LF << LF->getAccess() << RF << RF->getAccess()
5077 << LF->getParent();
5078 }
5079 }
5080
5081 // The comparison here must be unsigned, and performed with the same
5082 // width as the pointer.
5083 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
5084 uint64_t CompareLHS = LHSOffset.getQuantity();
5085 uint64_t CompareRHS = RHSOffset.getQuantity();
5086 assert(PtrSize <= 64 && "Unexpected pointer width");
5087 uint64_t Mask = ~0ULL >> (64 - PtrSize);
5088 CompareLHS &= Mask;
5089 CompareRHS &= Mask;
5090
5091 // If there is a base and this is a relational operator, we can only
5092 // compare pointers within the object in question; otherwise, the result
5093 // depends on where the object is located in memory.
5094 if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
5095 QualType BaseTy = getType(LHSValue.Base);
5096 if (BaseTy->isIncompleteType())
5097 return Error(E);
5098 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
5099 uint64_t OffsetLimit = Size.getQuantity();
5100 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
5101 return Error(E);
5102 }
5103
5104 switch (E->getOpcode()) {
5105 default: llvm_unreachable("missing comparison operator");
5106 case BO_LT: return Success(CompareLHS < CompareRHS, E);
5107 case BO_GT: return Success(CompareLHS > CompareRHS, E);
5108 case BO_LE: return Success(CompareLHS <= CompareRHS, E);
5109 case BO_GE: return Success(CompareLHS >= CompareRHS, E);
5110 case BO_EQ: return Success(CompareLHS == CompareRHS, E);
5111 case BO_NE: return Success(CompareLHS != CompareRHS, E);
5112 }
5113 }
5114 }
5115
5116 if (LHSTy->isMemberPointerType()) {
5117 assert(E->isEqualityOp() && "unexpected member pointer operation");
5118 assert(RHSTy->isMemberPointerType() && "invalid comparison");
5119
5120 MemberPtr LHSValue, RHSValue;
5121
5122 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
5123 if (!LHSOK && Info.keepEvaluatingAfterFailure())
5124 return false;
5125
5126 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
5127 return false;
5128
5129 // C++11 [expr.eq]p2:
5130 // If both operands are null, they compare equal. Otherwise if only one is
5131 // null, they compare unequal.
5132 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
5133 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
5134 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5135 }
5136
5137 // Otherwise if either is a pointer to a virtual member function, the
5138 // result is unspecified.
5139 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
5140 if (MD->isVirtual())
5141 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5142 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
5143 if (MD->isVirtual())
5144 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5145
5146 // Otherwise they compare equal if and only if they would refer to the
5147 // same member of the same most derived object or the same subobject if
5148 // they were dereferenced with a hypothetical object of the associated
5149 // class type.
5150 bool Equal = LHSValue == RHSValue;
5151 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5152 }
5153
5154 if (LHSTy->isNullPtrType()) {
5155 assert(E->isComparisonOp() && "unexpected nullptr operation");
5156 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
5157 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
5158 // are compared, the result is true of the operator is <=, >= or ==, and
5159 // false otherwise.
5160 BinaryOperator::Opcode Opcode = E->getOpcode();
5161 return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
5162 }
5163
5164 assert((!LHSTy->isIntegralOrEnumerationType() ||
5165 !RHSTy->isIntegralOrEnumerationType()) &&
5166 "DataRecursiveIntBinOpEvaluator should have handled integral types");
5167 // We can't continue from here for non-integral types.
5168 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5169 }
5170
GetAlignOfType(QualType T)5171 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
5172 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
5173 // result shall be the alignment of the referenced type."
5174 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5175 T = Ref->getPointeeType();
5176
5177 // __alignof is defined to return the preferred alignment.
5178 return Info.Ctx.toCharUnitsFromBits(
5179 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5180 }
5181
GetAlignOfExpr(const Expr * E)5182 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
5183 E = E->IgnoreParens();
5184
5185 // alignof decl is always accepted, even if it doesn't make sense: we default
5186 // to 1 in those cases.
5187 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5188 return Info.Ctx.getDeclAlign(DRE->getDecl(),
5189 /*RefAsPointee*/true);
5190
5191 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5192 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5193 /*RefAsPointee*/true);
5194
5195 return GetAlignOfType(E->getType());
5196 }
5197
5198
5199 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
5200 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)5201 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
5202 const UnaryExprOrTypeTraitExpr *E) {
5203 switch(E->getKind()) {
5204 case UETT_AlignOf: {
5205 if (E->isArgumentType())
5206 return Success(GetAlignOfType(E->getArgumentType()), E);
5207 else
5208 return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
5209 }
5210
5211 case UETT_VecStep: {
5212 QualType Ty = E->getTypeOfArgument();
5213
5214 if (Ty->isVectorType()) {
5215 unsigned n = Ty->castAs<VectorType>()->getNumElements();
5216
5217 // The vec_step built-in functions that take a 3-component
5218 // vector return 4. (OpenCL 1.1 spec 6.11.12)
5219 if (n == 3)
5220 n = 4;
5221
5222 return Success(n, E);
5223 } else
5224 return Success(1, E);
5225 }
5226
5227 case UETT_SizeOf: {
5228 QualType SrcTy = E->getTypeOfArgument();
5229 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
5230 // the result is the size of the referenced type."
5231 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
5232 SrcTy = Ref->getPointeeType();
5233
5234 CharUnits Sizeof;
5235 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
5236 return false;
5237 return Success(Sizeof, E);
5238 }
5239 }
5240
5241 llvm_unreachable("unknown expr/type trait");
5242 }
5243
VisitOffsetOfExpr(const OffsetOfExpr * OOE)5244 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
5245 CharUnits Result;
5246 unsigned n = OOE->getNumComponents();
5247 if (n == 0)
5248 return Error(OOE);
5249 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
5250 for (unsigned i = 0; i != n; ++i) {
5251 OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
5252 switch (ON.getKind()) {
5253 case OffsetOfExpr::OffsetOfNode::Array: {
5254 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
5255 APSInt IdxResult;
5256 if (!EvaluateInteger(Idx, IdxResult, Info))
5257 return false;
5258 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
5259 if (!AT)
5260 return Error(OOE);
5261 CurrentType = AT->getElementType();
5262 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
5263 Result += IdxResult.getSExtValue() * ElementSize;
5264 break;
5265 }
5266
5267 case OffsetOfExpr::OffsetOfNode::Field: {
5268 FieldDecl *MemberDecl = ON.getField();
5269 const RecordType *RT = CurrentType->getAs<RecordType>();
5270 if (!RT)
5271 return Error(OOE);
5272 RecordDecl *RD = RT->getDecl();
5273 if (RD->isInvalidDecl()) return false;
5274 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5275 unsigned i = MemberDecl->getFieldIndex();
5276 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
5277 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
5278 CurrentType = MemberDecl->getType().getNonReferenceType();
5279 break;
5280 }
5281
5282 case OffsetOfExpr::OffsetOfNode::Identifier:
5283 llvm_unreachable("dependent __builtin_offsetof");
5284
5285 case OffsetOfExpr::OffsetOfNode::Base: {
5286 CXXBaseSpecifier *BaseSpec = ON.getBase();
5287 if (BaseSpec->isVirtual())
5288 return Error(OOE);
5289
5290 // Find the layout of the class whose base we are looking into.
5291 const RecordType *RT = CurrentType->getAs<RecordType>();
5292 if (!RT)
5293 return Error(OOE);
5294 RecordDecl *RD = RT->getDecl();
5295 if (RD->isInvalidDecl()) return false;
5296 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5297
5298 // Find the base class itself.
5299 CurrentType = BaseSpec->getType();
5300 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
5301 if (!BaseRT)
5302 return Error(OOE);
5303
5304 // Add the offset to the base.
5305 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
5306 break;
5307 }
5308 }
5309 }
5310 return Success(Result, OOE);
5311 }
5312
VisitUnaryOperator(const UnaryOperator * E)5313 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5314 switch (E->getOpcode()) {
5315 default:
5316 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
5317 // See C99 6.6p3.
