// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_IC_H_ #define V8_IC_H_ #include "macro-assembler.h" #include "type-info.h" namespace v8 { namespace internal { // IC_UTIL_LIST defines all utility functions called from generated // inline caching code. The argument for the macro, ICU, is the function name. #define IC_UTIL_LIST(ICU) \ ICU(LoadIC_Miss) \ ICU(KeyedLoadIC_Miss) \ ICU(CallIC_Miss) \ ICU(KeyedCallIC_Miss) \ ICU(StoreIC_Miss) \ ICU(StoreIC_ArrayLength) \ ICU(StoreIC_Slow) \ ICU(SharedStoreIC_ExtendStorage) \ ICU(KeyedStoreIC_Miss) \ ICU(KeyedStoreIC_Slow) \ /* Utilities for IC stubs. */ \ ICU(StoreCallbackProperty) \ ICU(LoadPropertyWithInterceptorOnly) \ ICU(LoadPropertyWithInterceptorForLoad) \ ICU(LoadPropertyWithInterceptorForCall) \ ICU(KeyedLoadPropertyWithInterceptor) \ ICU(StoreInterceptorProperty) \ ICU(CompareIC_Miss) \ ICU(BinaryOpIC_Miss) \ ICU(CompareNilIC_Miss) \ ICU(Unreachable) \ ICU(ToBooleanIC_Miss) // // IC is the base class for LoadIC, StoreIC, CallIC, KeyedLoadIC, // and KeyedStoreIC. // class IC { public: // The ids for utility called from the generated code. enum UtilityId { #define CONST_NAME(name) k##name, IC_UTIL_LIST(CONST_NAME) #undef CONST_NAME kUtilityCount }; // Looks up the address of the named utility. static Address AddressFromUtilityId(UtilityId id); // Alias the inline cache state type to make the IC code more readable. typedef InlineCacheState State; // The IC code is either invoked with no extra frames on the stack // or with a single extra frame for supporting calls. enum FrameDepth { NO_EXTRA_FRAME = 0, EXTRA_CALL_FRAME = 1 }; // Construct the IC structure with the given number of extra // JavaScript frames on the stack. IC(FrameDepth depth, Isolate* isolate); virtual ~IC() {} State state() const { return state_; } inline Address address() const; // Compute the current IC state based on the target stub, receiver and name. void UpdateState(Handle receiver, Handle name); void MarkMonomorphicPrototypeFailure() { state_ = MONOMORPHIC_PROTOTYPE_FAILURE; } // Clear the inline cache to initial state. static void Clear(Isolate* isolate, Address address); // Computes the reloc info for this IC. This is a fairly expensive // operation as it has to search through the heap to find the code // object that contains this IC site. RelocInfo::Mode ComputeMode(); // Returns if this IC is for contextual (no explicit receiver) // access to properties. bool IsUndeclaredGlobal(Handle receiver) { if (receiver->IsGlobalObject()) { return SlowIsUndeclaredGlobal(); } else { ASSERT(!SlowIsUndeclaredGlobal()); return false; } } bool SlowIsUndeclaredGlobal() { return ComputeMode() == RelocInfo::CODE_TARGET_CONTEXT; } #ifdef DEBUG bool IsLoadStub() { return target()->is_load_stub() || target()->is_keyed_load_stub(); } bool IsStoreStub() { return target()->is_store_stub() || target()->is_keyed_store_stub(); } bool IsCallStub() { return target()->is_call_stub() || target()->is_keyed_call_stub(); } #endif // Determines which map must be used for keeping the code stub. // These methods should not be called with undefined or null. static inline InlineCacheHolderFlag GetCodeCacheForObject(Object* object); // TODO(verwaest): This currently returns a HeapObject rather than JSObject* // since loading the IC for loading the length from strings are stored on // the string map directly, rather than on the JSObject-typed prototype. static inline HeapObject* GetCodeCacheHolder(Isolate* isolate, Object* object, InlineCacheHolderFlag holder); static inline InlineCacheHolderFlag GetCodeCacheFlag(Type* type); static inline Handle GetCodeCacheHolder(InlineCacheHolderFlag flag, Type* type, Isolate* isolate); static bool IsCleared(Code* code) { InlineCacheState state = code->ic_state(); return state == UNINITIALIZED || state == PREMONOMORPHIC; } // Utility functions to convert maps to types