// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_X64_CODE_STUBS_X64_H_ #define V8_X64_CODE_STUBS_X64_H_ #include "ic-inl.h" #include "type-info.h" namespace v8 { namespace internal { void ArrayNativeCode(MacroAssembler* masm, Label* call_generic_code); // Compute a transcendental math function natively, or call the // TranscendentalCache runtime function. class TranscendentalCacheStub: public PlatformCodeStub { public: enum ArgumentType { TAGGED = 0, UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits }; explicit TranscendentalCacheStub(TranscendentalCache::Type type, ArgumentType argument_type) : type_(type), argument_type_(argument_type) {} void Generate(MacroAssembler* masm); static void GenerateOperation(MacroAssembler* masm, TranscendentalCache::Type type); private: TranscendentalCache::Type type_; ArgumentType argument_type_; Major MajorKey() { return TranscendentalCache; } int MinorKey() { return type_ | argument_type_; } Runtime::FunctionId RuntimeFunction(); }; class StoreBufferOverflowStub: public PlatformCodeStub { public: explicit StoreBufferOverflowStub(SaveFPRegsMode save_fp) : save_doubles_(save_fp) { } void Generate(MacroAssembler* masm); static void GenerateFixedRegStubsAheadOfTime(Isolate* isolate); virtual bool SometimesSetsUpAFrame() { return false; } private: SaveFPRegsMode save_doubles_; Major MajorKey() { return StoreBufferOverflow; } int MinorKey() { return (save_doubles_ == kSaveFPRegs) ? 1 : 0; } }; class StringHelper : public AllStatic { public: // Generate code for copying characters using a simple loop. This should only // be used in places where the number of characters is small and the // additional setup and checking in GenerateCopyCharactersREP adds too much // overhead. Copying of overlapping regions is not supported. static void GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, bool ascii); // Generate code for copying characters using the rep movs instruction. // Copies rcx characters from rsi to rdi. Copying of overlapping regions is // not supported. static void GenerateCopyCharactersREP(MacroAssembler* masm, Register dest, // Must be rdi. Register src, // Must be rsi. Register count, // Must be rcx. bool ascii); // Probe the string table for a two character string. If the string is // not found by probing a jump to the label not_found is performed. This jump // does not guarantee that the string is not in the string table. If the // string is found the code falls through with the string in register rax. static void GenerateTwoCharacterStringTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label* not_found); // Generate string hash. static void GenerateHashInit(MacroAssembler* masm, Register hash, Register character, Register scratch); static void GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character, Register scratch); static void GenerateHashGetHash(MacroAssembler* masm, Register hash, Register scratch); private: DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); }; class StringAddStub: public PlatformCodeStub { public: explicit StringAddStub(StringAddFlags flags) : flags_(flags) {} private: Major MajorKey() { return StringAdd; } int MinorKey() { return flags_; } void Generate(MacroAssembler* masm); void GenerateConvertArgument(MacroAssembler* masm, int stack_offset, Register arg, Register scratch1, Register scratch2, Register scratch3, Label* slow); void GenerateRegisterArgsPush(MacroAssembler* masm); void GenerateRegisterArgsPop(MacroAssembler* masm, Register temp); const StringAddFlags flags_; }; class SubStringStub: public PlatformCodeStub { public: SubStringStub() {} private: Major MajorKey() { return SubString; } int MinorKey() { return 0; } void Generate(MacroAssembler* masm); }; class StringCompareStub: public PlatformCodeStub { public: StringCompareStub() {} // Compares two flat ASCII strings and returns result in rax. static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4); // Compares two flat ASCII strings for equality and returns result // in rax. static void GenerateFlatAsciiStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2); private: virtual Major MajorKey() { return StringCompare; } virtual int MinorKey() { return 