5318 return Error(E);
5319 case UO_Extension:
5320 // FIXME: Should extension allow i-c-e extension expressions in its scope?
5321 // If so, we could clear the diagnostic ID.
5322 return Visit(E->getSubExpr());
5323 case UO_Plus:
5324 // The result is just the value.
5325 return Visit(E->getSubExpr());
5326 case UO_Minus: {
5327 if (!Visit(E->getSubExpr()))
5328 return false;
5329 if (!Result.isInt()) return Error(E);
5330 const APSInt &Value = Result.getInt();
5331 if (Value.isSigned() && Value.isMinSignedValue())
5332 HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
5333 E->getType());
5334 return Success(-Value, E);
5335 }
5336 case UO_Not: {
5337 if (!Visit(E->getSubExpr()))
5338 return false;
5339 if (!Result.isInt()) return Error(E);
5340 return Success(~Result.getInt(), E);
5341 }
5342 case UO_LNot: {
5343 bool bres;
5344 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
5345 return false;
5346 return Success(!bres, E);
5347 }
5348 }
5349 }
5350
5351 /// HandleCast - This is used to evaluate implicit or explicit casts where the
5352 /// result type is integer.
VisitCastExpr(const CastExpr * E)5353 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
5354 const Expr *SubExpr = E->getSubExpr();
5355 QualType DestType = E->getType();
5356 QualType SrcType = SubExpr->getType();
5357
5358 switch (E->getCastKind()) {
5359 case CK_BaseToDerived:
5360 case CK_DerivedToBase:
5361 case CK_UncheckedDerivedToBase:
5362 case CK_Dynamic:
5363 case CK_ToUnion:
5364 case CK_ArrayToPointerDecay:
5365 case CK_FunctionToPointerDecay:
5366 case CK_NullToPointer:
5367 case CK_NullToMemberPointer:
5368 case CK_BaseToDerivedMemberPointer:
5369 case CK_DerivedToBaseMemberPointer:
5370 case CK_ReinterpretMemberPointer:
5371 case CK_ConstructorConversion:
5372 case CK_IntegralToPointer:
5373 case CK_ToVoid:
5374 case CK_VectorSplat:
5375 case CK_IntegralToFloating:
5376 case CK_FloatingCast:
5377 case CK_CPointerToObjCPointerCast:
5378 case CK_BlockPointerToObjCPointerCast:
5379 case CK_AnyPointerToBlockPointerCast:
5380 case CK_ObjCObjectLValueCast:
5381 case CK_FloatingRealToComplex:
5382 case CK_FloatingComplexToReal:
5383 case CK_FloatingComplexCast:
5384 case CK_FloatingComplexToIntegralComplex:
5385 case CK_IntegralRealToComplex:
5386 case CK_IntegralComplexCast:
5387 case CK_IntegralComplexToFloatingComplex:
5388 case CK_BuiltinFnToFnPtr:
5389 case CK_ZeroToOCLEvent:
5390 llvm_unreachable("invalid cast kind for integral value");
5391
5392 case CK_BitCast:
5393 case CK_Dependent:
5394 case CK_LValueBitCast:
5395 case CK_ARCProduceObject:
5396 case CK_ARCConsumeObject:
5397 case CK_ARCReclaimReturnedObject:
5398 case CK_ARCExtendBlockObject:
5399 case CK_CopyAndAutoreleaseBlockObject:
5400 return Error(E);
5401
5402 case CK_UserDefinedConversion:
5403 case CK_LValueToRValue:
5404 case CK_AtomicToNonAtomic:
5405 case CK_NonAtomicToAtomic:
5406 case CK_NoOp:
5407 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5408
5409 case CK_MemberPointerToBoolean:
5410 case CK_PointerToBoolean:
5411 case CK_IntegralToBoolean:
5412 case CK_FloatingToBoolean:
5413 case CK_FloatingComplexToBoolean:
5414 case CK_IntegralComplexToBoolean: {
5415 bool BoolResult;
5416 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
5417 return false;
5418 return Success(BoolResult, E);
5419 }
5420
5421 case CK_IntegralCast: {
5422 if (!Visit(SubExpr))
5423 return false;
5424
5425 if (!Result.isInt()) {
5426 // Allow casts of address-of-label differences if they are no-ops
5427 // or narrowing. (The narrowing case isn't actually guaranteed to
5428 // be constant-evaluatable except in some narrow cases which are hard
5429 // to detect here. We let it through on the assumption the user knows
5430 // what they are doing.)
5431 if (Result.isAddrLabelDiff())
5432 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
5433 // Only allow casts of lvalues if they are lossless.
5434 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
5435 }
5436
5437 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
5438 Result.getInt()), E);
5439 }
5440
5441 case CK_PointerToIntegral: {
5442 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5443
5444 LValue LV;
5445 if (!EvaluatePointer(SubExpr, LV, Info))
5446 return false;
5447
5448 if (LV.getLValueBase()) {
5449 // Only allow based lvalue casts if they are lossless.
5450 // FIXME: Allow a larger integer size than the pointer size, and allow
5451 // narrowing back down to pointer width in subsequent integral casts.
5452 // FIXME: Check integer type's active bits, not its type size.
5453 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
5454 return Error(E);
5455
5456 LV.Designator.setInvalid();
5457 LV.moveInto(Result);
5458 return true;
5459 }
5460
5461 APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
5462 SrcType);
5463 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
5464 }
5465
5466 case CK_IntegralComplexToReal: {
5467 ComplexValue C;
5468 if (!EvaluateComplex(SubExpr, C, Info))
5469 return false;
5470 return Success(C.getComplexIntReal(), E);
5471 }
5472
5473 case CK_FloatingToIntegral: {
5474 APFloat F(0.0);
5475 if (!EvaluateFloat(SubExpr, F, Info))
5476 return false;
5477
5478 APSInt Value;
5479 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
5480 return false;
5481 return Success(Value, E);
5482 }
5483 }
5484
5485 llvm_unreachable("unknown cast resulting in integral value");
5486 }
5487
VisitUnaryReal(const UnaryOperator * E)5488 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5489 if (E->getSubExpr()->getType()->isAnyComplexType()) {
5490 ComplexValue LV;
5491 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5492 return false;
5493 if (!LV.isComplexInt())
5494 return Error(E);
5495 return Success(LV.getComplexIntReal(), E);
5496 }
5497
5498 return Visit(E->getSubExpr());
5499 }
5500
VisitUnaryImag(const UnaryOperator * E)5501 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5502 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
5503 ComplexValue LV;
5504 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5505 return false;
5506 if (!LV.isComplexInt())
5507 return Error(E);
5508 return Success(LV.getComplexIntImag(), E);
5509 }
5510
5511 VisitIgnoredValue(E->getSubExpr());
5512 return Success(0, E);
5513 }
5514
VisitSizeOfPackExpr(const SizeOfPackExpr * E)5515 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
5516 return Success(E->getPackLength(), E);
5517 }
5518
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)5519 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
5520 return Success(E->getValue(), E);
5521 }
5522
5523 //===----------------------------------------------------------------------===//
5524 // Float Evaluation
5525 //===----------------------------------------------------------------------===//
5526
5527 namespace {
5528 class FloatExprEvaluator
5529 : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
5530 APFloat &Result;
5531 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)5532 FloatExprEvaluator(EvalInfo &info, APFloat &result)
5533 : ExprEvaluatorBaseTy(info), Result(result) {}
5534
Success(const APValue & V,const Expr * e)5535 bool Success(const APValue &V, const Expr *e) {
5536 Result = V.getFloat();
5537 return true;
5538 }
5539
ZeroInitialization(const Expr * E)5540 bool ZeroInitialization(const Expr *E) {
5541 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
5542 return true;
5543 }
5544
5545 bool VisitCallExpr(const CallExpr *E);
5546
5547 bool VisitUnaryOperator(const UnaryOperator *E);
5548 bool VisitBinaryOperator(const BinaryOperator *E);
5549 bool VisitFloatingLiteral(const FloatingLiteral *E);
5550 bool VisitCastExpr(const CastExpr *E);
5551
5552 bool VisitUnaryReal(const UnaryOperator *E);
5553 bool VisitUnaryImag(const UnaryOperator *E);
5554
5555 // FIXME: Missing: array subscript of vector, member of vector
5556 };
5557 } // end anonymous namespace
5558
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)5559 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
5560 assert(E->isRValue() && E->getType()->isRealFloatingType());
5561 return FloatExprEvaluator(Info, Result).Visit(E);
5562 }
5563
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)5564 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
5565 QualType ResultTy,
5566 const Expr *Arg,
5567 bool SNaN,
5568 llvm::APFloat &Result) {
5569 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
5570 if (!S) return false;
5571
5572 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
5573
5574 llvm::APInt fill;
5575
5576 // Treat empty strings as if they were zero.
