/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "arm_lir.h" #include "codegen_arm.h" #include "dex/compiler_internals.h" #include "dex/quick/mir_to_lir-inl.h" namespace art { static int core_regs[] = {r0, r1, r2, r3, rARM_SUSPEND, r5, r6, r7, r8, rARM_SELF, r10, r11, r12, rARM_SP, rARM_LR, rARM_PC}; static int ReservedRegs[] = {rARM_SUSPEND, rARM_SELF, rARM_SP, rARM_LR, rARM_PC}; static int FpRegs[] = {fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7, fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15, fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23, fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31}; static int core_temps[] = {r0, r1, r2, r3, r12}; static int fp_temps[] = {fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7, fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15}; RegLocation ArmMir2Lir::LocCReturn() { RegLocation res = ARM_LOC_C_RETURN; return res; } RegLocation ArmMir2Lir::LocCReturnWide() { RegLocation res = ARM_LOC_C_RETURN_WIDE; return res; } RegLocation ArmMir2Lir::LocCReturnFloat() { RegLocation res = ARM_LOC_C_RETURN_FLOAT; return res; } RegLocation ArmMir2Lir::LocCReturnDouble() { RegLocation res = ARM_LOC_C_RETURN_DOUBLE; return res; } // Return a target-dependent special register. int ArmMir2Lir::TargetReg(SpecialTargetRegister reg) { int res = INVALID_REG; switch (reg) { case kSelf: res = rARM_SELF; break; case kSuspend: res = rARM_SUSPEND; break; case kLr: res = rARM_LR; break; case kPc: res = rARM_PC; break; case kSp: res = rARM_SP; break; case kArg0: res = rARM_ARG0; break; case kArg1: res = rARM_ARG1; break; case kArg2: res = rARM_ARG2; break; case kArg3: res = rARM_ARG3; break; case kFArg0: res = rARM_FARG0; break; case kFArg1: res = rARM_FARG1; break; case kFArg2: res = rARM_FARG2; break; case kFArg3: res = rARM_FARG3; break; case kRet0: res = rARM_RET0; break; case kRet1: res = rARM_RET1; break; case kInvokeTgt: res = rARM_INVOKE_TGT; break; case kCount: res = rARM_COUNT; break; } return res; } // Create a double from a pair of singles. int ArmMir2Lir::S2d(int low_reg, int high_reg) { return ARM_S2D(low_reg, high_reg); } // Return mask to strip off fp reg flags and bias. uint32_t ArmMir2Lir::FpRegMask() { return ARM_FP_REG_MASK; } // True if both regs single, both core or both double. bool ArmMir2Lir::SameRegType(int reg1, int reg2) { return (ARM_REGTYPE(reg1) == ARM_REGTYPE(reg2)); } /* * Decode the register id. */ uint64_t ArmMir2Lir::GetRegMaskCommon(int reg) { uint64_t seed; int shift; int reg_id; reg_id = reg & 0x1f; /* Each double register is equal to a pair of single-precision FP registers */ seed = ARM_DOUBLEREG(reg) ? 3 : 1; /* FP register starts at bit position 16 */ shift = ARM_FPREG(reg) ? kArmFPReg0 : 0; /* Expand the double register id into single offset */ shift += reg_id; return (seed << shift); } uint64_t ArmMir2Lir::GetPCUseDefEncoding() { return ENCODE_ARM_REG_PC; } void ArmMir2Lir::SetupTargetResourceMasks(LIR* lir) { DCHECK_EQ(cu_->instruction_set, kThumb2); // Thumb2 specific setup uint64_t flags = ArmMir2Lir::EncodingMap[lir->opcode].flags; int opcode = lir->opcode; if (flags & REG_DEF_SP) { lir->def_mask |= ENCODE_ARM_REG_SP; } if (flags & REG_USE_SP) { lir->use_mask |= ENCODE_ARM_REG_SP; } if (flags & REG_DEF_LIST0) { lir->def_mask |= ENCODE_ARM_REG_LIST(lir->operands[0]); } if (flags & REG_DEF_LIST1) { lir->def_mask |= ENCODE_ARM_REG_LIST(lir->operands[1]); } if (flags & REG_DEF_FPCS_LIST0) { lir->def_mask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]); } if (flags & REG_DEF_FPCS_LIST2) { for (int i = 0; i < lir->operands[2]; i++) { SetupRegMask(&lir->def_mask, lir->operands[1] + i); } } if (flags & REG_USE_PC) { lir->use_mask |= ENCODE_ARM_REG_PC; } /* Conservatively treat the IT block */ if (flags & IS_IT) { lir->def_mask = ENCODE_ALL; } if (flags & REG_USE_LIST0) { lir->use_mask |= ENCODE_ARM_REG_LIST(lir->operands[0]); } if (flags & REG_USE_LIST1) { lir->use_mask |= ENCODE_ARM_REG_LIST(lir->operands[1]); } if (flags & REG_USE_FPCS_LIST0) { lir->use_mask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]); } if (flags & REG_USE_FPCS_LIST2) { for (int i = 0; i < lir->operands[2]; i++) { SetupRegMask(&lir->use_mask, lir->operands[1] + i); } } /* Fixup for kThumbPush/lr and kThumbPop/pc */ if (opcode == kThumbPush || opcode == kThumbPop) { uint64_t r8Mask = GetRegMaskCommon(r8); if ((opcode == kThumbPush) && (lir->use_mask & r8Mask)) { lir->use_mask &= ~r8Mask; lir->use_mask |= ENCODE_ARM_REG_LR; } else if ((opcode == kThumbPop) && (lir->def_mask & r8Mask)) { lir->def_mask &= ~r8Mask; lir->def_mask |= ENCODE_ARM_REG_PC; } } if (flags & REG_DEF_LR) { lir->def_mask |= ENCODE_ARM_REG_LR; } } ArmConditionCode ArmMir2Lir::ArmConditionEncoding(ConditionCode ccode) { ArmConditionCode res; switch (ccode) { case kCondEq: res = kArmCondEq; break; case kCondNe: res = kArmCondNe; break; case kCondCs: res = kArmCondCs; break; case kCondCc: res = kArmCondCc; break; case kCondMi: res = kArmCondMi; break; case kCondPl: res = kArmCondPl; break; case kCondVs: res = kArmCondVs; break; case kCondVc: res = kArmCondVc; break; case kCondHi: res = kArmCondHi; break; case kCondLs: res = kArmCondLs; break; case kCondGe: res = kArmCondGe; break; case kCondLt: res = kArmCondLt; break; case kCondGt: res = kArmCondGt; break; case kCondLe: res = kArmCondLe; break; case kCondAl: res = kArmCondAl; break; case kCondNv: res = kArmCondNv; break; default: LOG(FATAL) << "Bad condition code " << ccode; res = static_cast(0); // Quiet gcc } return res; } static const char* core_reg_names[16] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "rSELF", "r10", "r11", "r12", "sp", "lr", "pc", }; static const char* shift_names[4] = { "lsl", "lsr", "asr", "ror"}; /* Decode and print a ARM register name */ static char* DecodeRegList(int opcode, int vector, char* buf) { int i; bool printed = false; buf[0] = 0; for (i = 0; i < 16; i++, vector >>= 1) { if (vector & 0x1) { int reg_id = i; if (opcode == kThumbPush && i == 8) { reg_id = r14lr; } else if (opcode == kThumbPop && i == 8) { reg_id = r15pc; } if (printed) { sprintf(buf + strlen(buf), ", r%d", reg_id); } else { printed = true; sprintf(buf, "r%d", reg_id); } } } return buf; } static char* DecodeFPCSRegList(int count, int base, char* buf) { sprintf(buf, "s%d", base); for (int i = 1; i < count; i++) { sprintf(buf + strlen(buf), ", s%d", base + i); } return buf; } static int ExpandImmediate(int value) { int mode = (value & 0xf00) >> 8; uint32_t bits = value & 0xff; switch (mode) { case 0: return bits; case 1: return (bits << 16) | bits; case 2: return (bits << 24) | (bits << 8); case 3: return (bits << 24) | (bits << 16) | (bits << 8) | bits; default: break; } bits = (bits | 0x80) << 24; return bits >> (((value & 0xf80) >> 7) - 