#include "precompiled.h" // // Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // VertexBuffer9.cpp: Defines the D3D9 VertexBuffer implementation. #include "libGLESv2/renderer/VertexBuffer9.h" #include "libGLESv2/renderer/vertexconversion.h" #include "libGLESv2/renderer/BufferStorage.h" #include "libGLESv2/Context.h" #include "libGLESv2/renderer/Renderer9.h" #include "libGLESv2/Buffer.h" namespace rx { bool VertexBuffer9::mTranslationsInitialized = false; VertexBuffer9::FormatConverter VertexBuffer9::mFormatConverters[NUM_GL_VERTEX_ATTRIB_TYPES][2][4]; VertexBuffer9::VertexBuffer9(rx::Renderer9 *const renderer) : mRenderer(renderer) { mVertexBuffer = NULL; mBufferSize = 0; mDynamicUsage = false; if (!mTranslationsInitialized) { initializeTranslations(renderer->getCapsDeclTypes()); mTranslationsInitialized = true; } } VertexBuffer9::~VertexBuffer9() { if (mVertexBuffer) { mVertexBuffer->Release(); mVertexBuffer = NULL; } } bool VertexBuffer9::initialize(unsigned int size, bool dynamicUsage) { if (mVertexBuffer) { mVertexBuffer->Release(); mVertexBuffer = NULL; } updateSerial(); if (size > 0) { DWORD flags = D3DUSAGE_WRITEONLY; if (dynamicUsage) { flags |= D3DUSAGE_DYNAMIC; } HRESULT result = mRenderer->createVertexBuffer(size, flags, &mVertexBuffer); if (FAILED(result)) { ERR("Out of memory allocating a vertex buffer of size %lu.", size); return false; } } mBufferSize = size; mDynamicUsage = dynamicUsage; return true; } VertexBuffer9 *VertexBuffer9::makeVertexBuffer9(VertexBuffer *vertexBuffer) { ASSERT(HAS_DYNAMIC_TYPE(VertexBuffer9*, vertexBuffer)); return static_cast(vertexBuffer); } bool VertexBuffer9::storeVertexAttributes(const gl::VertexAttribute &attrib, GLint start, GLsizei count, GLsizei instances, unsigned int offset) { if (mVertexBuffer) { gl::Buffer *buffer = attrib.mBoundBuffer.get(); int inputStride = attrib.stride(); int elementSize = attrib.typeSize(); const FormatConverter &converter = formatConverter(attrib); DWORD lockFlags = mDynamicUsage ? D3DLOCK_NOOVERWRITE : 0; void *mapPtr = NULL; unsigned int mapSize; if (!spaceRequired(attrib, count, instances, &mapSize)) { return false; } HRESULT result = mVertexBuffer->Lock(offset, mapSize, &mapPtr, lockFlags); if (FAILED(result)) { ERR("Lock failed with error 0x%08x", result); return false; } const char *input = NULL; if (buffer) { BufferStorage *storage = buffer->getStorage(); input = static_cast(storage->getData()) + static_cast(attrib.mOffset); } else { input = static_cast(attrib.mPointer); } if (instances == 0 || attrib.mDivisor == 0) { input += inputStride * start; } if (converter.identity && inputStride == elementSize) { memcpy(mapPtr, input, count * inputStride); } else { converter.convertArray(input, inputStride, count, mapPtr); } mVertexBuffer->Unlock(); return true; } else { ERR("Vertex buffer not initialized."); return false; } } bool VertexBuffer9::storeRawData(const void* data, unsigned int size, unsigned int offset) { if (mVertexBuffer) { DWORD lockFlags = mDynamicUsage ? D3DLOCK_NOOVERWRITE : 0; void *mapPtr = NULL; HRESULT result = mVertexBuffer->Lock(offset, size, &mapPtr, lockFlags); if (FAILED(result)) { ERR("Lock failed with error 0x%08x", result); return false; } memcpy(mapPtr, data, size); mVertexBuffer->Unlock(); return true; } else { ERR("Vertex buffer not initialized."); return false; } } bool VertexBuffer9::getSpaceRequired(const gl::VertexAttribute &attrib, GLsizei count, GLsizei instances, unsigned int *outSpaceRequired) const { return