5577 if (S->getString().empty())
5578 fill = llvm::APInt(32, 0);
5579 else if (S->getString().getAsInteger(0, fill))
5580 return false;
5581
5582 if (SNaN)
5583 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
5584 else
5585 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
5586 return true;
5587 }
5588
VisitCallExpr(const CallExpr * E)5589 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
5590 switch (E->isBuiltinCall()) {
5591 default:
5592 return ExprEvaluatorBaseTy::VisitCallExpr(E);
5593
5594 case Builtin::BI__builtin_huge_val:
5595 case Builtin::BI__builtin_huge_valf:
5596 case Builtin::BI__builtin_huge_vall:
5597 case Builtin::BI__builtin_inf:
5598 case Builtin::BI__builtin_inff:
5599 case Builtin::BI__builtin_infl: {
5600 const llvm::fltSemantics &Sem =
5601 Info.Ctx.getFloatTypeSemantics(E->getType());
5602 Result = llvm::APFloat::getInf(Sem);
5603 return true;
5604 }
5605
5606 case Builtin::BI__builtin_nans:
5607 case Builtin::BI__builtin_nansf:
5608 case Builtin::BI__builtin_nansl:
5609 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5610 true, Result))
5611 return Error(E);
5612 return true;
5613
5614 case Builtin::BI__builtin_nan:
5615 case Builtin::BI__builtin_nanf:
5616 case Builtin::BI__builtin_nanl:
5617 // If this is __builtin_nan() turn this into a nan, otherwise we
5618 // can't constant fold it.
5619 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5620 false, Result))
5621 return Error(E);
5622 return true;
5623
5624 case Builtin::BI__builtin_fabs:
5625 case Builtin::BI__builtin_fabsf:
5626 case Builtin::BI__builtin_fabsl:
5627 if (!EvaluateFloat(E->getArg(0), Result, Info))
5628 return false;
5629
5630 if (Result.isNegative())
5631 Result.changeSign();
5632 return true;
5633
5634 case Builtin::BI__builtin_copysign:
5635 case Builtin::BI__builtin_copysignf:
5636 case Builtin::BI__builtin_copysignl: {
5637 APFloat RHS(0.);
5638 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
5639 !EvaluateFloat(E->getArg(1), RHS, Info))
5640 return false;
5641 Result.copySign(RHS);
5642 return true;
5643 }
5644 }
5645 }
5646
VisitUnaryReal(const UnaryOperator * E)5647 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5648 if (E->getSubExpr()->getType()->isAnyComplexType()) {
5649 ComplexValue CV;
5650 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5651 return false;
5652 Result = CV.FloatReal;
5653 return true;
5654 }
5655
5656 return Visit(E->getSubExpr());
5657 }
5658
VisitUnaryImag(const UnaryOperator * E)5659 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5660 if (E->getSubExpr()->getType()->isAnyComplexType()) {
5661 ComplexValue CV;
5662 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5663 return false;
5664 Result = CV.FloatImag;
5665 return true;
5666 }
5667
5668 VisitIgnoredValue(E->getSubExpr());
5669 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
5670 Result = llvm::APFloat::getZero(Sem);
5671 return true;
5672 }
5673
VisitUnaryOperator(const UnaryOperator * E)5674 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5675 switch (E->getOpcode()) {
5676 default: return Error(E);
5677 case UO_Plus:
5678 return EvaluateFloat(E->getSubExpr(), Result, Info);
5679 case UO_Minus:
5680 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
5681 return false;
5682 Result.changeSign();
5683 return true;
5684 }
5685 }
5686
VisitBinaryOperator(const BinaryOperator * E)5687 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5688 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5689 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5690
5691 APFloat RHS(0.0);
5692 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
5693 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5694 return false;
5695 if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
5696 return false;
5697
5698 switch (E->getOpcode()) {
5699 default: return Error(E);
5700 case BO_Mul:
5701 Result.multiply(RHS, APFloat::rmNearestTiesToEven);
5702 break;
5703 case BO_Add:
5704 Result.add(RHS, APFloat::rmNearestTiesToEven);
5705 break;
5706 case BO_Sub:
5707 Result.subtract(RHS, APFloat::rmNearestTiesToEven);
5708 break;
5709 case BO_Div:
5710 Result.divide(RHS, APFloat::rmNearestTiesToEven);
5711 break;
5712 }
5713
5714 if (Result.isInfinity() || Result.isNaN())
5715 CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
5716 return true;
5717 }
5718
VisitFloatingLiteral(const FloatingLiteral * E)5719 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
5720 Result = E->getValue();
5721 return true;
5722 }
5723
VisitCastExpr(const CastExpr * E)5724 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
5725 const Expr* SubExpr = E->getSubExpr();
5726
5727 switch (E->getCastKind()) {
5728 default:
5729 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5730
5731 case CK_IntegralToFloating: {
5732 APSInt IntResult;
5733 return EvaluateInteger(SubExpr, IntResult, Info) &&
5734 HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
5735 E->getType(), Result);
5736 }
5737
5738 case CK_FloatingCast: {
5739 if (!Visit(SubExpr))
5740 return false;
5741 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
5742 Result);
5743 }
5744
5745 case CK_FloatingComplexToReal: {
5746 ComplexValue V;
5747 if (!EvaluateComplex(SubExpr, V, Info))
5748 return false;
5749 Result = V.getComplexFloatReal();
5750 return true;
5751 }
5752 }
5753 }
5754
5755 //===----------------------------------------------------------------------===//
5756 // Complex Evaluation (for float and integer)
5757 //===----------------------------------------------------------------------===//
5758
5759 namespace {
5760 class ComplexExprEvaluator
5761 : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
5762 ComplexValue &Result;
5763
5764 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)5765 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
5766 : ExprEvaluatorBaseTy(info), Result(Result) {}
5767
Success(const APValue & V,const Expr * e)5768 bool Success(const APValue &V, const Expr *e) {
5769 Result.setFrom(V);
5770 return true;
5771 }
5772
5773 bool ZeroInitialization(const Expr *E);
5774
5775 //===--------------------------------------------------------------------===//
5776 // Visitor Methods
5777 //===--------------------------------------------------------------------===//
5778
5779 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
5780 bool VisitCastExpr(const CastExpr *E);
5781 bool VisitBinaryOperator(const BinaryOperator *E);
5782 bool VisitUnaryOperator(const UnaryOperator *E);
5783 bool VisitInitListExpr(const InitListExpr *E);
5784 };
5785 } // end anonymous namespace
5786
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)5787 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
5788 EvalInfo &Info) {
5789 assert(E->isRValue() && E->getType()->isAnyComplexType());
5790 return ComplexExprEvaluator(Info, Result).Visit(E);
5791 }
5792
ZeroInitialization(const Expr * E)5793 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
5794 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
5795 if (ElemTy->isRealFloatingType()) {
5796 Result.makeComplexFloat();
5797 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
5798 Result.FloatReal = Zero;
5799 Result.FloatImag = Zero;
5800 } else {
5801 Result.makeComplexInt();
5802 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
5803 Result.IntReal = Zero;
5804 Result.IntImag = Zero;
5805 }
5806 return true;
5807 }
5808
VisitImaginaryLiteral(const ImaginaryLiteral * E)5809 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
5810 const Expr* SubExpr = E->getSubExpr();
5811
5812 if (SubExpr->getType()->isRealFloatingType()) {
5813 Result.makeComplexFloat();
5814 APFloat &Imag = Result.FloatImag;
5815 if (!EvaluateFloat(SubExpr, Imag, Info))
5816 return false;
5817
5818 Result.FloatReal = APFloat(Imag.getSemantics());
5819 return true;
5820 } else {
5821 assert(SubExpr->getType()->isIntegerType() &&
5822 "Unexpected imaginary literal.");
5823
5824 Result.makeComplexInt();
5825 APSInt &Imag = Result.IntImag;
5826 if (!EvaluateInteger(SubExpr, Imag, Info))
5827 return false;
5828
5829 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
5830 return true;
5831 }
5832 }
5833
VisitCastExpr(const CastExpr * E)5834 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
5835
5836 switch (E->getCastKind()) {
5837 case CK_BitCast:
5838 case CK_BaseToDerived:
5839 case CK_DerivedToBase:
5840 case CK_UncheckedDerivedToBase:
