//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting arm_neon.h, which includes // a declaration and definition of each function specified by the ARM NEON // compiler interface. See ARM document DUI0348B. // // Each NEON instruction is implemented in terms of 1 or more functions which // are suffixed with the element type of the input vectors. Functions may be // implemented in terms of generic vector operations such as +, *, -, etc. or // by calling a __builtin_-prefixed function which will be handled by clang's // CodeGen library. // // Additional validation code can be generated by this file when runHeader() is // called, rather than the normal run() entry point. A complete set of tests // for Neon intrinsics can be generated by calling the runTests() entry point. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include using namespace llvm; enum OpKind { OpNone, OpUnavailable, OpAdd, OpAddl, OpAddw, OpSub, OpSubl, OpSubw, OpMul, OpMla, OpMlal, OpMls, OpMlsl, OpMulN, OpMlaN, OpMlsN, OpMlalN, OpMlslN, OpMulLane, OpMullLane, OpMlaLane, OpMlsLane, OpMlalLane, OpMlslLane, OpQDMullLane, OpQDMlalLane, OpQDMlslLane, OpQDMulhLane, OpQRDMulhLane, OpEq, OpGe, OpLe, OpGt, OpLt, OpNeg, OpNot, OpAnd, OpOr, OpXor, OpAndNot, OpOrNot, OpCast, OpConcat, OpDup, OpDupLane, OpHi, OpLo, OpSelect, OpRev16, OpRev32, OpRev64, OpReinterpret, OpAbdl, OpAba, OpAbal, OpDiv }; enum ClassKind { ClassNone, ClassI, // generic integer instruction, e.g., "i8" suffix ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix ClassW, // width-specific instruction, e.g., "8" suffix ClassB, // bitcast arguments with enum argument to specify type ClassL, // Logical instructions which are op instructions // but we need to not emit any suffix for in our // tests. ClassNoTest // Instructions which we do not test since they are // not TRUE instructions. }; /// NeonTypeFlags - Flags to identify the types for overloaded Neon /// builtins. These must be kept in sync with the flags in /// include/clang/Basic/TargetBuiltins.h. namespace { class NeonTypeFlags { enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 }; uint32_t Flags; public: enum EltType { Int8, Int16, Int32, Int64, Poly8, Poly16, Float16, Float32, Float64 }; NeonTypeFlags(unsigned F) : Flags(F) {} NeonTypeFlags(EltType ET, bool IsUnsigned, bool IsQuad) : Flags(ET) { if (IsUnsigned) Flags |= UnsignedFlag; if (IsQuad) Flags |= QuadFlag; } uint32_t getFlags() const { return Flags; } }; } // end anonymous namespace namespace { class NeonEmitter { RecordKeeper &Records; StringMap OpMap; DenseMap ClassMap; public: NeonEmitter(RecordKeeper &R) : Records(R) { OpMap["OP_NONE"] = OpNone; OpMap["OP_UNAVAILABLE"] = OpUnavailable; OpMap["OP_ADD"] = OpAdd; OpMap["OP_ADDL"] = OpAddl; OpMap["OP_ADDW"] = OpAddw; OpMap["OP_SUB"] = OpSub; OpMap["OP_SUBL"] = OpSubl; OpMap["OP_SUBW"] = OpSubw; OpMap["OP_MUL"] = OpMul; OpMap["OP_MLA"] = OpMla; OpMap["OP_MLAL"] = OpMlal; OpMap["OP_MLS"] = OpMls; OpMap["OP_MLSL"] = OpMlsl; OpMap["OP_MUL_N"] = OpMulN; OpMap["OP_MLA_N"] = OpMlaN; OpMap["OP_MLS_N"] = OpMlsN; OpMap["OP_MLAL_N"] = OpMlalN; OpMap["OP_MLSL_N"] = OpMlslN; OpMap["OP_MUL_LN"]= OpMulLane; OpMap["OP_MULL_LN"] = OpMullLane; OpMap["OP_MLA_LN"]= OpMlaLane; OpMap["OP_MLS_LN"]= OpMlsLane; OpMap["OP_MLAL_LN"] = OpMlalLane; OpMap["OP_MLSL_LN"] = OpMlslLane; OpMap["OP_QDMULL_LN"] = OpQDMullLane; OpMap["OP_QDMLAL_LN"] = OpQDMlalLane; OpMap["OP_QDMLSL_LN"] = OpQDMlslLane; OpMap["OP_QDMULH_LN"] = OpQDMulhLane; OpMap["OP_QRDMULH_LN"] = OpQRDMulhLane; OpMap["OP_EQ"] = OpEq; OpMap["OP_GE"] = OpGe; OpMap["OP_LE"] = OpLe; OpMap["OP_GT"] = OpGt; OpMap["OP_LT"] = OpLt; OpMap["OP_NEG"] = OpNeg; OpMap["OP_NOT"] = OpNot; OpMap["OP_AND"] = OpAnd; OpMap["OP_OR"] = OpOr; OpMap["OP_XOR"] = OpXor; OpMap["OP_ANDN"] = OpAndNot; OpMap["OP_ORN"] = OpOrNot; OpMap["OP_CAST"] = OpCast; OpMap["OP_CONC"] = OpConcat; OpMap["OP_HI"] = OpHi; OpMap["OP_LO"] = OpLo; OpMap["OP_DUP"] = OpDup; OpMap["OP_DUP_LN"] = OpDupLane; OpMap["OP_SEL"] = OpSelect; OpMap["OP_REV16"] = OpRev16; OpMap["OP_REV32"] = OpRev32; OpMap["OP_REV64"] = OpRev64; OpMap["OP_REINT"] = OpReinterpret; OpMap["OP_ABDL"] = OpAbdl; OpMap["OP_ABA"] = OpAba; OpMap["OP_ABAL"] = OpAbal; OpMap["OP_DIV"] = OpDiv; Record *SI = R.getClass("SInst"); Record *II = R.getClass("IInst"); Record *WI = R.getClass("WInst"); Record *SOpI = R.getClass("SOpInst"); Record *IOpI = R.getClass("IOpInst"); Record *WOpI = R.getClass("WOpInst"); Record *LOpI = R.getClass("LOpInst"); Record *NoTestOpI = R.getClass("NoTestOpInst"); ClassMap[SI] = ClassS; ClassMap[II] = ClassI; ClassMap[WI] = ClassW; ClassMap[SOpI] = ClassS; ClassMap[IOpI] = ClassI; ClassMap[WOpI] = ClassW; ClassMap[LOpI] = ClassL; ClassMap[NoTestOpI] = ClassNoTest; } // run - Emit arm_neon.h.inc void run(raw_ostream &o); // runHeader - Emit all the __builtin prototypes used in arm_neon.h void runHeader(raw_ostream &o); // runTests - Emit tests for all the Neon intrinsics. void runTests(raw_ostream &o); private: void emitIntrinsic(raw_ostream &OS, Record *R, StringMap &EmittedMap); void genBuiltinsDef(raw_ostream &OS, StringMap &A64IntrinsicMap, bool isA64GenBuiltinDef); void genOverloadTypeCheckCode(raw_ostream &OS, StringMap &A64IntrinsicMap, bool isA64TypeCheck); void genIntrinsicRangeCheckCode(raw_ostream &OS, StringMap &A64IntrinsicMap, bool isA64RangeCheck); void genTargetTest(raw_ostream &OS, StringMap &EmittedMap, bool isA64TestGen); }; } // end anonymous namespace /// ParseTypes - break down a string such as "fQf" into a vector of StringRefs, /// which each StringRef representing a single type declared in the string. /// for "fQf" we would end up with 2 StringRefs, "f", and "Qf", representing /// 2xfloat and 4xfloat respectively. static void ParseTypes(Record *r, std::string &s, SmallVectorImpl &TV) { const char *data = s.data(); int len = 0; for (unsigned i = 0, e = s.size(); i != e; ++i, ++len) { if (data[len] == 'P' || data[len] == 'Q' || data[len] == 'U') continue; switch (data[len]) { case 'c': case 's': case 'i': case 'l': case 'h': case 'f': case 'd': break; default: PrintFatalError(r->getLoc(), "Unexpected letter: " + std::string(data + len, 1)); } TV.push_back(StringRef(data, len + 1)); data += len + 1; len = -1; } } /// Widen - Convert a type code into the next wider type. char -> short, /// short -> int, etc. static char Widen(const char t) { switch (t) { case 'c': return 's'; case 's': return 'i'; case 'i': return 'l'; case 'h': return 'f'; default: PrintFatalError("unhandled type in widen!"); } } /// Narrow - Convert a type code into the next smaller type. short -> char, /// float -> half float, etc. static char Narrow(const char t) { switch (t) { case 's': return 'c'; case 'i': return 's'; case 'l': return 'i'; case 'f': return 'h'; default: PrintFatalError("unhandled type in narrow!"); } } /// For a particular StringRef, return the base type code, and whether it has /// the quad-vector, polynomial, or unsigned modifiers set. static char ClassifyType(StringRef ty, bool &quad, bool &poly, bool &usgn) { unsigned off = 0; // remember quad. if (ty[off] == 'Q') { quad = true; ++off; } // remember poly. if (ty[off] == 'P') { poly = true; ++off; } // remember unsigned. if (ty[off] == 'U') { usgn = true; ++off; } // base type to get the type string for. return ty[off]; } /// ModType - Transform a type code and its modifiers based on a mod code. The /// mod code definitions may be found at the top of arm_neon.td. static char ModType(const char mod, char type, bool &quad, bool &poly, bool &usgn, bool &scal, bool &cnst, bool &pntr) { switch (mod) { case 't': if (poly) { poly = false; usgn = true; } break; case 'u': usgn = true; poly = false; if (type == 'f') type = 'i'; if (type == 'd') type = 'l'; break; case 'x': usgn = false; poly = false; if (type == 'f') type = 'i'; break; case 'f': if (type == 'h') quad = true; type = 'f'; usgn = false; break; case 'g': quad = false; break; case 'w': type = Widen(type); quad = true; break; case 'n': type = Widen(type); break; case 'i': type = 'i'; scal = true; break; case 'l': type = 