spaceRequired(attrib, count, instances, outSpaceRequired); } bool VertexBuffer9::requiresConversion(const gl::VertexAttribute &attrib) const { return !formatConverter(attrib).identity; } unsigned int VertexBuffer9::getVertexSize(const gl::VertexAttribute &attrib) const { unsigned int spaceRequired; return getSpaceRequired(attrib, 1, 0, &spaceRequired) ? spaceRequired : 0; } D3DDECLTYPE VertexBuffer9::getDeclType(const gl::VertexAttribute &attrib) const { return formatConverter(attrib).d3dDeclType; } unsigned int VertexBuffer9::getBufferSize() const { return mBufferSize; } bool VertexBuffer9::setBufferSize(unsigned int size) { if (size > mBufferSize) { return initialize(size, mDynamicUsage); } else { return true; } } bool VertexBuffer9::discard() { if (mVertexBuffer) { void *dummy; HRESULT result; result = mVertexBuffer->Lock(0, 1, &dummy, D3DLOCK_DISCARD); if (FAILED(result)) { ERR("Discard lock failed with error 0x%08x", result); return false; } result = mVertexBuffer->Unlock(); if (FAILED(result)) { ERR("Discard unlock failed with error 0x%08x", result); return false; } return true; } else { ERR("Vertex buffer not initialized."); return false; } } IDirect3DVertexBuffer9 * VertexBuffer9::getBuffer() const { return mVertexBuffer; } // Mapping from OpenGL-ES vertex attrib type to D3D decl type: // // BYTE SHORT (Cast) // BYTE-norm FLOAT (Normalize) (can't be exactly represented as SHORT-norm) // UNSIGNED_BYTE UBYTE4 (Identity) or SHORT (Cast) // UNSIGNED_BYTE-norm UBYTE4N (Identity) or FLOAT (Normalize) // SHORT SHORT (Identity) // SHORT-norm SHORT-norm (Identity) or FLOAT (Normalize) // UNSIGNED_SHORT FLOAT (Cast) // UNSIGNED_SHORT-norm USHORT-norm (Identity) or FLOAT (Normalize) // FIXED (not in WebGL) FLOAT (FixedToFloat) // FLOAT FLOAT (Identity) // GLToCType maps from GL type (as GLenum) to the C typedef. template struct GLToCType { }; template <> struct GLToCType { typedef GLbyte type; }; template <> struct GLToCType { typedef GLubyte type; }; template <> struct GLToCType { typedef GLshort type; }; template <> struct GLToCType { typedef GLushort type; }; template <> struct GLToCType { typedef GLuint type; }; template <> struct GLToCType { typedef GLfloat type; }; // This differs from D3DDECLTYPE in that it is unsized. (Size expansion is applied last.) enum D3DVertexType { D3DVT_FLOAT, D3DVT_SHORT, D3DVT_SHORT_NORM, D3DVT_UBYTE, D3DVT_UBYTE_NORM, D3DVT_USHORT_NORM }; // D3DToCType maps from D3D vertex type (as enum D3DVertexType) to the corresponding C type. template struct D3DToCType { }; template <> struct D3DToCType { typedef float type; }; template <> struct D3DToCType { typedef short type; }; template <> struct D3DToCType { typedef short type; }; template <> struct D3DToCType { typedef unsigned char type; }; template <> struct D3DToCType { typedef unsigned char type; }; template <> struct D3DToCType { typedef unsigned short type; }; // Encode the type/size combinations that D3D permits. For each type/size it expands to a widener that will provide the appropriate final size. template struct WidenRule { }; template struct WidenRule : NoWiden { }; template struct WidenRule : WidenToEven { }; template struct WidenRule : WidenToEven { }; template struct WidenRule : WidenToFour { }; template struct WidenRule : WidenToFour { }; template struct WidenRule : WidenToEven { }; // VertexTypeFlags encodes the D3DCAPS9::DeclType flag and vertex declaration flag for each D3D vertex type & size combination. template struct VertexTypeFlags { }; template struct