0; } virtual void Generate(MacroAssembler* masm); static void GenerateAsciiCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch, Label* chars_not_equal, Label::Distance near_jump = Label::kFar); }; class NameDictionaryLookupStub: public PlatformCodeStub { public: enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP }; NameDictionaryLookupStub(Register dictionary, Register result, Register index, LookupMode mode) : dictionary_(dictionary), result_(result), index_(index), mode_(mode) { } void Generate(MacroAssembler* masm); static void GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register properties, Handle name, Register r0); static void GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register r0, Register r1); virtual bool SometimesSetsUpAFrame() { return false; } private: static const int kInlinedProbes = 4; static const int kTotalProbes = 20; static const int kCapacityOffset = NameDictionary::kHeaderSize + NameDictionary::kCapacityIndex * kPointerSize; static const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; Major MajorKey() { return NameDictionaryLookup; } int MinorKey() { return DictionaryBits::encode(dictionary_.code()) | ResultBits::encode(result_.code()) | IndexBits::encode(index_.code()) | LookupModeBits::encode(mode_); } class DictionaryBits: public BitField {}; class ResultBits: public BitField {}; class IndexBits: public BitField {}; class LookupModeBits: public BitField {}; Register dictionary_; Register result_; Register index_; LookupMode mode_; }; class RecordWriteStub: public PlatformCodeStub { public: RecordWriteStub(Register object, Register value, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) : object_(object), value_(value), address_(address), remembered_set_action_(remembered_set_action), save_fp_regs_mode_(fp_mode), regs_(object, // An input reg. address, // An input reg. value) { // One scratch reg. } enum Mode { STORE_BUFFER_ONLY, INCREMENTAL, INCREMENTAL_COMPACTION }; virtual bool SometimesSetsUpAFrame() { return false; } static const byte kTwoByteNopInstruction = 0x3c; // Cmpb al, #imm8. static const byte kTwoByteJumpInstruction = 0xeb; // Jmp #imm8. static const byte kFiveByteNopInstruction = 0x3d; // Cmpl eax, #imm32. static const byte kFiveByteJumpInstruction = 0xe9; // Jmp #imm32. static Mode GetMode(Code* stub) { byte first_instruction = stub->instruction_start()[0]; byte second_instruction = stub->instruction_start()[2]; if (first_instruction == kTwoByteJumpInstruction) { return INCREMENTAL; } ASSERT(first_instruction == kTwoByteNopInstruction); if (second_instruction == kFiveByteJumpInstruction) { return INCREMENTAL_COMPACTION; } ASSERT(second_instruction == kFiveByteNopInstruction); return STORE_BUFFER_ONLY; } static void Patch(Code* stub, Mode mode) { switch (mode) { case STORE_BUFFER_ONLY: ASSERT(GetMode(stub) == INCREMENTAL || GetMode(stub) == INCREMENTAL_COMPACTION); stub->instruction_start()[0] = kTwoByteNopInstruction; stub->instruction_start()[2] = kFiveByteNopInstruction; break; case INCREMENTAL: ASSERT(GetMode(stub) == STORE_BUFFER_ONLY); stub->instruction_start()[0] = kTwoByteJumpInstruction; break; case INCREMENTAL_COMPACTION: ASSERT(GetMode(stub) == STORE_BUFFER_ONLY); stub->instruction_start()[0] = kTwoByteNopInstruction; stub->instruction_start()[2] = kFiveByteJumpInstruction; break; } ASSERT(GetMode(stub) == mode); CPU::FlushICache(stub->instruction_start(), 7); } private: // This is a helper class for freeing up 3 scratch registers, where the third // is always rcx (needed for shift operations). The input is two registers // that must be preserved and one scratch register provided by the caller. class RegisterAllocation { public: RegisterAllocation(Register object, Register address, Register scratch0) : object_orig_(object), address_orig_(address), scratch0_orig_(scratch0), object_(object), address_(address), scratch0_(scratch0) { ASSERT(!AreAliased(scratch0, object, address, no_reg)); scratch1_ = GetRegThatIsNotRcxOr(object_, address_, scratch0_); if (scratch0.is(rcx)) { scratch0_ = GetRegThatIsNotRcxOr(object_, address_, scratch1_); } if (object.is(rcx)) { object_ = GetRegThatIsNotRcxOr(address_, scratch0_, scratch1_); } if (address.is(rcx)) { address_ = GetRegThatIsNotRcxOr(object_, scratch0_, scratch1_); } ASSERT(!AreAliased(scratch0_, object_, address_, rcx)); } void Save(MacroAssembler* masm) { ASSERT(!address_orig_.is(object_)); ASSERT(object_.is(object_orig_) || address_.is(address_orig_)); ASSERT(!AreAliased(object_, address_, scratch1_, scratch0_)); ASSERT(!AreAliased(object_orig_, address_, scratch1_, scratch0_)); ASSERT(!AreAliased(object_, address_orig_, scratch1_, scratch0_)); // We don't have to save scratch0_orig_ because it was given to us as // a scratch register. But if we had to switch to a different reg then // we should save the new scratch0_. if (!scratch0_.is(scratch0_orig_)) masm->push(scratch0_); if (!rcx.is(scratch0_orig_) && !rcx.is(object_orig_) && !rcx.is(address_orig_)) { masm->push(rcx); } masm->push(scratch1_); if (!address_.is(address_orig_)) { masm->push(address_); masm->movq(address_, address_orig_); } if (!object_.is(object_orig_)) { masm->push(object_); masm->movq(object_, object_orig_); } } void Restore(MacroAssembler* masm) { // These will have been preserved the entire time, so we just need to move // them back. Only in one case is the orig_ reg different from the plain // one, since only one of them can alias with rcx. if (!object_.is(object_orig_)) { masm->movq(object_orig_, object_); masm->pop(object_); } if (!address_.is(address_orig_)) { masm->movq(address_orig_, address_); masm->pop(address_); } masm->pop(scratch1_); if (!rcx.is(scratch0_orig_) && !rcx.is(object_orig_) && !rcx.is(address_orig_)) { masm->pop(rcx); } if (!scratch0_.is(scratch0_orig_)) masm->pop(scratch0_); } // If we have to call into C then we need to save and restore all caller- // saved registers that were not already preserved. // The three scratch registers (incl. rcx) will be restored by other means // so we don't bother pushing them here. Rbx, rbp and r12-15 are callee // save and don't need to be preserved. void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) { masm->PushCallerSaved(mode, scratch0_, scratch1_, rcx); } inline void RestoreCallerSaveRegisters(MacroAssembler*masm, SaveFPRegsMode mode) { masm->PopCallerSaved(mode, scratch0_, scratch1_, rcx); } inline Register object() { return object_; } inline Register address() { return address_; } inline Register scratch0() { return scratch0_; } inline Register scratch1() { return scratch1_; } private: Register object_orig_; Register address_orig_; Register scratch0_orig_; Register object_; Register address_; Register scratch0_; Register scratch1_; // Third scratch register is always rcx. Register GetRegThatIsNotRcxOr(Register r1, Register r2, Register r3) { for (int i = 0; i < Register::NumAllocatableRegisters(); i++) { Register candidate = Register::FromAllocationIndex(i); if (candidate.is(rcx)) continue; if (candidate.is(r1)) continue; if (candidate.is(r2)) continue; if (candidate.is(r3)) continue; return candidate; } UNREACHABLE(); return no_reg; } friend class RecordWriteStub; }; enum OnNoNeedToInformIncrementalMarker { kReturnOnNoNeedToInformIncrementalMarker, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker }; void Generate(MacroAssembler* masm); void GenerateIncremental(MacroAssembler* masm, Mode mode); void CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode); void InformIncrementalMarker(MacroAssembler* masm, Mode mode); Major MajorKey() { return RecordWrite; } int MinorKey() { return ObjectBits::encode(object_.code()) | ValueBits::encode(value_.code()) | AddressBits::encode(address_.code()) | RememberedSetActionBits::encode(remembered_set_action_) | SaveFPRegsModeBits::encode(save_fp_regs_mode_); } void Activate(Code* code) { code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code); } class ObjectBits: public BitField {}; class ValueBits: public BitField {}; class AddressBits: public BitField {}; class RememberedSetActionBits: public BitField {}; class SaveFPRegsModeBits: public BitField {}; Register object_; Register value_; Register address_; RememberedSetAction remembered_set_action_; SaveFPRegsMode save_fp_regs_mode_; Label slow_; RegisterAllocation regs_; }; } } // namespace v8::internal #endif // V8_X64_CODE_STUBS_X64_H_