and back. There are two special // cases: // - The heap_number_map is used as a marker which includes heap numbers as // well as smis. // - The oddball map is only used for booleans. static Handle TypeToMap(Type* type, Isolate* isolate); static Type* MapToType(Handle type); static Handle CurrentTypeOf(Handle object, Isolate* isolate); protected: // Get the call-site target; used for determining the state. Handle target() const { return target_; } Address fp() const { return fp_; } Address pc() const { return *pc_address_; } Isolate* isolate() const { return isolate_; } #ifdef ENABLE_DEBUGGER_SUPPORT // Computes the address in the original code when the code running is // containing break points (calls to DebugBreakXXX builtins). Address OriginalCodeAddress() const; #endif // Set the call-site target. void set_target(Code* code) { SetTargetAtAddress(address(), code); target_set_ = true; } bool is_target_set() { return target_set_; } #ifdef DEBUG char TransitionMarkFromState(IC::State state); void TraceIC(const char* type, Handle name); #endif Failure* TypeError(const char* type, Handle object, Handle key); Failure* ReferenceError(const char* type, Handle name); // Access the target code for the given IC address. static inline Code* GetTargetAtAddress(Address address); static inline void SetTargetAtAddress(Address address, Code* target); static void PostPatching(Address address, Code* target, Code* old_target); // Compute the handler either by compiling or by retrieving a cached version. Handle ComputeHandler(LookupResult* lookup, Handle object, Handle name, Handle value = Handle::null()); virtual Handle CompileHandler(LookupResult* lookup, Handle object, Handle name, Handle value, InlineCacheHolderFlag cache_holder) { UNREACHABLE(); return Handle::null(); } void UpdateMonomorphicIC(Handle type, Handle handler, Handle name); bool UpdatePolymorphicIC(Handle type, Handle name, Handle code); virtual void UpdateMegamorphicCache(Type* type, Name* name, Code* code); void CopyICToMegamorphicCache(Handle name); bool IsTransitionOfMonomorphicTarget(Type* type); void PatchCache(Handle type, Handle name, Handle code); virtual Code::Kind kind() const { UNREACHABLE(); return Code::STUB; } virtual Handle slow_stub() const { UNREACHABLE(); return Handle::null(); } virtual Handle megamorphic_stub() { UNREACHABLE(); return Handle::null(); } virtual Handle generic_stub() const { UNREACHABLE(); return Handle::null(); } bool TryRemoveInvalidPrototypeDependentStub(Handle receiver, Handle name); void TryRemoveInvalidHandlers(Handle map, Handle name); virtual ExtraICState extra_ic_state() { return kNoExtraICState; } private: Code* raw_target() const { return GetTargetAtAddress(address()); } // Frame pointer for the frame that uses (calls) the IC. Address fp_; // All access to the program counter of an IC structure is indirect // to make the code GC safe. This feature is crucial since // GetProperty and SetProperty are called and they in turn might // invoke the garbage collector. Address* pc_address_; Isolate* isolate_; // The original code target that missed. Handle target_; State state_; bool target_set_; DISALLOW_IMPLICIT_CONSTRUCTORS(IC); }; // An IC_Utility encapsulates IC::UtilityId. It exists mainly because you // cannot make forward declarations to an enum. class IC_Utility { public: explicit IC_Utility(IC::UtilityId id) : address_(IC::AddressFromUtilityId(id)), id_(id) {} Address address() const { return address_; } IC::UtilityId id() const { return id_; } private: Address address_; IC::UtilityId id_; }; class CallICBase: public IC { public: // ExtraICState bits class Contextual: public BitField {}; class StringStubState: public BitField {}; static ExtraICState ComputeExtraICState(ContextualMode mode, StringStubFeedback feedback) { return Contextual::encode(mode) | StringStubState::encode(feedback); } // Returns