5841 case CK_Dynamic:
5842 case CK_ToUnion:
5843 case CK_ArrayToPointerDecay:
5844 case CK_FunctionToPointerDecay:
5845 case CK_NullToPointer:
5846 case CK_NullToMemberPointer:
5847 case CK_BaseToDerivedMemberPointer:
5848 case CK_DerivedToBaseMemberPointer:
5849 case CK_MemberPointerToBoolean:
5850 case CK_ReinterpretMemberPointer:
5851 case CK_ConstructorConversion:
5852 case CK_IntegralToPointer:
5853 case CK_PointerToIntegral:
5854 case CK_PointerToBoolean:
5855 case CK_ToVoid:
5856 case CK_VectorSplat:
5857 case CK_IntegralCast:
5858 case CK_IntegralToBoolean:
5859 case CK_IntegralToFloating:
5860 case CK_FloatingToIntegral:
5861 case CK_FloatingToBoolean:
5862 case CK_FloatingCast:
5863 case CK_CPointerToObjCPointerCast:
5864 case CK_BlockPointerToObjCPointerCast:
5865 case CK_AnyPointerToBlockPointerCast:
5866 case CK_ObjCObjectLValueCast:
5867 case CK_FloatingComplexToReal:
5868 case CK_FloatingComplexToBoolean:
5869 case CK_IntegralComplexToReal:
5870 case CK_IntegralComplexToBoolean:
5871 case CK_ARCProduceObject:
5872 case CK_ARCConsumeObject:
5873 case CK_ARCReclaimReturnedObject:
5874 case CK_ARCExtendBlockObject:
5875 case CK_CopyAndAutoreleaseBlockObject:
5876 case CK_BuiltinFnToFnPtr:
5877 case CK_ZeroToOCLEvent:
5878 llvm_unreachable("invalid cast kind for complex value");
5879
5880 case CK_LValueToRValue:
5881 case CK_AtomicToNonAtomic:
5882 case CK_NonAtomicToAtomic:
5883 case CK_NoOp:
5884 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5885
5886 case CK_Dependent:
5887 case CK_LValueBitCast:
5888 case CK_UserDefinedConversion:
5889 return Error(E);
5890
5891 case CK_FloatingRealToComplex: {
5892 APFloat &Real = Result.FloatReal;
5893 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
5894 return false;
5895
5896 Result.makeComplexFloat();
5897 Result.FloatImag = APFloat(Real.getSemantics());
5898 return true;
5899 }
5900
5901 case CK_FloatingComplexCast: {
5902 if (!Visit(E->getSubExpr()))
5903 return false;
5904
5905 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5906 QualType From
5907 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5908
5909 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
5910 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
5911 }
5912
5913 case CK_FloatingComplexToIntegralComplex: {
5914 if (!Visit(E->getSubExpr()))
5915 return false;
5916
5917 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5918 QualType From
5919 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5920 Result.makeComplexInt();
5921 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
5922 To, Result.IntReal) &&
5923 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
5924 To, Result.IntImag);
5925 }
5926
5927 case CK_IntegralRealToComplex: {
5928 APSInt &Real = Result.IntReal;
5929 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
5930 return false;
5931
5932 Result.makeComplexInt();
5933 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
5934 return true;
5935 }
5936
5937 case CK_IntegralComplexCast: {
5938 if (!Visit(E->getSubExpr()))
5939 return false;
5940
5941 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5942 QualType From
5943 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5944
5945 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
5946 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
5947 return true;
5948 }
5949
5950 case CK_IntegralComplexToFloatingComplex: {
5951 if (!Visit(E->getSubExpr()))
5952 return false;
5953
5954 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
5955 QualType From
5956 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
5957 Result.makeComplexFloat();
5958 return HandleIntToFloatCast(Info, E, From, Result.IntReal,
5959 To, Result.FloatReal) &&
5960 HandleIntToFloatCast(Info, E, From, Result.IntImag,
5961 To, Result.FloatImag);
5962 }
5963 }
5964
5965 llvm_unreachable("unknown cast resulting in complex value");
5966 }
5967
VisitBinaryOperator(const BinaryOperator * E)5968 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5969 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5970 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5971
5972 bool LHSOK = Visit(E->getLHS());
5973 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5974 return false;
5975
5976 ComplexValue RHS;
5977 if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
5978 return false;
5979
5980 assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
5981 "Invalid operands to binary operator.");
5982 switch (E->getOpcode()) {
5983 default: return Error(E);
5984 case BO_Add:
5985 if (Result.isComplexFloat()) {
5986 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
5987 APFloat::rmNearestTiesToEven);
5988 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
5989 APFloat::rmNearestTiesToEven);
5990 } else {
5991 Result.getComplexIntReal() += RHS.getComplexIntReal();
5992 Result.getComplexIntImag() += RHS.getComplexIntImag();
5993 }
5994 break;
5995 case BO_Sub:
5996 if (Result.isComplexFloat()) {
5997 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
5998 APFloat::rmNearestTiesToEven);
5999 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
6000 APFloat::rmNearestTiesToEven);
6001 } else {
6002 Result.getComplexIntReal() -= RHS.getComplexIntReal();
6003 Result.getComplexIntImag() -= RHS.getComplexIntImag();
6004 }
6005 break;
6006 case BO_Mul:
6007 if (Result.isComplexFloat()) {
6008 ComplexValue LHS = Result;
6009 APFloat &LHS_r = LHS.getComplexFloatReal();
6010 APFloat &LHS_i = LHS.getComplexFloatImag();
6011 APFloat &RHS_r = RHS.getComplexFloatReal();
6012 APFloat &RHS_i = RHS.getComplexFloatImag();
6013
6014 APFloat Tmp = LHS_r;
6015 Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6016 Result.getComplexFloatReal() = Tmp;
6017 Tmp = LHS_i;
6018 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6019 Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
6020
6021 Tmp = LHS_r;
6022 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6023 Result.getComplexFloatImag() = Tmp;
6024 Tmp = LHS_i;
6025 Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6026 Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
6027 } else {
6028 ComplexValue LHS = Result;
6029 Result.getComplexIntReal() =
6030 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
6031 LHS.getComplexIntImag() * RHS.getComplexIntImag());
6032 Result.getComplexIntImag() =
6033 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
6034 LHS.getComplexIntImag() * RHS.getComplexIntReal());
6035 }
6036 break;
6037 case BO_Div:
6038 if (Result.isComplexFloat()) {
6039 ComplexValue LHS = Result;
6040 APFloat &LHS_r = LHS.getComplexFloatReal();
6041 APFloat &LHS_i = LHS.getComplexFloatImag();
6042 APFloat &RHS_r = RHS.getComplexFloatReal();
6043 APFloat &RHS_i = RHS.getComplexFloatImag();
6044 APFloat &Res_r = Result.getComplexFloatReal();
6045 APFloat &Res_i = Result.getComplexFloatImag();
6046
6047 APFloat Den = RHS_r;
6048 Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6049 APFloat Tmp = RHS_i;
6050 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6051 Den.add(Tmp, APFloat::rmNearestTiesToEven);
6052
6053 Res_r = LHS_r;
6054 Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6055 Tmp = LHS_i;
6056 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6057 Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
6058 Res_r.divide(Den, APFloat::rmNearestTiesToEven);
6059
6060 Res_i = LHS_i;
6061 Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6062 Tmp = LHS_r;
6063 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6064 Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
6065 Res_i.divide(Den, APFloat::rmNearestTiesToEven);
6066 } else {
6067 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
6068 return Error(E, diag::note_expr_divide_by_zero);
6069
6070 ComplexValue LHS = Result;
6071 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
6072 RHS.getComplexIntImag() * RHS.getComplexIntImag();
6073 Result.getComplexIntReal() =
6074 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
6075 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
6076 Result.getComplexIntImag() =
6077 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
6078 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
6079 }
6080 break;
6081 }
6082
6083 return true;
6084 }
6085
VisitUnaryOperator(const UnaryOperator * E)6086 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6087 // Get the operand value into 'Result'.
