• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Flags: --allow-natives-syntax
29
30// Test fast div and mod.
31
32function divmod(div_func, mod_func, x, y) {
33  var div_answer = (div_func)(x);
34  assertEquals(x / y, div_answer, x + "/" + y);
35  var mod_answer = (mod_func)(x);
36  assertEquals(x % y, mod_answer, x + "%" + y);
37  var minus_div_answer = (div_func)(-x);
38  assertEquals(-x / y, minus_div_answer, "-" + x + "/" + y);
39  var minus_mod_answer = (mod_func)(-x);
40  assertEquals(-x % y, minus_mod_answer, "-" + x + "%" + y);
41}
42
43
44function run_tests_for(divisor) {
45  print("(function(left) { return left / " + divisor + "; })");
46  var div_func = this.eval("(function(left) { return left / " + divisor + "; })");
47  var mod_func = this.eval("(function(left) { return left % " + divisor + "; })");
48  var exp;
49  // Strange number test.
50  divmod(div_func, mod_func, 0, divisor);
51  divmod(div_func, mod_func, 1 / 0, divisor);
52  // Floating point number test.
53  for (exp = -1024; exp <= 1024; exp += 8) {
54    divmod(div_func, mod_func, Math.pow(2, exp), divisor);
55    divmod(div_func, mod_func, 0.9999999 * Math.pow(2, exp), divisor);
56    divmod(div_func, mod_func, 1.0000001 * Math.pow(2, exp), divisor);
57  }
58  // Integer number test.
59  for (exp = 0; exp <= 32; exp++) {
60    divmod(div_func, mod_func, 1 << exp, divisor);
61    divmod(div_func, mod_func, (1 << exp) + 1, divisor);
62    divmod(div_func, mod_func, (1 << exp) - 1, divisor);
63  }
64  divmod(div_func, mod_func, Math.floor(0x1fffffff / 3), divisor);
65  divmod(div_func, mod_func, Math.floor(-0x20000000 / 3), divisor);
66}
67
68
69var divisors = [
70  0,
71  1,
72  2,
73  3,
74  4,
75  5,
76  6,
77  7,
78  8,
79  9,
80  10,
81  0x1000000,
82  0x40000000,
83  12,
84  60,
85  100,
86  1000 * 60 * 60 * 24];
87
88for (var i = 0; i < divisors.length; i++) {
89  run_tests_for(divisors[i]);
90}
91
92// Test extreme corner cases of modulo.
93
94// Computes the modulo by slow but lossless operations.
95function compute_mod(dividend, divisor) {
96  // Return NaN if either operand is NaN, if divisor is 0 or
97  // dividend is an infinity. Return dividend if divisor is an infinity.
98  if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; }
99  var sign = 1;
100  if (dividend < 0) { dividend = -dividend; sign = -1; }
101  if (dividend == Infinity) { return NaN; }
102  if (divisor < 0) { divisor = -divisor; }
103  if (divisor == Infinity) { return sign * dividend; }
104  function rec_mod(a, b) {
105    // Subtracts maximal possible multiplum of b from a.
106    if (a >= b) {
107      a = rec_mod(a, 2 * b);
108      if (a >= b) { a -= b; }
109    }
110    return a;
111  }
112  return sign * rec_mod(dividend, divisor);
113}
114
115(function () {
116  var large_non_smi = 1234567891234.12245;
117  var small_non_smi = 43.2367243;
118  var repeating_decimal = 0.3;
119  var finite_decimal = 0.5;
120  var smi = 43;
121  var power_of_two = 64;
122  var min_normal = Number.MIN_VALUE * Math.pow(2, 52);
123  var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1);
124
125  // All combinations of NaN, Infinity, normal, denormal and zero.
126  var example_numbers = [
127    NaN,
128    0,
129    Number.MIN_VALUE,
130    3 * Number.MIN_VALUE,
131    max_denormal,
132    min_normal,
133    repeating_decimal,
134    finite_decimal,
135    smi,
136    power_of_two,
137    small_non_smi,
138    large_non_smi,
139    Number.MAX_VALUE,
140    Infinity
141  ];
142
143  function doTest(a, b) {
144    var exp = compute_mod(a, b);
145    var act = a % b;
146    assertEquals(exp, act, a + " % " + b);
147  }
148
149  for (var i = 0; i < example_numbers.length; i++) {
150    for (var j = 0; j < example_numbers.length; j++) {
151      var a = example_numbers[i];
152      var b = example_numbers[j];
153      doTest(a,b);
154      doTest(-a,b);
155      doTest(a,-b);
156      doTest(-a,-b);
157    }
158  }
159})();
160
161
162(function () {
163  // Edge cases
164  var zero = 0;
165  var minsmi32 = -0x40000000;
166  var minsmi64 = -0x80000000;
167  var somenum = 3532;
168  assertEquals(-0, zero / -1, "0 / -1");
169  assertEquals(1, minsmi32 / -0x40000000, "minsmi/minsmi-32");
170  assertEquals(1, minsmi64 / -0x80000000, "minsmi/minsmi-64");
171  assertEquals(somenum, somenum % -0x40000000, "%minsmi-32");
172  assertEquals(somenum, somenum % -0x80000000, "%minsmi-64");
173})();
174
175
176// Side-effect-free expressions containing bit operations use
177// an optimized compiler with int32 values.   Ensure that modulus
178// produces negative zeros correctly.