'l'; scal = true; usgn = true; break; case 's': case 'a': scal = true; break; case 'k': quad = true; break; case 'c': cnst = true; case 'p': pntr = true; scal = true; break; case 'h': type = Narrow(type); if (type == 'h') quad = false; break; case 'e': type = Narrow(type); usgn = true; break; default: break; } return type; } /// TypeString - for a modifier and type, generate the name of the typedef for /// that type. QUc -> uint8x8_t. static std::string TypeString(const char mod, StringRef typestr) { bool quad = false; bool poly = false; bool usgn = false; bool scal = false; bool cnst = false; bool pntr = false; if (mod == 'v') return "void"; if (mod == 'i') return "int"; // base type to get the type string for. char type = ClassifyType(typestr, quad, poly, usgn); // Based on the modifying character, change the type and width if necessary. type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr); SmallString<128> s; if (usgn) s.push_back('u'); switch (type) { case 'c': s += poly ? "poly8" : "int8"; if (scal) break; s += quad ? "x16" : "x8"; break; case 's': s += poly ? "poly16" : "int16"; if (scal) break; s += quad ? "x8" : "x4"; break; case 'i': s += "int32"; if (scal) break; s += quad ? "x4" : "x2"; break; case 'l': s += "int64"; if (scal) break; s += quad ? "x2" : "x1"; break; case 'h': s += "float16"; if (scal) break; s += quad ? "x8" : "x4"; break; case 'f': s += "float32"; if (scal) break; s += quad ? "x4" : "x2"; break; case 'd': s += "float64"; if (scal) break; s += quad ? "x2" : "x1"; break; default: PrintFatalError("unhandled type!"); } if (mod == '2') s += "x2"; if (mod == '3') s += "x3"; if (mod == '4') s += "x4"; // Append _t, finishing the type string typedef type. s += "_t"; if (cnst) s += " const"; if (pntr) s += " *"; return s.str(); } /// BuiltinTypeString - for a modifier and type, generate the clang /// BuiltinsARM.def prototype code for the function. See the top of clang's /// Builtins.def for a description of the type strings. static std::string BuiltinTypeString(const char mod, StringRef typestr, ClassKind ck, bool ret) { bool quad = false; bool poly = false; bool usgn = false; bool scal = false; bool cnst = false; bool pntr = false; if (mod == 'v') return "v"; // void if (mod == 'i') return "i"; // int // base type to get the type string for. char type = ClassifyType(typestr, quad, poly, usgn); // Based on the modifying character, change the type and width if necessary. type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr); // All pointers are void* pointers. Change type to 'v' now. if (pntr) { usgn = false; poly = false; type = 'v'; } // Treat half-float ('h') types as unsigned short ('s') types. if (type == 'h') { type = 's'; usgn = true; } usgn = usgn | poly | ((ck == ClassI || ck == ClassW) && scal && type != 'f'); if (scal) { SmallString<128> s; if (usgn) s.push_back('U'); else if (type == 'c') s.push_back('S'); // make chars explicitly signed if (type == 'l') // 64-bit long s += "LLi"; else s.push_back(type); if (cnst) s.push_back('C'); if (pntr) s.push_back('*'); return s.str(); } // Since the return value must be one type, return a vector type of the // appropriate width which we will bitcast. An exception is made for // returning structs of 2, 3, or 4 vectors which are returned in a sret-like // fashion, storing them to a pointer arg. if (ret) { if (mod >= '2' && mod <= '4') return "vv*"; // void result with void* first argument if (mod == 'f' || (ck != ClassB && type == 'f')) return quad ? "V4f" : "V2f"; if (ck != ClassB && type == 's') return quad ? "V8s" : "V4s"; if (ck != ClassB && type == 'i') return quad ? "V4i" : "V2i"; if (ck != ClassB && type == 'l') return quad ? "V2LLi" : "V1LLi"; return quad ? "V16Sc" : "V8Sc"; } // Non-return array types are passed as individual vectors. if (mod == '2') return quad ? "V16ScV16Sc" : "V8ScV8Sc"; if (mod == '3') return quad ? "V16ScV16ScV16Sc" : "V8ScV8ScV8Sc"; if (mod == '4') return quad ? "V16ScV16ScV16ScV16Sc" : "V8ScV8ScV8ScV8Sc"; if (mod == 'f' || (ck != ClassB && type == 