6088 if (!Visit(E->getSubExpr()))
6089 return false;
6090
6091 switch (E->getOpcode()) {
6092 default:
6093 return Error(E);
6094 case UO_Extension:
6095 return true;
6096 case UO_Plus:
6097 // The result is always just the subexpr.
6098 return true;
6099 case UO_Minus:
6100 if (Result.isComplexFloat()) {
6101 Result.getComplexFloatReal().changeSign();
6102 Result.getComplexFloatImag().changeSign();
6103 }
6104 else {
6105 Result.getComplexIntReal() = -Result.getComplexIntReal();
6106 Result.getComplexIntImag() = -Result.getComplexIntImag();
6107 }
6108 return true;
6109 case UO_Not:
6110 if (Result.isComplexFloat())
6111 Result.getComplexFloatImag().changeSign();
6112 else
6113 Result.getComplexIntImag() = -Result.getComplexIntImag();
6114 return true;
6115 }
6116 }
6117
VisitInitListExpr(const InitListExpr * E)6118 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6119 if (E->getNumInits() == 2) {
6120 if (E->getType()->isComplexType()) {
6121 Result.makeComplexFloat();
6122 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
6123 return false;
6124 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
6125 return false;
6126 } else {
6127 Result.makeComplexInt();
6128 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
6129 return false;
6130 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
6131 return false;
6132 }
6133 return true;
6134 }
6135 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
6136 }
6137
6138 //===----------------------------------------------------------------------===//
6139 // Void expression evaluation, primarily for a cast to void on the LHS of a
6140 // comma operator
6141 //===----------------------------------------------------------------------===//
6142
6143 namespace {
6144 class VoidExprEvaluator
6145 : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
6146 public:
VoidExprEvaluator(EvalInfo & Info)6147 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
6148
Success(const APValue & V,const Expr * e)6149 bool Success(const APValue &V, const Expr *e) { return true; }
6150
VisitCastExpr(const CastExpr * E)6151 bool VisitCastExpr(const CastExpr *E) {
6152 switch (E->getCastKind()) {
6153 default:
6154 return ExprEvaluatorBaseTy::VisitCastExpr(E);
6155 case CK_ToVoid:
6156 VisitIgnoredValue(E->getSubExpr());
6157 return true;
6158 }
6159 }
6160 };
6161 } // end anonymous namespace
6162
EvaluateVoid(const Expr * E,EvalInfo & Info)6163 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
6164 assert(E->isRValue() && E->getType()->isVoidType());
6165 return VoidExprEvaluator(Info).Visit(E);
6166 }
6167
6168 //===----------------------------------------------------------------------===//
6169 // Top level Expr::EvaluateAsRValue method.
6170 //===----------------------------------------------------------------------===//
6171
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)6172 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
6173 // In C, function designators are not lvalues, but we evaluate them as if they
6174 // are.
6175 if (E->isGLValue() || E->getType()->isFunctionType()) {
6176 LValue LV;
6177 if (!EvaluateLValue(E, LV, Info))
6178 return false;
6179 LV.moveInto(Result);
6180 } else if (E->getType()->isVectorType()) {
6181 if (!EvaluateVector(E, Result, Info))
6182 return false;
6183 } else if (E->getType()->isIntegralOrEnumerationType()) {
6184 if (!IntExprEvaluator(Info, Result).Visit(E))
6185 return false;
6186 } else if (E->getType()->hasPointerRepresentation()) {
6187 LValue LV;
6188 if (!EvaluatePointer(E, LV, Info))
6189 return false;
6190 LV.moveInto(Result);
6191 } else if (E->getType()->isRealFloatingType()) {
6192 llvm::APFloat F(0.0);
6193 if (!EvaluateFloat(E, F, Info))
6194 return false;
6195 Result = APValue(F);
6196 } else if (E->getType()->isAnyComplexType()) {
6197 ComplexValue C;
6198 if (!EvaluateComplex(E, C, Info))
6199 return false;
6200 C.moveInto(Result);
6201 } else if (E->getType()->isMemberPointerType()) {
6202 MemberPtr P;
6203 if (!EvaluateMemberPointer(E, P, Info))
6204 return false;
6205 P.moveInto(Result);
6206 return true;
6207 } else if (E->getType()->isArrayType()) {
6208 LValue LV;
6209 LV.set(E, Info.CurrentCall->Index);
6210 if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
6211 return false;
6212 Result = Info.CurrentCall->Temporaries[E];
6213 } else if (E->getType()->isRecordType()) {
6214 LValue LV;
6215 LV.set(E, Info.CurrentCall->Index);
6216 if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
6217 return false;
6218 Result = Info.CurrentCall->Temporaries[E];
6219 } else if (E->getType()->isVoidType()) {
6220 if (!Info.getLangOpts().CPlusPlus11)
6221 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
6222 << E->getType();
6223 if (!EvaluateVoid(E, Info))
6224 return false;
6225 } else if (Info.getLangOpts().CPlusPlus11) {
6226 Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
6227 return false;
6228 } else {
6229 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6230 return false;
6231 }
6232
6233 return true;
6234 }
6235
6236 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
6237 /// cases, the in-place evaluation is essential, since later initializers for
6238 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,CheckConstantExpressionKind CCEK,bool AllowNonLiteralTypes)6239 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
6240 const Expr *E, CheckConstantExpressionKind CCEK,
6241 bool AllowNonLiteralTypes) {
6242 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
6243 return false;
6244
6245 if (E->isRValue()) {
6246 // Evaluate arrays and record types in-place, so that later initializers can
6247 // refer to earlier-initialized members of the object.
6248 if (E->getType()->isArrayType())
6249 return EvaluateArray(E, This, Result, Info);
6250 else if (E->getType()->isRecordType())
6251 return EvaluateRecord(E, This, Result, Info);
6252 }
6253
6254 // For any other type, in-place evaluation is unimportant.
6255 return Evaluate(Result, Info, E);
6256 }
6257
6258 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
6259 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)6260 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
6261 if (!CheckLiteralType(Info, E))
6262 return false;
6263
6264 if (!::Evaluate(Result, Info, E))
6265 return false;
6266
6267 if (E->isGLValue()) {
6268 LValue LV;
6269 LV.setFrom(Info.Ctx, Result);
6270 if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
6271 return false;
6272 }
6273
6274 // Check this core constant expression is a constant expression.
6275 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
6276 }
6277
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)6278 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
6279 const ASTContext &Ctx, bool &IsConst) {
6280 // Fast-path evaluations of integer literals, since we sometimes see files
6281 // containing vast quantities of these.