VertexTypeFlagsHelper { enum { capflag = _capflag }; enum { declflag = _declflag }; }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT1> { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT2> { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT3> { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT4> { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper<0, D3DDECLTYPE_SHORT2> { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper<0, D3DDECLTYPE_SHORT4> { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper { }; template <> struct VertexTypeFlags : VertexTypeFlagsHelper { }; // VertexTypeMapping maps GL type & normalized flag to preferred and fallback D3D vertex types (as D3DVertexType enums). template struct VertexTypeMapping { }; template struct VertexTypeMappingBase { enum { preferred = Preferred }; enum { fallback = Fallback }; }; template <> struct VertexTypeMapping : VertexTypeMappingBase { }; // Cast template <> struct VertexTypeMapping : VertexTypeMappingBase { }; // Normalize template <> struct VertexTypeMapping : VertexTypeMappingBase { }; // Identity, Cast template <> struct VertexTypeMapping : VertexTypeMappingBase { }; // Identity, Normalize template <> struct VertexTypeMapping : VertexTypeMappingBase { }; // Identity template <> struct VertexTypeMapping : VertexTypeMappingBase { }; // Cast, Normalize template <> struct VertexTypeMapping : VertexTypeMappingBase { }; // Cast template <> struct VertexTypeMapping : VertexTypeMappingBase { }; // Cast, Normalize template struct VertexTypeMapping : VertexTypeMappingBase { }; // FixedToFloat template struct VertexTypeMapping : VertexTypeMappingBase { }; // Identity // Given a GL type & norm flag and a D3D type, ConversionRule provides the type conversion rule (Cast, Normalize, Identity, FixedToFloat). // The conversion rules themselves are defined in vertexconversion.h. // Almost all cases are covered by Cast (including those that are actually Identity since Cast knows it's an identity mapping). template struct ConversionRule : Cast::type, typename D3DToCType::type> { }; // All conversions from normalized types to float use the Normalize operator. template struct ConversionRule : Normalize::type> { }; // Use a full specialization for this so that it preferentially matches ahead of the generic normalize-to-float rules. template <> struct ConversionRule : FixedToFloat { }; template <> struct ConversionRule : FixedToFloat { }; // A 2-stage construction is used for DefaultVertexValues because float must use SimpleDefaultValues (i.e. 0/1) // whether it is normalized or not. template struct DefaultVertexValuesStage2 { }; template struct DefaultVertexValuesStage2 : NormalizedDefaultValues { }; template struct DefaultVertexValuesStage2 : SimpleDefaultValues { }; // Work out the default value rule for a D3D type (expressed as the C type) and template struct DefaultVertexValues : DefaultVertexValuesStage2 { }; template struct DefaultVertexValues : SimpleDefaultValues { }; // Policy rules for use with Converter, to choose whether to use the preferred or fallback conversion. // The fallback conversion produces an output that all D3D9 devices must support. template struct UsePreferred { enum { type = T::preferred }; }; template struct UseFallback { enum { type = T::fallback }; }; // Converter ties it all together. Given an OpenGL type/norm/size and choice of preferred/fallback conversion, // it provides all the members of the appropriate VertexDataConverter, the D3DCAPS9::DeclTypes flag