a JSFunction or a Failure. MUST_USE_RESULT MaybeObject* LoadFunction(Handle object, Handle name); protected: CallICBase(Code::Kind kind, Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate), kind_(kind) {} // Compute a monomorphic stub if possible, otherwise return a null handle. Handle ComputeMonomorphicStub(LookupResult* lookup, Handle object, Handle name); // Update the inline cache and the global stub cache based on the lookup // result. void UpdateCaches(LookupResult* lookup, Handle object, Handle name); // Returns a JSFunction if the object can be called as a function, and // patches the stack to be ready for the call. Otherwise, it returns the // undefined value. Handle TryCallAsFunction(Handle object); void ReceiverToObjectIfRequired(Handle callee, Handle object); static void Clear(Address address, Code* target); // Platform-specific code generation functions used by both call and // keyed call. static void GenerateMiss(MacroAssembler* masm, int argc, IC::UtilityId id, ExtraICState extra_state); static void GenerateNormal(MacroAssembler* masm, int argc); static void GenerateMonomorphicCacheProbe(MacroAssembler* masm, int argc, Code::Kind kind, ExtraICState extra_state); virtual Handle megamorphic_stub(); virtual Handle pre_monomorphic_stub(); Code::Kind kind_; friend class IC; }; class CallIC: public CallICBase { public: explicit CallIC(Isolate* isolate) : CallICBase(Code::CALL_IC, isolate), extra_ic_state_(target()->extra_ic_state()) { ASSERT(target()->is_call_stub()); } // Code generator routines. static void GenerateInitialize(MacroAssembler* masm, int argc, ExtraICState extra_state) { GenerateMiss(masm, argc, extra_state); } static void GenerateMiss(MacroAssembler* masm, int argc, ExtraICState extra_state) { CallICBase::GenerateMiss(masm, argc, IC::kCallIC_Miss, extra_state); } static void GenerateMegamorphic(MacroAssembler* masm, int argc, ExtraICState extra_ic_state); static void GenerateNormal(MacroAssembler* masm, int argc) { CallICBase::GenerateNormal(masm, argc); GenerateMiss(masm, argc, kNoExtraICState); } bool TryUpdateExtraICState(LookupResult* lookup, Handle object); protected: virtual ExtraICState extra_ic_state() { return extra_ic_state_; } private: ExtraICState extra_ic_state_; }; class KeyedCallIC: public CallICBase { public: explicit KeyedCallIC(Isolate* isolate) : CallICBase(Code::KEYED_CALL_IC, isolate) { ASSERT(target()->is_keyed_call_stub()); } MUST_USE_RESULT MaybeObject* LoadFunction(Handle object, Handle key); // Code generator routines. static void GenerateInitialize(MacroAssembler* masm, int argc) { GenerateMiss(masm, argc); } static void GenerateMiss(MacroAssembler* masm, int argc) { CallICBase::GenerateMiss(masm, argc, IC::kKeyedCallIC_Miss, kNoExtraICState); } static void GenerateMegamorphic(MacroAssembler* masm, int argc); static void GenerateNormal(MacroAssembler* masm, int argc); static void GenerateNonStrictArguments(MacroAssembler* masm, int argc); }; class LoadIC: public IC { public: explicit LoadIC(FrameDepth depth, Isolate* isolate) : IC(depth, isolate) { ASSERT(IsLoadStub()); } // Code generator routines. static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GeneratePreMonomorphic(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateMiss(MacroAssembler* masm); static void GenerateMegamorphic(MacroAssembler* masm); static void GenerateNormal(MacroAssembler* masm); static void GenerateRuntimeGetProperty(MacroAssembler* masm); MUST_USE_RESULT MaybeObject* Load(Handle object, Handle name); protected: virtual Code::Kind kind() const { return Code::LOAD_IC; } virtual Handle slow_stub() const { return isolate()->builtins()->LoadIC_Slow(); } virtual Handle megamorphic_stub() { return isolate()->builtins()->LoadIC_Megamorphic(); } // Update the inline cache and the global stub cache based on the // lookup result. void UpdateCaches(LookupResult* lookup, Handle