8); } const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc", "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"}; /* * Interpret a format string and build a string no longer than size * See format key in Assemble.c. */ std::string ArmMir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) { std::string buf; int i; const char* fmt_end = &fmt[strlen(fmt)]; char tbuf[256]; const char* name; char nc; while (fmt < fmt_end) { int operand; if (*fmt == '!') { fmt++; DCHECK_LT(fmt, fmt_end); nc = *fmt++; if (nc == '!') { strcpy(tbuf, "!"); } else { DCHECK_LT(fmt, fmt_end); DCHECK_LT(static_cast(nc-'0'), 4U); operand = lir->operands[nc-'0']; switch (*fmt++) { case 'H': if (operand != 0) { sprintf(tbuf, ", %s %d", shift_names[operand & 0x3], operand >> 2); } else { strcpy(tbuf, ""); } break; case 'B': switch (operand) { case kSY: name = "sy"; break; case kST: name = "st"; break; case kISH: name = "ish"; break; case kISHST: name = "ishst"; break; case kNSH: name = "nsh"; break; case kNSHST: name = "shst"; break; default: name = "DecodeError2"; break; } strcpy(tbuf, name); break; case 'b': strcpy(tbuf, "0000"); for (i = 3; i >= 0; i--) { tbuf[i] += operand & 1; operand >>= 1; } break; case 'n': operand = ~ExpandImmediate(operand); sprintf(tbuf, "%d [%#x]", operand, operand); break; case 'm': operand = ExpandImmediate(operand); sprintf(tbuf, "%d [%#x]", operand, operand); break; case 's': sprintf(tbuf, "s%d", operand & ARM_FP_REG_MASK); break; case 'S': sprintf(tbuf, "d%d", (operand & ARM_FP_REG_MASK) >> 1); break; case 'h': sprintf(tbuf, "%04x", operand); break; case 'M': case 'd': sprintf(tbuf, "%d", operand); break; case 'C': DCHECK_LT(operand, static_cast( sizeof(core_reg_names)/sizeof(core_reg_names[0]))); sprintf(tbuf, "%s", core_reg_names[operand]); break; case 'E': sprintf(tbuf, "%d", operand*4); break; case 'F': sprintf(tbuf, "%d", operand*2); break; case 'c': strcpy(tbuf, cc_names[operand]); break; case 't': sprintf(tbuf, "0x%08x (L%p)", reinterpret_cast(base_addr) + lir->offset + 4 + (operand << 1), lir->target); break; case 'u': { int offset_1 = lir->operands[0]; int offset_2 = NEXT_LIR(lir)->operands[0]; uintptr_t target = (((reinterpret_cast(base_addr) + lir->offset + 4) & ~3) + (offset_1 << 21 >> 9) + (offset_2 << 1)) & 0xfffffffc; sprintf(tbuf, "%p", reinterpret_cast(target)); break; } /* Nothing to print for BLX_2 */ case 'v': strcpy(tbuf, "see above"); break; case 'R': DecodeRegList(lir->opcode, operand, tbuf); break; case 'P': DecodeFPCSRegList(operand, 16, tbuf); break; case 'Q': DecodeFPCSRegList(operand, 0, tbuf); break; default: strcpy(tbuf, "DecodeError1"); break; } buf += tbuf; } } else { buf += *fmt++; } } return buf; } void ArmMir2Lir::DumpResourceMask(LIR* arm_lir, uint64_t mask, const char* prefix) { char buf[256]; buf[0] = 0; if (mask == ENCODE_ALL) { strcpy(buf, "all"); } else { char num[8]; int i; for (i = 0; i < kArmRegEnd; i++) { if (mask & (1ULL << i)) { sprintf(num, "%d ", i); strcat(buf, num); } } if (mask & ENCODE_CCODE) { strcat(buf, "cc "); } if (mask & ENCODE_FP_STATUS) { strcat(buf, "fpcc "); } /* Memory bits */ if (arm_lir && (mask & ENCODE_DALVIK_REG)) { sprintf(buf + strlen(buf), "dr%d%s", arm_lir->alias_info & 0xffff, (arm_lir->alias_info & 0x80000000) ? "(+1)" : ""); } if (mask & ENCODE_LITERAL) { strcat(buf, "lit "); } if (mask & ENCODE_HEAP_REF) { strcat(buf, "heap "); } if (mask & ENCODE_MUST_NOT_ALIAS) { strcat(buf, "noalias "); } } if (buf[0]) { LOG(INFO) << prefix << ": " << buf; } } bool ArmMir2Lir::IsUnconditionalBranch(LIR* lir) { return ((lir->opcode == kThumbBUncond) || (lir->opcode == kThumb2BUncond)); } ArmMir2Lir::ArmMir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) : Mir2Lir(cu, mir_graph, arena) { // Sanity check - make sure encoding map lines up. for (int i = 0; i < kArmLast; i++) { if (ArmMir2Lir::EncodingMap[i].opcode != i) { LOG(FATAL) << "Encoding order for " << ArmMir2Lir::EncodingMap[i].name << " is wrong: expecting " << i << ", seeing " << static_cast(ArmMir2Lir::EncodingMap[i].opcode); } } } Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, ArenaAllocator* const arena) { return new ArmMir2Lir(cu, mir_graph, arena); } /* * Alloc a pair of core registers, or a double. Low reg in low byte, * high reg in next byte. */ int ArmMir2Lir::AllocTypedTempPair(bool fp_hint, int reg_class) { int high_reg; int low_reg; int res = 0; if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) { low_reg = AllocTempDouble(); high_reg = low_reg + 1; } else { low_reg = AllocTemp(); high_reg = AllocTemp(); } res = (low_reg & 0xff) | ((high_reg & 0xff) << 8); return res; } int ArmMir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) { if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) return AllocTempFloat(); return AllocTemp(); } void ArmMir2Lir::CompilerInitializeRegAlloc() { int num_regs = sizeof(core_regs)/sizeof(*core_regs); int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs); int num_temps = sizeof(core_temps)/sizeof(*core_temps); int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs); int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps); reg_pool_ = static_cast(arena_->Alloc(sizeof(*reg_pool_), ArenaAllocator::kAllocRegAlloc)); reg_pool_->num_core_regs = num_regs; reg_pool_->core_regs = reinterpret_cast (arena_->Alloc(num_regs * sizeof(*reg_pool_->core_regs), ArenaAllocator::kAllocRegAlloc)); reg_pool_->num_fp_regs = num_fp_regs; reg_pool_->FPRegs = static_cast (arena_->Alloc(num_fp_regs * sizeof(*reg_pool_->FPRegs), ArenaAllocator::kAllocRegAlloc)); CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs); CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs); // Keep special registers from being allocated for (int i = 0; i < num_reserved; i++) { if (NO_SUSPEND && (ReservedRegs[i] == rARM_SUSPEND)) { // To measure cost of suspend check continue; } MarkInUse(ReservedRegs[i]); } // Mark temp regs - all others not in use can be used for promotion for (int i = 0; i < num_temps; i++) { MarkTemp(core_temps[i]); } for (int i = 0; i < num_fp_temps; i++) { MarkTemp(fp_temps[i]); } // Start allocation at r2 in an attempt to avoid clobbering return values reg_pool_->next_core_reg = r2; } void ArmMir2Lir::FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) { if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) && (rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) { // No overlap, free both FreeTemp(rl_free.low_reg); FreeTemp(rl_free.high_reg); } } /* * TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some * instructions might call out to C/assembly helper functions. Until * machinery is in place, always spill lr. */ void ArmMir2Lir::AdjustSpillMask() { core_spill_mask_ |= (1 << rARM_LR); num_core_spills_++; } /* * Mark a callee-save fp register as promoted. Note that * vpush/vpop uses contiguous register lists so we must * include any holes in the mask. Associate