6282 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
6283 Result.Val = APValue(APSInt(L->getValue(),
6284 L->getType()->isUnsignedIntegerType()));
6285 IsConst = true;
6286 return true;
6287 }
6288
6289 // FIXME: Evaluating values of large array and record types can cause
6290 // performance problems. Only do so in C++11 for now.
6291 if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
6292 Exp->getType()->isRecordType()) &&
6293 !Ctx.getLangOpts().CPlusPlus11) {
6294 IsConst = false;
6295 return true;
6296 }
6297 return false;
6298 }
6299
6300
6301 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
6302 /// any crazy technique (that has nothing to do with language standards) that
6303 /// we want to. If this function returns true, it returns the folded constant
6304 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
6305 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const6306 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
6307 bool IsConst;
6308 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
6309 return IsConst;
6310
6311 EvalInfo Info(Ctx, Result);
6312 return ::EvaluateAsRValue(Info, this, Result.Val);
6313 }
6314
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const6315 bool Expr::EvaluateAsBooleanCondition(bool &Result,
6316 const ASTContext &Ctx) const {
6317 EvalResult Scratch;
6318 return EvaluateAsRValue(Scratch, Ctx) &&
6319 HandleConversionToBool(Scratch.Val, Result);
6320 }
6321
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const6322 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
6323 SideEffectsKind AllowSideEffects) const {
6324 if (!getType()->isIntegralOrEnumerationType())
6325 return false;
6326
6327 EvalResult ExprResult;
6328 if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
6329 (!AllowSideEffects && ExprResult.HasSideEffects))
6330 return false;
6331
6332 Result = ExprResult.Val.getInt();
6333 return true;
6334 }
6335
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const6336 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
6337 EvalInfo Info(Ctx, Result);
6338
6339 LValue LV;
6340 if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
6341 !CheckLValueConstantExpression(Info, getExprLoc(),
6342 Ctx.getLValueReferenceType(getType()), LV))
6343 return false;
6344
6345 LV.moveInto(Result.Val);
6346 return true;
6347 }
6348
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const6349 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
6350 const VarDecl *VD,
6351 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
6352 // FIXME: Evaluating initializers for large array and record types can cause
6353 // performance problems. Only do so in C++11 for now.
6354 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6355 !Ctx.getLangOpts().CPlusPlus11)
6356 return false;
6357
6358 Expr::EvalStatus EStatus;
6359 EStatus.Diag = &Notes;
6360
6361 EvalInfo InitInfo(Ctx, EStatus);
6362 InitInfo.setEvaluatingDecl(VD, Value);
6363
6364 LValue LVal;
6365 LVal.set(VD);
6366
6367 // C++11 [basic.start.init]p2:
6368 // Variables with static storage duration or thread storage duration shall be
6369 // zero-initialized before any other initialization takes place.
6370 // This behavior is not present in C.
6371 if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
6372 !VD->getType()->isReferenceType()) {
6373 ImplicitValueInitExpr VIE(VD->getType());
6374 if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
6375 /*AllowNonLiteralTypes=*/true))
6376 return false;
6377 }
6378
6379 if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
6380 /*AllowNonLiteralTypes=*/true) ||
6381 EStatus.HasSideEffects)
6382 return false;
6383
6384 return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
6385 Value);
6386 }
6387
6388 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
6389 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx) const6390 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
6391 EvalResult Result;
6392 return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
6393 }
6394
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const6395 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
6396 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
6397 EvalResult EvalResult;
6398 EvalResult.Diag = Diag;
6399 bool Result = EvaluateAsRValue(EvalResult, Ctx);
6400 (void)Result;
6401 assert(Result && "Could not evaluate expression");
6402 assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
6403
6404 return EvalResult.Val.getInt();
6405 }
6406
EvaluateForOverflow(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diags) const6407 void Expr::EvaluateForOverflow(const ASTContext &Ctx,
6408 SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
6409 bool IsConst;
6410 EvalResult EvalResult;
6411 EvalResult.Diag = Diags;
6412 if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
6413 EvalInfo Info(Ctx, EvalResult, true);
6414 (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
6415 }
6416 }
6417
isGlobalLValue() const6418 bool Expr::EvalResult::isGlobalLValue() const {
6419 assert(Val.isLValue());
6420 return IsGlobalLValue(Val.getLValueBase());
6421 }
6422
6423
6424 /// isIntegerConstantExpr - this recursive routine will test if an expression is
6425 /// an integer constant expression.
6426
6427 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
6428 /// comma, etc
6429
6430 // CheckICE - This function does the fundamental ICE checking: the returned
6431 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
6432 // and a (possibly null) SourceLocation indicating the location of the problem.
6433 //
6434 // Note that to reduce code duplication, this helper does no evaluation
6435 // itself; the caller checks whether the expression is evaluatable, and
6436 // in the rare cases where CheckICE actually cares about the evaluated
6437 // value, it calls into Evalute.
6438
6439 namespace {
6440
6441 enum ICEKind {
6442 /// This expression is an ICE.
6443 IK_ICE,
6444 /// This expression is not an ICE, but if it isn't evaluated, it's
6445 /// a legal subexpression for an ICE. This return value is used to handle
6446 /// the comma operator in C99 mode, and non-constant subexpressions.
6447 IK_ICEIfUnevaluated,
6448 /// This expression is not an ICE, and is not a legal subexpression for one.
6449 IK_NotICE
6450 };
6451
6452 struct ICEDiag {
6453 ICEKind Kind;
6454 SourceLocation Loc;
6455
ICEDiag__anon0c5100021411::ICEDiag6456 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
6457 };
6458
6459 }
6460
NoDiag()6461 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
6462
Worst(ICEDiag A,ICEDiag B)6463 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
6464
CheckEvalInICE(const Expr * E,ASTContext & Ctx)6465 static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
6466 Expr::EvalResult EVResult;
6467 if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
6468 !EVResult.Val.isInt())
6469 return ICEDiag(IK_NotICE, E->getLocStart());
6470
6471 return NoDiag();
6472 }
6473
CheckICE(const Expr * E,ASTContext & Ctx)6474 static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
6475 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
6476 if (!E->getType()->isIntegralOrEnumerationType())
6477 return ICEDiag(IK_NotICE, E->getLocStart());
6478
6479 switch (E->getStmtClass()) {
6480 #define ABSTRACT_STMT(Node)
6481 #define STMT(Node, Base) case Expr::Node##Class:
6482 #define EXPR(Node, Base)
6483 #include "clang/AST/StmtNodes.inc"
6484 case Expr::PredefinedExprClass:
6485 case Expr::FloatingLiteralClass:
6486 case Expr::ImaginaryLiteralClass:
6487 case Expr::StringLiteralClass:
6488 case Expr::ArraySubscriptExprClass:
6489 case Expr::MemberExprClass:
6490 case Expr::CompoundAssignOperatorClass:
6491 case Expr::CompoundLiteralExprClass:
6492 case Expr::ExtVectorElementExprClass:
6493 case Expr::DesignatedInitExprClass:
6494 case Expr::ImplicitValueInitExprClass:
6495 case Expr::ParenListExprClass:
6496 case Expr::VAArgExprClass:
6497 case Expr::AddrLabelExprClass:
6498 case Expr::StmtExprClass:
6499 case Expr::CXXMemberCallExprClass:
6500 case Expr::CUDAKernelCallExprClass:
6501 case Expr::CXXDynamicCastExprClass:
6502 case Expr::CXXTypeidExprClass:
6503 case Expr::CXXUuidofExprClass:
6504 case Expr::CXXNullPtrLiteralExprClass:
6505 case Expr::UserDefinedLiteralClass:
6506 case Expr::CXXThisExprClass:
6507 case Expr::CXXThrowExprClass:
6508 case Expr::CXXNewExprClass:
6509 case Expr::CXXDeleteExprClass:
6510 case Expr::CXXPseudoDestructorExprClass:
6511 case Expr::UnresolvedLookupExprClass:
6512 case Expr::DependentScopeDeclRefExprClass:
6513 case Expr::CXXConstructExprClass:
6514 case Expr::CXXBindTemporaryExprClass:
6515 case Expr::ExprWithCleanupsClass:
6516 case Expr::CXXTemporaryObjectExprClass:
6517 case Expr::CXXUnresolvedConstructExprClass:
6518 case Expr::CXXDependentScopeMemberExprClass:
6519 case Expr::UnresolvedMemberExprClass:
6520 case Expr::ObjCStringLiteralClass:
6521 case Expr::ObjCBoxedExprClass:
6522 case Expr::ObjCArrayLiteralClass:
6523 case Expr::ObjCDictionaryLiteralClass:
6524 case Expr::ObjCEncodeExprClass:
6525 case Expr::ObjCMessageExprClass:
6526 case Expr::ObjCSelectorExprClass:
6527 case Expr::ObjCProtocolExprClass:
6528 case Expr::ObjCIvarRefExprClass:
6529 case Expr::ObjCPropertyRefExprClass:
6530 case Expr::ObjCSubscriptRefExprClass:
6531 case Expr::ObjCIsaExprClass:
6532 case Expr::ShuffleVectorExprClass:
6533 case Expr::BlockExprClass:
6534 case Expr::NoStmtClass:
6535 case Expr::OpaqueValueExprClass:
6536 case Expr::PackExpansionExprClass:
6537 case Expr::SubstNonTypeTemplateParmPackExprClass:
6538 case Expr::FunctionParmPackExprClass:
6539 case Expr::AsTypeExprClass:
6540 case Expr::ObjCIndirectCopyRestoreExprClass:
6541 case Expr::MaterializeTemporaryExprClass:
6542 case Expr::PseudoObjectExprClass:
6543 case Expr::AtomicExprClass:
6544 case Expr::InitListExprClass:
6545 case Expr::LambdaExprClass:
6546 return ICEDiag(IK_NotICE, E->getLocStart());
6547
6548 case Expr::SizeOfPackExprClass:
6549 case Expr::GNUNullExprClass:
6550 // GCC considers the GNU __null value to be an integral constant expression.