179function negative_zero_modulus_test() {
180  var x = 4;
181  var y = -4;
182  x = x + x - x;
183  y = y + y - y;
184  var z = (y | y | y | y) % x;
185  assertEquals(-1 / 0, 1 / z);
186  z = (x | x | x | x) % x;
187  assertEquals(1 / 0, 1 / z);
188  z = (y | y | y | y) % y;
189  assertEquals(-1 / 0, 1 / z);
190  z = (x | x | x | x) % y;
191  assertEquals(1 / 0, 1 / z);
192}
193
194negative_zero_modulus_test();
195
196
197function lithium_integer_mod() {
198  var left_operands = [
199    0,
200    305419896,  // 0x12345678
201  ];
202
203  // Test the standard lithium code for modulo opeartions.
204  var mod_func;
205  for (var i = 0; i < left_operands.length; i++) {
206    for (var j = 0; j < divisors.length; j++) {
207      mod_func = this.eval("(function(left) { return left % " + divisors[j]+ "; })");
208      assertEquals((mod_func)(left_operands[i]), left_operands[i] % divisors[j]);
209      assertEquals((mod_func)(-left_operands[i]), -left_operands[i] % divisors[j]);
210    }
211  }
212
213  var results_powers_of_two = [
214    // 0
215    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
216    // 305419896 == 0x12345678
217    [0, 0, 0, 8, 24, 56, 120, 120, 120, 632, 1656, 1656, 5752, 5752, 22136, 22136, 22136, 22136, 284280, 284280, 1332856, 3430008, 3430008, 3430008, 3430008, 36984440, 36984440, 36984440, 305419896, 305419896, 305419896],
218  ];
219
220  // Test the lithium code for modulo operations with a variable power of two
221  // right hand side operand.
222  for (var i = 0; i < left_operands.length; i++) {
223    for (var j = 0; j < 31; j++) {
224      assertEquals(results_powers_of_two[i][j], left_operands[i] % (2 << j));
225      assertEquals(results_powers_of_two[i][j], left_operands[i] % -(2 << j));
226      assertEquals(-results_powers_of_two[i][j], -left_operands[i] % (2 << j));
227      assertEquals(-results_powers_of_two[i][j], -left_operands[i] % -(2 << j));
228    }
229  }
230
231  // Test the lithium code for modulo operations with a constant power of two
232  // right hand side operand.
233  for (var i = 0; i < left_operands.length; i++) {
234    // With positive left hand side operand.
235    assertEquals(results_powers_of_two[i][0], left_operands[i] % -(2 << 0));
236    assertEquals(results_powers_of_two[i][1], left_operands[i] % (2 << 1));
237    assertEquals(results_powers_of_two[i][2], left_operands[i] % -(2 << 2));
238    assertEquals(results_powers_of_two[i][3], left_operands[i] % (2 << 3));
239    assertEquals(results_powers_of_two[i][4], left_operands[i] % -(2 << 4));
240    assertEquals(results_powers_of_two[i][5], left_operands[i] % (2 << 5));
241    assertEquals(results_powers_of_two[i][6], left_operands[i] % -(2 << 6));
242    assertEquals(results_powers_of_two[i][7], left_operands[i] % (2 << 7));
243    assertEquals(results_powers_of_two[i][8], left_operands[i] % -(2 << 8));
244    assertEquals(results_powers_of_two[i][9], left_operands[i] % (2 << 9));
245    assertEquals(results_powers_of_two[i][10], left_operands[i] % -(2 << 10));
246    assertEquals(results_powers_of_two[i][11], left_operands[i] % (2 << 11));
247    assertEquals(results_powers_of_two[i][12], left_operands[i] % -(2 << 12));
248    assertEquals(results_powers_of_two[i][13], left_operands[i] % (2 << 13));
249    assertEquals(results_powers_of_two[i][14], left_operands[i] % -(2 << 14));
250    assertEquals(results_powers_of_two[i][15], left_operands[i] % (2 << 15));
251    assertEquals(results_powers_of_two[i][16], left_operands[i] % -(2 << 16));
252    assertEquals(results_powers_of_two[i][17], left_operands[i] % (2 << 17));
253    assertEquals(results_powers_of_two[i][18], left_operands[i] % -(2 << 18));