object, Handle name); virtual Handle CompileHandler(LookupResult* lookup, Handle object, Handle name, Handle unused, InlineCacheHolderFlag cache_holder); private: // Stub accessors. static Handle initialize_stub(Isolate* isolate) { return isolate->builtins()->LoadIC_Initialize(); } static Handle pre_monomorphic_stub(Isolate* isolate) { return isolate->builtins()->LoadIC_PreMonomorphic(); } virtual Handle pre_monomorphic_stub() { return pre_monomorphic_stub(isolate()); } Handle SimpleFieldLoad(int offset, bool inobject = true, Representation representation = Representation::Tagged()); static void Clear(Isolate* isolate, Address address, Code* target); friend class IC; }; class KeyedLoadIC: public LoadIC { public: explicit KeyedLoadIC(FrameDepth depth, Isolate* isolate) : LoadIC(depth, isolate) { ASSERT(target()->is_keyed_load_stub()); } MUST_USE_RESULT MaybeObject* Load(Handle object, Handle key); // Code generator routines. static void GenerateMiss(MacroAssembler* masm); static void GenerateRuntimeGetProperty(MacroAssembler* masm); static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GeneratePreMonomorphic(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateGeneric(MacroAssembler* masm); static void GenerateString(MacroAssembler* masm); static void GenerateIndexedInterceptor(MacroAssembler* masm); static void GenerateNonStrictArguments(MacroAssembler* masm); // Bit mask to be tested against bit field for the cases when // generic stub should go into slow case. // Access check is necessary explicitly since generic stub does not perform // map checks. static const int kSlowCaseBitFieldMask = (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor); protected: virtual Code::Kind kind() const { return Code::KEYED_LOAD_IC; } Handle LoadElementStub(Handle receiver); virtual Handle megamorphic_stub() { return isolate()->builtins()->KeyedLoadIC_Generic(); } virtual Handle generic_stub() const { return isolate()->builtins()->KeyedLoadIC_Generic(); } virtual Handle slow_stub() const { return isolate()->builtins()->KeyedLoadIC_Slow(); } virtual void UpdateMegamorphicCache(Type* type, Name* name, Code* code) { } private: // Stub accessors. static Handle initialize_stub(Isolate* isolate) { return isolate->builtins()->KeyedLoadIC_Initialize(); } static Handle pre_monomorphic_stub(Isolate* isolate) { return isolate->builtins()->KeyedLoadIC_PreMonomorphic(); } virtual Handle pre_monomorphic_stub() { return pre_monomorphic_stub(isolate()); } Handle indexed_interceptor_stub() { return isolate()->builtins()->KeyedLoadIC_IndexedInterceptor(); } Handle non_strict_arguments_stub() { return isolate()->builtins()->KeyedLoadIC_NonStrictArguments(); } Handle string_stub() { return isolate()->builtins()->KeyedLoadIC_String(); } static void Clear(Isolate* isolate, Address address, Code* target); friend class IC; }; class StoreIC: public IC { public: // ExtraICState bits class StrictModeState: public BitField {}; static ExtraICState ComputeExtraICState(StrictModeFlag flag) { return StrictModeState::encode(flag); } static StrictModeFlag GetStrictMode(ExtraICState state) { return StrictModeState::decode(state); } // For convenience, a statically declared encoding of strict mode extra // IC state. static const ExtraICState kStrictModeState = 1 << StrictModeState::kShift; StoreIC(FrameDepth depth, Isolate* isolate) : IC(depth, isolate), strict_mode_(GetStrictMode(target()->extra_ic_state())) { ASSERT(IsStoreStub()); } StrictModeFlag strict_mode() const { return strict_mode_; } // Code generators for stub routines. Only called once at startup. static void GenerateSlow(MacroAssembler* masm); static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GeneratePreMonomorphic(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateMiss(MacroAssembler* masm); static void GenerateMegamorphic(MacroAssembler* masm, ExtraICState