6551 return NoDiag();
6552
6553 case Expr::SubstNonTypeTemplateParmExprClass:
6554 return
6555 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
6556
6557 case Expr::ParenExprClass:
6558 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
6559 case Expr::GenericSelectionExprClass:
6560 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
6561 case Expr::IntegerLiteralClass:
6562 case Expr::CharacterLiteralClass:
6563 case Expr::ObjCBoolLiteralExprClass:
6564 case Expr::CXXBoolLiteralExprClass:
6565 case Expr::CXXScalarValueInitExprClass:
6566 case Expr::UnaryTypeTraitExprClass:
6567 case Expr::BinaryTypeTraitExprClass:
6568 case Expr::TypeTraitExprClass:
6569 case Expr::ArrayTypeTraitExprClass:
6570 case Expr::ExpressionTraitExprClass:
6571 case Expr::CXXNoexceptExprClass:
6572 return NoDiag();
6573 case Expr::CallExprClass:
6574 case Expr::CXXOperatorCallExprClass: {
6575 // C99 6.6/3 allows function calls within unevaluated subexpressions of
6576 // constant expressions, but they can never be ICEs because an ICE cannot
6577 // contain an operand of (pointer to) function type.
6578 const CallExpr *CE = cast<CallExpr>(E);
6579 if (CE->isBuiltinCall())
6580 return CheckEvalInICE(E, Ctx);
6581 return ICEDiag(IK_NotICE, E->getLocStart());
6582 }
6583 case Expr::DeclRefExprClass: {
6584 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
6585 return NoDiag();
6586 const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
6587 if (Ctx.getLangOpts().CPlusPlus &&
6588 D && IsConstNonVolatile(D->getType())) {
6589 // Parameter variables are never constants. Without this check,
6590 // getAnyInitializer() can find a default argument, which leads
6591 // to chaos.
6592 if (isa<ParmVarDecl>(D))
6593 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
6594
6595 // C++ 7.1.5.1p2
6596 // A variable of non-volatile const-qualified integral or enumeration
6597 // type initialized by an ICE can be used in ICEs.
6598 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
6599 if (!Dcl->getType()->isIntegralOrEnumerationType())
6600 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
6601
6602 const VarDecl *VD;
6603 // Look for a declaration of this variable that has an initializer, and
6604 // check whether it is an ICE.
6605 if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
6606 return NoDiag();
6607 else
6608 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
6609 }
6610 }
6611 return ICEDiag(IK_NotICE, E->getLocStart());
6612 }
6613 case Expr::UnaryOperatorClass: {
6614 const UnaryOperator *Exp = cast<UnaryOperator>(E);
6615 switch (Exp->getOpcode()) {
6616 case UO_PostInc:
6617 case UO_PostDec:
6618 case UO_PreInc:
6619 case UO_PreDec:
6620 case UO_AddrOf:
6621 case UO_Deref:
6622 // C99 6.6/3 allows increment and decrement within unevaluated
6623 // subexpressions of constant expressions, but they can never be ICEs
6624 // because an ICE cannot contain an lvalue operand.
6625 return ICEDiag(IK_NotICE, E->getLocStart());
6626 case UO_Extension:
6627 case UO_LNot:
6628 case UO_Plus:
6629 case UO_Minus:
6630 case UO_Not:
6631 case UO_Real:
6632 case UO_Imag:
6633 return CheckICE(Exp->getSubExpr(), Ctx);
6634 }
6635
6636 // OffsetOf falls through here.
6637 }
6638 case Expr::OffsetOfExprClass: {
6639 // Note that per C99, offsetof must be an ICE. And AFAIK, using
6640 // EvaluateAsRValue matches the proposed gcc behavior for cases like
6641 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
6642 // compliance: we should warn earlier for offsetof expressions with
6643 // array subscripts that aren't ICEs, and if the array subscripts
6644 // are ICEs, the value of the offsetof must be an integer constant.
6645 return CheckEvalInICE(E, Ctx);
6646 }
6647 case Expr::UnaryExprOrTypeTraitExprClass: {
6648 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
6649 if ((Exp->getKind() == UETT_SizeOf) &&
6650 Exp->getTypeOfArgument()->isVariableArrayType())
6651 return ICEDiag(IK_NotICE, E->getLocStart());
6652 return NoDiag();
6653 }
6654 case Expr::BinaryOperatorClass: {
6655 const BinaryOperator *Exp = cast<BinaryOperator>(E);
6656 switch (Exp->getOpcode()) {
6657 case BO_PtrMemD:
6658 case BO_PtrMemI:
6659 case BO_Assign:
6660 case BO_MulAssign:
6661 case BO_DivAssign:
6662 case BO_RemAssign:
6663 case BO_AddAssign:
6664 case BO_SubAssign:
6665 case BO_ShlAssign:
6666 case BO_ShrAssign:
6667 case BO_AndAssign:
6668 case BO_XorAssign:
6669 case BO_OrAssign:
6670 // C99 6.6/3 allows assignments within unevaluated subexpressions of
6671 // constant expressions, but they can never be ICEs because an ICE cannot
6672 // contain an lvalue operand.
6673 return ICEDiag(IK_NotICE, E->getLocStart());
6674
6675 case BO_Mul:
6676 case BO_Div:
6677 case BO_Rem:
6678 case BO_Add:
6679 case BO_Sub:
6680 case BO_Shl:
6681 case BO_Shr:
6682 case BO_LT:
6683 case BO_GT:
6684 case BO_LE:
6685 case BO_GE:
6686 case BO_EQ:
6687 case BO_NE:
6688 case BO_And:
6689 case BO_Xor:
6690 case BO_Or:
6691 case BO_Comma: {
6692 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6693 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6694 if (Exp->getOpcode() == BO_Div ||
6695 Exp->getOpcode() == BO_Rem) {
6696 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
6697 // we don't evaluate one.