254    assertEquals(results_powers_of_two[i][19], left_operands[i] % (2 << 19));
255    assertEquals(results_powers_of_two[i][20], left_operands[i] % -(2 << 20));
256    assertEquals(results_powers_of_two[i][21], left_operands[i] % (2 << 21));
257    assertEquals(results_powers_of_two[i][22], left_operands[i] % -(2 << 22));
258    assertEquals(results_powers_of_two[i][23], left_operands[i] % (2 << 23));
259    assertEquals(results_powers_of_two[i][24], left_operands[i] % -(2 << 24));
260    assertEquals(results_powers_of_two[i][25], left_operands[i] % (2 << 25));
261    assertEquals(results_powers_of_two[i][26], left_operands[i] % -(2 << 26));
262    assertEquals(results_powers_of_two[i][27], left_operands[i] % (2 << 27));
263    assertEquals(results_powers_of_two[i][28], left_operands[i] % -(2 << 28));
264    assertEquals(results_powers_of_two[i][29], left_operands[i] % (2 << 29));
265    assertEquals(results_powers_of_two[i][30], left_operands[i] % -(2 << 30));
266    // With negative left hand side operand.
267    assertEquals(-results_powers_of_two[i][0], -left_operands[i] % -(2 << 0));
268    assertEquals(-results_powers_of_two[i][1], -left_operands[i] % (2 << 1));
269    assertEquals(-results_powers_of_two[i][2], -left_operands[i] % -(2 << 2));
270    assertEquals(-results_powers_of_two[i][3], -left_operands[i] % (2 << 3));
271    assertEquals(-results_powers_of_two[i][4], -left_operands[i] % -(2 << 4));
272    assertEquals(-results_powers_of_two[i][5], -left_operands[i] % (2 << 5));
273    assertEquals(-results_powers_of_two[i][6], -left_operands[i] % -(2 << 6));
274    assertEquals(-results_powers_of_two[i][7], -left_operands[i] % (2 << 7));
275    assertEquals(-results_powers_of_two[i][8], -left_operands[i] % -(2 << 8));
276    assertEquals(-results_powers_of_two[i][9], -left_operands[i] % (2 << 9));
277    assertEquals(-results_powers_of_two[i][10], -left_operands[i] % -(2 << 10));
278    assertEquals(-results_powers_of_two[i][11], -left_operands[i] % (2 << 11));
279    assertEquals(-results_powers_of_two[i][12], -left_operands[i] % -(2 << 12));
280    assertEquals(-results_powers_of_two[i][13], -left_operands[i] % (2 << 13));
281    assertEquals(-results_powers_of_two[i][14], -left_operands[i] % -(2 << 14));
282    assertEquals(-results_powers_of_two[i][15], -left_operands[i] % (2 << 15));
283    assertEquals(-results_powers_of_two[i][16], -left_operands[i] % -(2 << 16));
284    assertEquals(-results_powers_of_two[i][17], -left_operands[i] % (2 << 17));
285    assertEquals(-results_powers_of_two[i][18], -left_operands[i] % -(2 << 18));
286    assertEquals(-results_powers_of_two[i][19], -left_operands[i] % (2 << 19));
287    assertEquals(-results_powers_of_two[i][20], -left_operands[i] % -(2 << 20));
288    assertEquals(-results_powers_of_two[i][21], -left_operands[i] % (2 << 21));
289    assertEquals(-results_powers_of_two[i][22], -left_operands[i] % -(2 << 22));
290    assertEquals(-results_powers_of_two[i][23], -left_operands[i] % (2 << 23));
291    assertEquals(-results_powers_of_two[i][24], -left_operands[i] % -(2 << 24));
292    assertEquals(-results_powers_of_two[i][25], -left_operands[i] % (2 << 25));
293    assertEquals(-results_powers_of_two[i][26], -left_operands[i] % -(2 << 26));
294    assertEquals(-results_powers_of_two[i][27], -left_operands[i] % (2 << 27));
295    assertEquals(-results_powers_of_two[i][28], -left_operands[i] % -(2 << 28));
296    assertEquals(-results_powers_of_two[i][29], -left_operands[i] % (2 << 29));
297    assertEquals(-results_powers_of_two[i][30], -left_operands[i] % -(2 << 30));
298  }
299
300}
301
302lithium_integer_mod();
303%OptimizeFunctionOnNextCall(lithium_integer_mod)
304lithium_integer_mod();
305