extra_ic_state); static void GenerateNormal(MacroAssembler* masm); static void GenerateRuntimeSetProperty(MacroAssembler* masm, StrictModeFlag strict_mode); MUST_USE_RESULT MaybeObject* Store( Handle object, Handle name, Handle value, JSReceiver::StoreFromKeyed store_mode = JSReceiver::CERTAINLY_NOT_STORE_FROM_KEYED); protected: virtual Code::Kind kind() const { return Code::STORE_IC; } virtual Handle megamorphic_stub() { if (strict_mode() == kStrictMode) { return isolate()->builtins()->StoreIC_Megamorphic_Strict(); } else { return isolate()->builtins()->StoreIC_Megamorphic(); } } // Stub accessors. virtual Handle generic_stub() const { if (strict_mode() == kStrictMode) { return isolate()->builtins()->StoreIC_Generic_Strict(); } else { return isolate()->builtins()->StoreIC_Generic(); } } virtual Handle slow_stub() const { return isolate()->builtins()->StoreIC_Slow(); } virtual Handle pre_monomorphic_stub() { return pre_monomorphic_stub(isolate(), strict_mode()); } static Handle pre_monomorphic_stub(Isolate* isolate, StrictModeFlag strict_mode) { if (strict_mode == kStrictMode) { return isolate->builtins()->StoreIC_PreMonomorphic_Strict(); } else { return isolate->builtins()->StoreIC_PreMonomorphic(); } } // Update the inline cache and the global stub cache based on the // lookup result. void UpdateCaches(LookupResult* lookup, Handle receiver, Handle name, Handle value); virtual Handle CompileHandler(LookupResult* lookup, Handle object, Handle name, Handle value, InlineCacheHolderFlag cache_holder); virtual ExtraICState extra_ic_state() { return ComputeExtraICState(strict_mode()); } private: void set_target(Code* code) { // Strict mode must be preserved across IC patching. ASSERT(GetStrictMode(code->extra_ic_state()) == GetStrictMode(target()->extra_ic_state())); IC::set_target(code); } static Handle initialize_stub(Isolate* isolate, StrictModeFlag strict_mode) { if (strict_mode == kStrictMode) { return isolate->builtins()->StoreIC_Initialize_Strict(); } else { return isolate->builtins()->StoreIC_Initialize(); } } static void Clear(Isolate* isolate, Address address, Code* target); StrictModeFlag strict_mode_; friend class IC; }; enum KeyedStoreCheckMap { kDontCheckMap, kCheckMap }; enum KeyedStoreIncrementLength { kDontIncrementLength, kIncrementLength }; class KeyedStoreIC: public StoreIC { public: // ExtraICState bits (building on IC) // ExtraICState bits class ExtraICStateKeyedAccessStoreMode: public BitField {}; // NOLINT static ExtraICState ComputeExtraICState(StrictModeFlag flag, KeyedAccessStoreMode mode) { return StrictModeState::encode(flag) | ExtraICStateKeyedAccessStoreMode::encode(mode); } static KeyedAccessStoreMode GetKeyedAccessStoreMode( ExtraICState extra_state) { return ExtraICStateKeyedAccessStoreMode::decode(extra_state); } KeyedStoreIC(FrameDepth depth, Isolate* isolate) : StoreIC(depth, isolate) { ASSERT(target()->is_keyed_store_stub()); } MUST_USE_RESULT MaybeObject* Store(Handle object, Handle name, Handle value); // Code generators for stub routines. Only called once at startup. static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GeneratePreMonomorphic(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateMiss(MacroAssembler* masm); static void GenerateSlow(MacroAssembler* masm); static void GenerateRuntimeSetProperty(MacroAssembler* masm, StrictModeFlag strict_mode); static void GenerateGeneric(MacroAssembler* masm, StrictModeFlag strict_mode); static void GenerateNonStrictArguments(MacroAssembler* masm); protected: virtual Code::Kind kind() const { return Code::KEYED_STORE_IC; } virtual void UpdateMegamorphicCache(Type* type, Name* name, Code* code) { } virtual ExtraICState extra_ic_state() { return ComputeExtraICState(strict_mode(), STANDARD_STORE); } virtual Handle pre_monomorphic_stub() { return pre_monomorphic_stub(isolate(), strict_mode()); } static