/* * Copyright (C) 2010 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // A red-black tree, which is a form of a balanced binary tree. It // supports efficient insertion, deletion and queries of comparable // elements. The same element may be inserted multiple times. The // algorithmic complexity of common operations is: // // Insertion: O(lg(n)) // Deletion: O(lg(n)) // Querying: O(lg(n)) // // The data type T that is stored in this red-black tree must be only // Plain Old Data (POD), or bottom out into POD. It must _not_ rely on // having its destructor called. This implementation internally // allocates storage in large chunks and does not call the destructor // on each object. // // Type T must supply a default constructor, a copy constructor, and // the "<" and "==" operators. // // In debug mode, printing of the data contained in the tree is // enabled. This requires the template specialization to be available: // // template<> struct WebCore::ValueToString { // static String string(const T& t); // }; // // Note that when complex types are stored in this red/black tree, it // is possible that single invocations of the "<" and "==" operators // will be insufficient to describe the ordering of elements in the // tree during queries. As a concrete example, consider the case where // intervals are stored in the tree sorted by low endpoint. The "<" // operator on the Interval class only compares the low endpoint, but // the "==" operator takes into account the high endpoint as well. // This makes the necessary logic for querying and deletion somewhat // more complex. In order to properly handle such situations, the // property "needsFullOrderingComparisons" must be set to true on // the tree. // // This red-black tree is designed to be _augmented_; subclasses can // add additional and summary information to each node to efficiently // store and index more complex data structures. A concrete example is // the IntervalTree, which extends each node with a summary statistic // to efficiently store one-dimensional intervals. // // The design of this red-black tree comes from Cormen, Leiserson, // and Rivest, _Introduction to Algorithms_, MIT Press, 1990. #ifndef PODRedBlackTree_h #define PODRedBlackTree_h #include "platform/PODFreeListArena.h" #include "wtf/Assertions.h" #include "wtf/Noncopyable.h" #include "wtf/RefPtr.h" #ifndef NDEBUG #include "wtf/text/CString.h" #include "wtf/text/StringBuilder.h" #include "wtf/text/WTFString.h" #endif namespace WebCore { #ifndef NDEBUG template struct ValueToString; #endif enum UninitializedTreeEnum { UninitializedTree }; template class PODRedBlackTree { public: class Node; // Visitor interface for walking all of the tree's elements. class Visitor { public: virtual void visit(const T& data) = 0; protected: virtual ~Visitor() { } }; // Constructs a new red-black tree without allocating an arena. // isInitialized will return false in this case. initIfNeeded can be used // to init the structure. This constructor is usefull for creating // lazy initialized tree. explicit PODRedBlackTree(UninitializedTreeEnum) : m_root(0) , m_needsFullOrderingComparisons(false) #ifndef NDEBUG , m_verboseDebugging(false) #endif { } // Constructs a new red-black tree, allocating temporary objects // from a newly constructed PODFreeListArena. PODRedBlackTree() : m_arena(PODFreeListArena::create()) , m_root(0) , m_needsFullOrderingComparisons(false) #ifndef NDEBUG , m_verboseDebugging(false) #endif { } // Constructs a new red-black tree, allocating temporary objects // from the given PODArena. explicit PODRedBlackTree(PassRefPtr > arena) : m_arena(arena) , m_root(0) , m_needsFullOrderingComparisons(false) #ifndef NDEBUG , m_verboseDebugging(false) #endif { } virtual ~PODRedBlackTree() { } // Clearing will delete the contents of the tree. After this call // isInitialized will return false. void clear() { markFree(m_root); m_arena = 0; m_root = 0; } bool isInitialized() const { return m_arena; } void initIfNeeded() { if (!m_arena) m_arena = PODFreeListArena::create(); } void initIfNeeded(PODFreeListArena* arena) { if (!m_arena) m_arena = arena; } void add(const T& data) { ASSERT(isInitialized()); Node* node = m_arena->template allocateObject(data); insertNode(node); } // Returns true if the datum was found in the tree. bool remove(const T& data) { ASSERT(isInitialized()); Node* node = treeSearch(data); if (node) { deleteNode(node); return true; } return false; } bool contains(const T& data) const { ASSERT(isInitialized()); return treeSearch(data); } void visitInorder(Visitor* visitor) const { ASSERT(isInitialized()); if (!m_root) return; visitInorderImpl(m_root, visitor); } int size() const { ASSERT(isInitialized()); Counter counter; visitInorder(&counter); return