6698 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
6699 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
6700 if (REval == 0)
6701 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
6702 if (REval.isSigned() && REval.isAllOnesValue()) {
6703 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
6704 if (LEval.isMinSignedValue())
6705 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
6706 }
6707 }
6708 }
6709 if (Exp->getOpcode() == BO_Comma) {
6710 if (Ctx.getLangOpts().C99) {
6711 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
6712 // if it isn't evaluated.
6713 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
6714 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
6715 } else {
6716 // In both C89 and C++, commas in ICEs are illegal.
6717 return ICEDiag(IK_NotICE, E->getLocStart());
6718 }
6719 }
6720 return Worst(LHSResult, RHSResult);
6721 }
6722 case BO_LAnd:
6723 case BO_LOr: {
6724 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6725 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6726 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
6727 // Rare case where the RHS has a comma "side-effect"; we need
6728 // to actually check the condition to see whether the side
6729 // with the comma is evaluated.
6730 if ((Exp->getOpcode() == BO_LAnd) !=
6731 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
6732 return RHSResult;
6733 return NoDiag();
6734 }
6735
6736 return Worst(LHSResult, RHSResult);
6737 }
6738 }
6739 }
6740 case Expr::ImplicitCastExprClass:
6741 case Expr::CStyleCastExprClass:
6742 case Expr::CXXFunctionalCastExprClass:
6743 case Expr::CXXStaticCastExprClass:
6744 case Expr::CXXReinterpretCastExprClass:
6745 case Expr::CXXConstCastExprClass:
6746 case Expr::ObjCBridgedCastExprClass: {
6747 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
6748 if (isa<ExplicitCastExpr>(E)) {
6749 if (const FloatingLiteral *FL
6750 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
6751 unsigned DestWidth = Ctx.getIntWidth(E->getType());
6752 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
6753 APSInt IgnoredVal(DestWidth, !DestSigned);
6754 bool Ignored;
6755 // If the value does not fit in the destination type, the behavior is
6756 // undefined, so we are not required to treat it as a constant
6757 // expression.
6758 if (FL->getValue().convertToInteger(IgnoredVal,
6759 llvm::APFloat::rmTowardZero,
6760 &Ignored) & APFloat::opInvalidOp)
6761 return ICEDiag(IK_NotICE, E->getLocStart());
6762 return NoDiag();
6763 }
6764 }
6765 switch (cast<CastExpr>(E)->getCastKind()) {
6766 case CK_LValueToRValue:
6767 case CK_AtomicToNonAtomic:
6768 case CK_NonAtomicToAtomic:
6769 case CK_NoOp:
6770 case CK_IntegralToBoolean:
6771 case CK_IntegralCast:
6772 return CheckICE(SubExpr, Ctx);
6773 default:
6774 return ICEDiag(IK_NotICE, E->getLocStart());
6775 }
6776 }
6777 case Expr::BinaryConditionalOperatorClass: {
6778 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
6779 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
6780 if (CommonResult.Kind == IK_NotICE) return CommonResult;
6781 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6782 if (FalseResult.Kind == IK_NotICE) return FalseResult;
6783 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
6784 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
6785 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
6786 return FalseResult;
6787 }
6788 case Expr::ConditionalOperatorClass: {
6789 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
6790 // If the condition (ignoring parens) is a __builtin_constant_p call,
6791 // then only the true side is actually considered in an integer constant
6792 // expression, and it is fully evaluated. This is an important GNU
6793 // extension. See GCC PR38377 for discussion.
6794 if (const CallExpr *CallCE
6795 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
6796 if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
6797 return CheckEvalInICE(E, Ctx);
6798 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
6799 if (CondResult.Kind == IK_NotICE)
6800 return CondResult;
6801
6802 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
6803 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6804
6805 if (TrueResult.Kind == IK_NotICE)
6806 return TrueResult;
6807 if (FalseResult.Kind == IK_NotICE)
6808 return FalseResult;
6809 if (CondResult.Kind == IK_ICEIfUnevaluated)
6810 return CondResult;
6811 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
6812 return NoDiag();
6813 // Rare case where the diagnostics depend on which side is evaluated
6814 // Note that if we get here, CondResult is 0, and at least one of
6815 // TrueResult and FalseResult is non-zero.
6816 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
6817 return FalseResult;
6818 return TrueResult;
6819 }
6820 case Expr::CXXDefaultArgExprClass:
6821 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
6822 case Expr::ChooseExprClass: {
6823 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
6824 }
6825 }
6826
6827 llvm_unreachable("Invalid StmtClass!");
6828 }
6829
6830 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)6831 static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
6832 const Expr *E,
6833 llvm::APSInt *Value,
6834 SourceLocation *Loc) {
6835 if (!E->getType()->isIntegralOrEnumerationType()) {
6836 if (Loc) *Loc = E->getExprLoc();
6837 return false;
6838 }
6839
6840 APValue Result;
6841 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
6842 return false;
6843
6844 assert(Result.isInt() && "pointer cast to int is not an ICE");
6845 if (Value) *Value = Result.getInt();
6846 return true;
6847 }
6848
isIntegerConstantExpr(ASTContext & Ctx,SourceLocation * Loc) const6849 bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
6850 if (Ctx.getLangOpts().CPlusPlus11)
6851 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
6852
6853 ICEDiag D = CheckICE(this, Ctx);
6854 if (D.Kind != IK_ICE) {
6855 if (Loc) *Loc = D.Loc;
6856 return false;
6857 }
6858 return true;
6859 }
6860
isIntegerConstantExpr(llvm::APSInt & Value,ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const6861 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
6862 SourceLocation *Loc, bool isEvaluated) const {
6863 if (Ctx.getLangOpts().CPlusPlus11)
6864 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
6865
6866 if (!isIntegerConstantExpr(Ctx, Loc))
6867 return false;
6868 if (!EvaluateAsInt(Value, Ctx))
6869 llvm_unreachable("ICE cannot be evaluated!");
6870 return true;
6871 }
6872
isCXX98IntegralConstantExpr(ASTContext & Ctx) const6873 bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
6874 return CheckICE(this, Ctx).Kind == IK_ICE;
6875 }
6876
isCXX11ConstantExpr(ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const6877 bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
6878 SourceLocation *Loc) const {
6879 // We support this checking in C++98 mode in order to diagnose compatibility
6880 // issues.
6881 assert(Ctx.getLangOpts().CPlusPlus);
6882
6883 // Build evaluation settings.
6884 Expr::EvalStatus Status;
6885 SmallVector<PartialDiagnosticAt, 8> Diags;
6886 Status.Diag = &Diags;
6887 EvalInfo Info(Ctx, Status);
6888
6889 APValue Scratch;
6890 bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
6891
6892 if (!Diags.empty()) {
6893 IsConstExpr = false;
6894 if (Loc) *Loc = Diags[0].first;
6895 } else if (!IsConstExpr) {
6896 // FIXME: This shouldn't happen.
6897 if (Loc) *Loc = getExprLoc();
6898 }
6899
6900 return IsConstExpr;
6901 }
6902
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)6903 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
6904 SmallVectorImpl<
6905 PartialDiagnosticAt> &Diags) {
6906 // FIXME: It would be useful to check constexpr function templates, but at the
6907 // moment the constant expression evaluator cannot cope with the non-rigorous
6908 // ASTs which we build for dependent expressions.
6909 if (FD->isDependentContext())
6910 return true;
6911
6912 Expr::EvalStatus Status;
6913 Status.Diag = &Diags;
6914
6915 EvalInfo Info(FD->getASTContext(), Status);
6916 Info.CheckingPotentialConstantExpression = true;
6917
6918 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6919 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
6920
6921 // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
6922 // is a temporary being used as the 'this' pointer.
6923 LValue This;
6924 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
6925 This.set(&VIE, Info.CurrentCall->Index);
6926
6927 ArrayRef<const Expr*> Args;
6928
6929 SourceLocation Loc = FD->getLocation();
6930
6931 APValue Scratch;
6932 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
6933 HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
6934 else
6935 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
6936 Args, FD->getBody(), Info, Scratch);
6937
6938 return Diags.empty();
6939 }
6940