Handle pre_monomorphic_stub(Isolate* isolate, StrictModeFlag strict_mode) { if (strict_mode == kStrictMode) { return isolate->builtins()->KeyedStoreIC_PreMonomorphic_Strict(); } else { return isolate->builtins()->KeyedStoreIC_PreMonomorphic(); } } virtual Handle slow_stub() const { return isolate()->builtins()->KeyedStoreIC_Slow(); } virtual Handle megamorphic_stub() { if (strict_mode() == kStrictMode) { return isolate()->builtins()->KeyedStoreIC_Generic_Strict(); } else { return isolate()->builtins()->KeyedStoreIC_Generic(); } } Handle StoreElementStub(Handle receiver, KeyedAccessStoreMode store_mode); private: void set_target(Code* code) { // Strict mode must be preserved across IC patching. ASSERT(GetStrictMode(code->extra_ic_state()) == strict_mode()); IC::set_target(code); } // Stub accessors. static Handle initialize_stub(Isolate* isolate, StrictModeFlag strict_mode) { if (strict_mode == kStrictMode) { return isolate->builtins()->KeyedStoreIC_Initialize_Strict(); } else { return isolate->builtins()->KeyedStoreIC_Initialize(); } } virtual Handle generic_stub() const { if (strict_mode() == kStrictMode) { return isolate()->builtins()->KeyedStoreIC_Generic_Strict(); } else { return isolate()->builtins()->KeyedStoreIC_Generic(); } } Handle non_strict_arguments_stub() { return isolate()->builtins()->KeyedStoreIC_NonStrictArguments(); } static void Clear(Isolate* isolate, Address address, Code* target); KeyedAccessStoreMode GetStoreMode(Handle receiver, Handle key, Handle value); Handle ComputeTransitionedMap(Handle receiver, KeyedAccessStoreMode store_mode); friend class IC; }; // Mode to overwrite BinaryExpression values. enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT }; // Type Recording BinaryOpIC, that records the types of the inputs and outputs. class BinaryOpIC: public IC { public: class State V8_FINAL BASE_EMBEDDED { public: explicit State(ExtraICState extra_ic_state); State(Token::Value op, OverwriteMode mode) : op_(op), mode_(mode), left_kind_(NONE), right_kind_(NONE), result_kind_(NONE) { ASSERT_LE(FIRST_TOKEN, op); ASSERT_LE(op, LAST_TOKEN); } InlineCacheState GetICState() const { if (Max(left_kind_, right_kind_) == NONE) { return ::v8::internal::UNINITIALIZED; } if (Max(left_kind_, right_kind_) == GENERIC) { return ::v8::internal::MEGAMORPHIC; } if (Min(left_kind_, right_kind_) == GENERIC) { return ::v8::internal::GENERIC; } return ::v8::internal::MONOMORPHIC; } ExtraICState GetExtraICState() const; static void GenerateAheadOfTime( Isolate*, void (*Generate)(Isolate*, const State&)); bool CanReuseDoubleBox() const { return (result_kind_ > SMI && result_kind_ <= NUMBER) && ((mode_ == OVERWRITE_LEFT && left_kind_ > SMI && left_kind_ <= NUMBER) || (mode_ == OVERWRITE_RIGHT && right_kind_ > SMI && right_kind_ <= NUMBER)); } bool HasSideEffects() const { return Max(left_kind_, right_kind_) == GENERIC; } bool UseInlinedSmiCode() const { return KindMaybeSmi(left_kind_) || KindMaybeSmi(right_kind_); } static const int FIRST_TOKEN = Token::BIT_OR; static const int LAST_TOKEN = Token::MOD; Token::Value op() const { return op_; } OverwriteMode mode() const { return mode_; } Maybe fixed_right_arg() const { return fixed_right_arg_; } Handle GetLeftType(Isolate* isolate) const { return KindToType(left_kind_, isolate); } Handle GetRightType(Isolate* isolate) const { return KindToType(right_kind_, isolate); } Handle GetResultType(Isolate* isolate) const; void Print(StringStream* stream) const; void Update(Handle left, Handle right, Handle result); private: enum Kind { NONE, SMI, INT32, NUMBER, STRING, GENERIC }; Kind UpdateKind(Handle object, Kind kind) const; static const char* KindToString(Kind kind); static Handle KindToType(Kind kind, Isolate* isolate); static bool KindMaybeSmi(Kind kind) { return (kind >= SMI && kind <= NUMBER) || kind == GENERIC; } // We truncate the