counter.count(); } // See the class documentation for an explanation of this property. void setNeedsFullOrderingComparisons(bool needsFullOrderingComparisons) { m_needsFullOrderingComparisons = needsFullOrderingComparisons; } virtual bool checkInvariants() const { ASSERT(isInitialized()); int blackCount; return checkInvariantsFromNode(m_root, &blackCount); } #ifndef NDEBUG // Dumps the tree's contents to the logging info stream for // debugging purposes. void dump() const { if (m_arena) dumpFromNode(m_root, 0); } // Turns on or off verbose debugging of the tree, causing many // messages to be logged during insertion and other operations in // debug mode. void setVerboseDebugging(bool verboseDebugging) { m_verboseDebugging = verboseDebugging; } #endif enum Color { Red = 1, Black }; // The base Node class which is stored in the tree. Nodes are only // an internal concept; users of the tree deal only with the data // they store in it. class Node { WTF_MAKE_NONCOPYABLE(Node); public: // Constructor. Newly-created nodes are colored red. explicit Node(const T& data) : m_left(0) , m_right(0) , m_parent(0) , m_color(Red) , m_data(data) { } virtual ~Node() { } Color color() const { return m_color; } void setColor(Color color) { m_color = color; } // Fetches the user data. T& data() { return m_data; } // Copies all user-level fields from the source node, but not // internal fields. For example, the base implementation of this // method copies the "m_data" field, but not the child or parent // fields. Any augmentation information also does not need to be // copied, as it will be recomputed. Subclasses must call the // superclass implementation. virtual void copyFrom(Node* src) { m_data = src->data(); } Node* left() const { return m_left; } void setLeft(Node* node) { m_left = node; } Node* right() const { return m_right; } void setRight(Node* node) { m_right = node; } Node* parent() const { return m_parent; } void setParent(Node* node) { m_parent = node; } private: Node* m_left; Node* m_right; Node* m_parent; Color m_color; T m_data; }; protected: // Returns the root of the tree, which is needed by some subclasses. Node* root() const { return m_root; } private: // This virtual method is the hook that subclasses should use when // augmenting the red-black tree with additional per-node summary // information. For example, in the case of an interval tree, this // is used to compute the maximum endpoint of the subtree below the // given node based on the values in the left and right children. It // is guaranteed that this will be called in the correct order to // properly update such summary information based only on the values // in the left and right children. This method should return true if // the node's summary information changed. virtual bool updateNode(Node*) { return false; } //---------------------------------------------------------------------- // Generic binary search tree operations // // Searches the tree for the given datum. Node* treeSearch(const T& data) const { if (m_needsFullOrderingComparisons) return treeSearchFullComparisons(m_root, data); return treeSearchNormal(m_root, data); } // Searches the tree using the normal comparison operations, // suitable for simple data types such as numbers. Node* treeSearchNormal(Node* current, const T& data) const { while (current) { if (current->data() == data) return current; if (data < current->data()) current = current->left(); else current = current->right(); } return 0; } // Searches the tree using multiple comparison operations, required // for data types with more complex behavior such as intervals. Node* treeSearchFullComparisons(Node* current, const T& data) const { if (!current) return 0; if (data < current->data()) return treeSearchFullComparisons(current->left(), data); if (current->data() < data) return treeSearchFullComparisons(current->right(), data); if (data == current->data()) return current; // We may need to traverse both the left and right subtrees. Node* result = treeSearchFullComparisons(current->left(), data); if (!result) result = treeSearchFullComparisons(current->right(), data); return result; } void treeInsert(Node* z) { Node* y = 0; Node* x = m_root; while (x) { y = x; if (z->data() < x->data()) x = x->left(); else x = x->right(); } z->setParent(y); if (!y) { m_root = z; } else { if (z->data() < y->data()) y->setLeft(z); else y->setRight(z); } } // Finds the node following the given one in sequential ordering of // their data, or null if none exists. Node* treeSuccessor(Node* x) { if (x->right()) return treeMinimum(x->right()); Node* y = x->parent(); while (y && x == y->right()) { x = y; y = y->parent(); } return y; } // Finds the minimum element in the sub-tree rooted at the