in cap flag // and the D3DDECLTYPE member needed for the vertex declaration in declflag. template class PreferenceRule> struct Converter : VertexDataConverter::type, WidenRule >::type, size>, ConversionRule >::type>, DefaultVertexValues >::type>::type, normalized > > { private: enum { d3dtype = PreferenceRule< VertexTypeMapping >::type }; enum { d3dsize = WidenRule::finalWidth }; public: enum { capflag = VertexTypeFlags::capflag }; enum { declflag = VertexTypeFlags::declflag }; }; // Initialize a TranslationInfo #define TRANSLATION(type, norm, size, preferred) \ { \ Converter::identity, \ Converter::finalSize, \ Converter::convertArray, \ static_cast(Converter::declflag) \ } #define TRANSLATION_FOR_TYPE_NORM_SIZE(type, norm, size) \ { \ Converter::capflag, \ TRANSLATION(type, norm, size, UsePreferred), \ TRANSLATION(type, norm, size, UseFallback) \ } #define TRANSLATIONS_FOR_TYPE(type) \ { \ { TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 4) }, \ { TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 4) }, \ } #define TRANSLATIONS_FOR_TYPE_NO_NORM(type) \ { \ { TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 4) }, \ { TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 4) }, \ } const VertexBuffer9::TranslationDescription VertexBuffer9::mPossibleTranslations[NUM_GL_VERTEX_ATTRIB_TYPES][2][4] = // [GL types as enumerated by typeIndex()][normalized][size-1] { TRANSLATIONS_FOR_TYPE(GL_BYTE), TRANSLATIONS_FOR_TYPE(GL_UNSIGNED_BYTE), TRANSLATIONS_FOR_TYPE(GL_SHORT), TRANSLATIONS_FOR_TYPE(GL_UNSIGNED_SHORT), TRANSLATIONS_FOR_TYPE_NO_NORM(GL_FIXED), TRANSLATIONS_FOR_TYPE_NO_NORM(GL_FLOAT) }; void VertexBuffer9::initializeTranslations(DWORD declTypes) { for (unsigned int i = 0; i < NUM_GL_VERTEX_ATTRIB_TYPES; i++) { for (unsigned int j = 0; j < 2; j++) { for (unsigned int k = 0; k < 4; k++) { if (mPossibleTranslations[i][j][k].capsFlag == 0 || (declTypes & mPossibleTranslations[i][j][k].capsFlag) != 0) { mFormatConverters[i][j][k] = mPossibleTranslations[i][j][k].preferredConversion; } else { mFormatConverters[i][j][k] = mPossibleTranslations[i][j][k].fallbackConversion; } } } } } unsigned int VertexBuffer9::typeIndex(GLenum type) { switch (type) { case GL_BYTE: return 0; case GL_UNSIGNED_BYTE: return 1; case GL_SHORT: return 2; case GL_UNSIGNED_SHORT: return 3; case GL_FIXED: return 4; case GL_FLOAT: return 5; default: UNREACHABLE(); return 5; } } const VertexBuffer9::FormatConverter &VertexBuffer9::formatConverter(const gl::VertexAttribute &attribute) { return mFormatConverters[typeIndex(attribute.mType)][attribute.mNormalized][attribute.mSize - 1]; } bool VertexBuffer9::spaceRequired(const gl::VertexAttribute &attrib, std::size_t count, GLsizei instances, unsigned int *outSpaceRequired) { unsigned int elementSize = formatConverter(attrib).outputElementSize; if (attrib.mArrayEnabled) { unsigned int elementCount = 0; if (instances == 0 || attrib.mDivisor == 0) { elementCount = count; } else { if (static_cast(instances) < std::numeric_limits::max() - (attrib.mDivisor - 1)) { // Round up elementCount = (static_cast(instances) + (attrib.mDivisor - 1)) / attrib.mDivisor; } else { elementCount = static_cast(instances) / attrib.mDivisor; } } if (elementSize <= std::numeric_limits::max() / elementCount) { if (outSpaceRequired) { *outSpaceRequired = elementSize * elementCount; } return true; } else { return false; } } else { const unsigned int elementSize = 4; if (outSpaceRequired) { *outSpaceRequired = elementSize * 4; } return true; } } }