holes with * Dalvik register INVALID_VREG (0xFFFFU). */ void ArmMir2Lir::MarkPreservedSingle(int v_reg, int reg) { DCHECK_GE(reg, ARM_FP_REG_MASK + ARM_FP_CALLEE_SAVE_BASE); reg = (reg & ARM_FP_REG_MASK) - ARM_FP_CALLEE_SAVE_BASE; // Ensure fp_vmap_table is large enough int table_size = fp_vmap_table_.size(); for (int i = table_size; i < (reg + 1); i++) { fp_vmap_table_.push_back(INVALID_VREG); } // Add the current mapping fp_vmap_table_[reg] = v_reg; // Size of fp_vmap_table is high-water mark, use to set mask num_fp_spills_ = fp_vmap_table_.size(); fp_spill_mask_ = ((1 << num_fp_spills_) - 1) << ARM_FP_CALLEE_SAVE_BASE; } void ArmMir2Lir::FlushRegWide(int reg1, int reg2) { RegisterInfo* info1 = GetRegInfo(reg1); RegisterInfo* info2 = GetRegInfo(reg2); DCHECK(info1 && info2 && info1->pair && info2->pair && (info1->partner == info2->reg) && (info2->partner == info1->reg)); if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) { if (!(info1->is_temp && info2->is_temp)) { /* Should not happen. If it does, there's a problem in eval_loc */ LOG(FATAL) << "Long half-temp, half-promoted"; } info1->dirty = false; info2->dirty = false; if (mir_graph_->SRegToVReg(info2->s_reg) < mir_graph_->SRegToVReg(info1->s_reg)) info1 = info2; int v_reg = mir_graph_->SRegToVReg(info1->s_reg); StoreBaseDispWide(rARM_SP, VRegOffset(v_reg), info1->reg, info1->partner); } } void ArmMir2Lir::FlushReg(int reg) { RegisterInfo* info = GetRegInfo(reg); if (info->live && info->dirty) { info->dirty = false; int v_reg = mir_graph_->SRegToVReg(info->s_reg); StoreBaseDisp(rARM_SP, VRegOffset(v_reg), reg, kWord); } } /* Give access to the target-dependent FP register encoding to common code */ bool ArmMir2Lir::IsFpReg(int reg) { return ARM_FPREG(reg); } /* Clobber all regs that might be used by an external C call */ void ArmMir2Lir::ClobberCalleeSave() { Clobber(r0); Clobber(r1); Clobber(r2); Clobber(r3); Clobber(r12); Clobber(r14lr); Clobber(fr0); Clobber(fr1); Clobber(fr2); Clobber(fr3); Clobber(fr4); Clobber(fr5); Clobber(fr6); Clobber(fr7); Clobber(fr8); Clobber(fr9); Clobber(fr10); Clobber(fr11); Clobber(fr12); Clobber(fr13); Clobber(fr14); Clobber(fr15); } RegLocation ArmMir2Lir::GetReturnWideAlt() { RegLocation res = LocCReturnWide(); res.low_reg = r2; res.high_reg = r3; Clobber(r2); Clobber(r3); MarkInUse(r2); MarkInUse(r3); MarkPair(res.low_reg, res.high_reg); return res; } RegLocation ArmMir2Lir::GetReturnAlt() { RegLocation res = LocCReturn(); res.low_reg = r1; Clobber(r1); MarkInUse(r1); return res; } ArmMir2Lir::RegisterInfo* ArmMir2Lir::GetRegInfo(int reg) { return ARM_FPREG(reg) ? ®_pool_->FPRegs[reg & ARM_FP_REG_MASK] : ®_pool_->core_regs[reg]; } /* To be used when explicitly managing register use */ void ArmMir2Lir::LockCallTemps() { LockTemp(r0); LockTemp(r1); LockTemp(r2); LockTemp(r3); } /* To be used when explicitly managing register use */ void ArmMir2Lir::FreeCallTemps() { FreeTemp(r0); FreeTemp(r1); FreeTemp(r2); FreeTemp(r3); } int ArmMir2Lir::LoadHelper(ThreadOffset offset) { LoadWordDisp(rARM_SELF, offset.Int32Value(), rARM_LR); return rARM_LR; } uint64_t ArmMir2Lir::GetTargetInstFlags(int opcode) { return ArmMir2Lir::EncodingMap[opcode].flags; } const char* ArmMir2Lir::GetTargetInstName(int opcode) { return ArmMir2Lir::EncodingMap[opcode].name; } const char* ArmMir2Lir::GetTargetInstFmt(int opcode) { return ArmMir2Lir::EncodingMap[opcode].fmt; } } // namespace art