given // node. Node* treeMinimum(Node* x) { while (x->left()) x = x->left(); return x; } // Helper for maintaining the augmented red-black tree. void propagateUpdates(Node* start) { bool shouldContinue = true; while (start && shouldContinue) { shouldContinue = updateNode(start); start = start->parent(); } } //---------------------------------------------------------------------- // Red-Black tree operations // // Left-rotates the subtree rooted at x. // Returns the new root of the subtree (x's right child). Node* leftRotate(Node* x) { // Set y. Node* y = x->right(); // Turn y's left subtree into x's right subtree. x->setRight(y->left()); if (y->left()) y->left()->setParent(x); // Link x's parent to y. y->setParent(x->parent()); if (!x->parent()) { m_root = y; } else { if (x == x->parent()->left()) x->parent()->setLeft(y); else x->parent()->setRight(y); } // Put x on y's left. y->setLeft(x); x->setParent(y); // Update nodes lowest to highest. updateNode(x); updateNode(y); return y; } // Right-rotates the subtree rooted at y. // Returns the new root of the subtree (y's left child). Node* rightRotate(Node* y) { // Set x. Node* x = y->left(); // Turn x's right subtree into y's left subtree. y->setLeft(x->right()); if (x->right()) x->right()->setParent(y); // Link y's parent to x. x->setParent(y->parent()); if (!y->parent()) { m_root = x; } else { if (y == y->parent()->left()) y->parent()->setLeft(x); else y->parent()->setRight(x); } // Put y on x's right. x->setRight(y); y->setParent(x); // Update nodes lowest to highest. updateNode(y); updateNode(x); return x; } // Inserts the given node into the tree. void insertNode(Node* x) { treeInsert(x); x->setColor(Red); updateNode(x); logIfVerbose(" PODRedBlackTree::InsertNode"); // The node from which to start propagating updates upwards. Node* updateStart = x->parent(); while (x != m_root && x->parent()->color() == Red) { if (x->parent() == x->parent()->parent()->left()) { Node* y = x->parent()->parent()->right(); if (y && y->color() == Red) { // Case 1 logIfVerbose(" Case 1/1"); x->parent()->setColor(Black); y->setColor(Black); x->parent()->parent()->setColor(Red); updateNode(x->parent()); x = x->parent()->parent(); updateNode(x); updateStart = x->parent(); } else { if (x == x->parent()->right()) { logIfVerbose(" Case 1/2"); // Case 2 x = x->parent(); leftRotate(x); } // Case 3 logIfVerbose(" Case 1/3"); x->parent()->setColor(Black); x->parent()->parent()->setColor(Red); Node* newSubTreeRoot = rightRotate(x->parent()->parent()); updateStart = newSubTreeRoot->parent(); } } else { // Same as "then" clause with "right" and "left" exchanged. Node* y = x->parent()->parent()->left(); if (y && y->color() == Red) { // Case 1 logIfVerbose(" Case 2/1"); x->parent()->setColor(Black); y->setColor(Black); x->parent()->parent()->setColor(Red); updateNode(x->parent()); x = x->parent()->parent(); updateNode(x); updateStart = x->parent(); } else { if (x == x->parent()->left()) { // Case 2 logIfVerbose(" Case 2/2"); x = x->parent(); rightRotate(x); } // Case 3 logIfVerbose(" Case 2/3"); x->parent()->setColor(Black); x->parent()->parent()->setColor(Red); Node* newSubTreeRoot = leftRotate(x->parent()->parent()); updateStart = newSubTreeRoot->parent(); } } } propagateUpdates(updateStart); m_root->setColor(Black); } // Restores the red-black property to the tree after splicing out // a node. Note that x may be null, which is why xParent must be // supplied. void deleteFixup(Node* x, Node* xParent) { while (x != m_root && (!x || x->color() == Black)) { if (x == xParent->left()) { // Note: the text points out that w can not be null. // The reason is not obvious from simply looking at // the code; it comes about from the properties of the // red-black tree. Node* w = xParent->right(); ASSERT(w); // x's sibling should not be null. if (w->color() == Red) { // Case 1 w->setColor(Black); xParent->setColor(Red); leftRotate(xParent); w = xParent->right(); } if ((!w->left() || w->left()->color() == Black) && (!w->right() || w->right()->color() == Black)) { // Case 2 w->setColor(Red); x = xParent; xParent = x->parent(); } else { if (!w->right() || w->right()->color() == Black) { // Case 3 w->left()->setColor(Black); w->setColor(Red); rightRotate(w); w = xParent->right(); } // Case 4 w->setColor(xParent->color()); xParent->setColor(Black); if (w->right()) w->right()->setColor(Black); leftRotate(xParent); x = m_root; xParent = x->parent(); } } else { // Same as "then" clause with "right" and "left" // exchanged. // Note: the text points out that w can not be null. // The reason is not obvious from simply looking at // the code; it comes about from the properties of the // red-black tree. Node* w = xParent->left(); ASSERT(w); // x's sibling should not be