last bit of the token. STATIC_ASSERT(LAST_TOKEN - FIRST_TOKEN < (1 << 4)); class OpField: public BitField {}; class OverwriteModeField: public BitField {}; class SSE2Field: public BitField {}; class ResultKindField: public BitField {}; class LeftKindField: public BitField {}; // When fixed right arg is set, we don't need to store the right kind. // Thus the two fields can overlap. class HasFixedRightArgField: public BitField {}; class FixedRightArgValueField: public BitField {}; class RightKindField: public BitField {}; Token::Value op_; OverwriteMode mode_; Kind left_kind_; Kind right_kind_; Kind result_kind_; Maybe fixed_right_arg_; }; explicit BinaryOpIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) { } static Builtins::JavaScript TokenToJSBuiltin(Token::Value op); MUST_USE_RESULT MaybeObject* Transition(Handle left, Handle right); }; class CompareIC: public IC { public: // The type/state lattice is defined by the following inequations: // UNINITIALIZED < ... // ... < GENERIC // SMI < NUMBER // INTERNALIZED_STRING < STRING // KNOWN_OBJECT < OBJECT enum State { UNINITIALIZED, SMI, NUMBER, STRING, INTERNALIZED_STRING, UNIQUE_NAME, // Symbol or InternalizedString OBJECT, // JSObject KNOWN_OBJECT, // JSObject with specific map (faster check) GENERIC }; static State NewInputState(State old_state, Handle value); static Handle StateToType(Isolate* isolate, State state, Handle map = Handle()); static void StubInfoToType(int stub_minor_key, Handle* left_type, Handle* right_type, Handle* overall_type, Handle map, Isolate* isolate); CompareIC(Isolate* isolate, Token::Value op) : IC(EXTRA_CALL_FRAME, isolate), op_(op) { } // Update the inline cache for the given operands. Code* UpdateCaches(Handle x, Handle y); // Factory method for getting an uninitialized compare stub. static Handle GetUninitialized(Isolate* isolate, Token::Value op); // Helper function for computing the condition for a compare operation. static Condition ComputeCondition(Token::Value op); static const char* GetStateName(State state); private: static bool HasInlinedSmiCode(Address address); State TargetState(State old_state, State old_left, State old_right, bool has_inlined_smi_code, Handle x, Handle y); bool strict() const { return op_ == Token::EQ_STRICT; } Condition GetCondition() const { return ComputeCondition(op_); } static Code* GetRawUninitialized(Isolate* isolate, Token::Value op); static void Clear(Isolate* isolate, Address address, Code* target); Token::Value op_; friend class IC; }; class CompareNilIC: public IC { public: explicit CompareNilIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) {} MUST_USE_RESULT MaybeObject* CompareNil(Handle object); static Handle GetUninitialized(); static void Clear(Address address, Code* target); static MUST_USE_RESULT MaybeObject* DoCompareNilSlow(NilValue nil, Handle object); }; class ToBooleanIC: public IC { public: explicit ToBooleanIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) { } MaybeObject* ToBoolean(Handle object); }; // Helper for BinaryOpIC and CompareIC. enum InlinedSmiCheck { ENABLE_INLINED_SMI_CHECK, DISABLE_INLINED_SMI_CHECK }; void PatchInlinedSmiCode(Address address, InlinedSmiCheck check); DECLARE_RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissFromStubFailure); DECLARE_RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissFromStubFailure); DECLARE_RUNTIME_FUNCTION(MaybeObject*, UnaryOpIC_Miss); DECLARE_RUNTIME_FUNCTION(MaybeObject*, StoreIC_MissFromStubFailure); DECLARE_RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_MissFromStubFailure); DECLARE_RUNTIME_FUNCTION(MaybeObject*, ElementsTransitionAndStoreIC_Miss); DECLARE_RUNTIME_FUNCTION(MaybeObject*, BinaryOpIC_Miss); DECLARE_RUNTIME_FUNCTION(MaybeObject*, CompareNilIC_Miss); DECLARE_RUNTIME_FUNCTION(MaybeObject*, ToBooleanIC_Miss); } } // namespace v8::internal #endif // V8_IC_H_