null. if (w->color() == Red) { // Case 1 w->setColor(Black); xParent->setColor(Red); rightRotate(xParent); w = xParent->left(); } if ((!w->right() || w->right()->color() == Black) && (!w->left() || w->left()->color() == Black)) { // Case 2 w->setColor(Red); x = xParent; xParent = x->parent(); } else { if (!w->left() || w->left()->color() == Black) { // Case 3 w->right()->setColor(Black); w->setColor(Red); leftRotate(w); w = xParent->left(); } // Case 4 w->setColor(xParent->color()); xParent->setColor(Black); if (w->left()) w->left()->setColor(Black); rightRotate(xParent); x = m_root; xParent = x->parent(); } } } if (x) x->setColor(Black); } // Deletes the given node from the tree. Note that this // particular node may not actually be removed from the tree; // instead, another node might be removed and its contents // copied into z. void deleteNode(Node* z) { // Y is the node to be unlinked from the tree. Node* y; if (!z->left() || !z->right()) y = z; else y = treeSuccessor(z); // Y is guaranteed to be non-null at this point. Node* x; if (y->left()) x = y->left(); else x = y->right(); // X is the child of y which might potentially replace y in // the tree. X might be null at this point. Node* xParent; if (x) { x->setParent(y->parent()); xParent = x->parent(); } else { xParent = y->parent(); } if (!y->parent()) { m_root = x; } else { if (y == y->parent()->left()) y->parent()->setLeft(x); else y->parent()->setRight(x); } if (y != z) { z->copyFrom(y); // This node has changed location in the tree and must be updated. updateNode(z); // The parent and its parents may now be out of date. propagateUpdates(z->parent()); } // If we haven't already updated starting from xParent, do so now. if (xParent && xParent != y && xParent != z) propagateUpdates(xParent); if (y->color() == Black) deleteFixup(x, xParent); m_arena->freeObject(y); } // Visits the subtree rooted at the given node in order. void visitInorderImpl(Node* node, Visitor* visitor) const { if (node->left()) visitInorderImpl(node->left(), visitor); visitor->visit(node->data()); if (node->right()) visitInorderImpl(node->right(), visitor); } void markFree(Node *node) { if (!node) return; if (node->left()) markFree(node->left()); if (node->right()) markFree(node->right()); m_arena->freeObject(node); } //---------------------------------------------------------------------- // Helper class for size() // A Visitor which simply counts the number of visited elements. class Counter : public Visitor { WTF_MAKE_NONCOPYABLE(Counter); public: Counter() : m_count(0) { } virtual void visit(const T&) { ++m_count; } int count() const { return m_count; } private: int m_count; }; //---------------------------------------------------------------------- // Verification and debugging routines // // Returns in the "blackCount" parameter the number of black // children along all paths to all leaves of the given node. bool checkInvariantsFromNode(Node* node, int* blackCount) const { // Base case is a leaf node. if (!node) { *blackCount = 1; return true; } // Each node is either red or black. if (!(node->color() == Red || node->color() == Black)) return false; // Every leaf (or null) is black. if (node->color() == Red) { // Both of its children are black. if (!((!node->left() || node->left()->color() == Black))) return false; if (!((!node->right() || node->right()->color() == Black))) return false; } // Every simple path to a leaf node contains the same number of // black nodes. int leftCount = 0, rightCount = 0; bool leftValid = checkInvariantsFromNode(node->left(), &leftCount); bool rightValid = checkInvariantsFromNode(node->right(), &rightCount); if (!leftValid || !rightValid) return false; *blackCount = leftCount + (node->color() == Black ? 1 : 0); return leftCount == rightCount; } #ifdef NDEBUG void logIfVerbose(const char*) const { } #else void logIfVerbose(const char* output) const { if (m_verboseDebugging) WTF_LOG_ERROR("%s", output); } #endif #ifndef NDEBUG // Dumps the subtree rooted at the given node. void dumpFromNode(Node* node, int indentation) const { StringBuilder builder; for (int i = 0; i < indentation; i++) builder.append(" "); builder.append("-"); if (node) { builder.append(" "); builder.append(ValueToString::string(node->data())); builder.append((node->color() == Black) ? " (black)" : " (red)"); } WTF_LOG_ERROR("%s", builder.toString().ascii().data()); if (node) { dumpFromNode(node->left(), indentation + 2); dumpFromNode(node->right(), indentation + 2); } } #endif //---------------------------------------------------------------------- // Data members RefPtr > m_arena; Node* m_root; bool m_needsFullOrderingComparisons; #ifndef NDEBUG bool m_verboseDebugging; #endif }; } // namespace WebCore #endif // PODRedBlackTree_h