'f')) return quad ? "V4f" : "V2f"; if (ck != ClassB && type == 's') return quad ? "V8s" : "V4s"; if (ck != ClassB && type == 'i') return quad ? "V4i" : "V2i"; if (ck != ClassB && type == 'l') return quad ? "V2LLi" : "V1LLi"; return quad ? "V16Sc" : "V8Sc"; } /// InstructionTypeCode - Computes the ARM argument character code and /// quad status for a specific type string and ClassKind. static void InstructionTypeCode(const StringRef &typeStr, const ClassKind ck, bool &quad, std::string &typeCode) { bool poly = false; bool usgn = false; char type = ClassifyType(typeStr, quad, poly, usgn); switch (type) { case 'c': switch (ck) { case ClassS: typeCode = poly ? "p8" : usgn ? "u8" : "s8"; break; case ClassI: typeCode = "i8"; break; case ClassW: typeCode = "8"; break; default: break; } break; case 's': switch (ck) { case ClassS: typeCode = poly ? "p16" : usgn ? "u16" : "s16"; break; case ClassI: typeCode = "i16"; break; case ClassW: typeCode = "16"; break; default: break; } break; case 'i': switch (ck) { case ClassS: typeCode = usgn ? "u32" : "s32"; break; case ClassI: typeCode = "i32"; break; case ClassW: typeCode = "32"; break; default: break; } break; case 'l': switch (ck) { case ClassS: typeCode = usgn ? "u64" : "s64"; break; case ClassI: typeCode = "i64"; break; case ClassW: typeCode = "64"; break; default: break; } break; case 'h': switch (ck) { case ClassS: case ClassI: typeCode = "f16"; break; case ClassW: typeCode = "16"; break; default: break; } break; case 'f': switch (ck) { case ClassS: case ClassI: typeCode = "f32"; break; case ClassW: typeCode = "32"; break; default: break; } break; case 'd': switch (ck) { case ClassS: case ClassI: typeCode += "f64"; break; case ClassW: PrintFatalError("unhandled type!"); default: break; } break; default: PrintFatalError("unhandled type!"); } } /// MangleName - Append a type or width suffix to a base neon function name, /// and insert a 'q' in the appropriate location if the operation works on /// 128b rather than 64b. E.g. turn "vst2_lane" into "vst2q_lane_f32", etc. static std::string MangleName(const std::string &name, StringRef typestr, ClassKind ck) { if (name == "vcvt_f32_f16") return name; bool quad = false; std::string typeCode = ""; InstructionTypeCode(typestr, ck, quad, typeCode); std::string s = name; if (typeCode.size() > 0) { s += "_" + typeCode; } if (ck == ClassB) s += "_v"; // Insert a 'q' before the first '_' character so that it ends up before // _lane or _n on vector-scalar operations. if (quad) { size_t pos = s.find('_'); s = s.insert(pos, "q"); } return s; } static void PreprocessInstruction(const StringRef &Name, const std::string &InstName, std::string &Prefix, bool &HasNPostfix, bool &HasLanePostfix, bool &HasDupPostfix, bool &IsSpecialVCvt, size_t &TBNumber) { // All of our instruction name fields from arm_neon.td are of the form // _... // Thus we grab our instruction name via computation of said Prefix. const size_t PrefixEnd = Name.find_first_of('_'); // If InstName is passed in, we use that instead of our name Prefix. Prefix = InstName.size() == 0? Name.slice(0, PrefixEnd).str() : InstName; const StringRef Postfix = Name.slice(PrefixEnd, Name.size()); HasNPostfix = Postfix.count("_n"); HasLanePostfix = Postfix.count("_lane"); HasDupPostfix = Postfix.count("_dup"); IsSpecialVCvt = Postfix.size() != 0 && Name.count("vcvt"); if (InstName.compare("vtbl") == 0 || InstName.compare("vtbx") == 0) { // If we have a vtblN/vtbxN instruction, use the instruction's ASCII // encoding to get its true value. TBNumber = Name[Name.size()-1] - 48; } } /// GenerateRegisterCheckPatternsForLoadStores - Given a bunch of data we have /// extracted, generate a FileCheck pattern for a Load Or Store static void GenerateRegisterCheckPatternForLoadStores(const StringRef &NameRef, const std::string& OutTypeCode, const bool &IsQuad, const bool &HasDupPostfix, const bool &HasLanePostfix, const size_t Count, std::string &RegisterSuffix) { const bool IsLDSTOne = NameRef.count("vld1") || NameRef.count("vst1"); // If N == 3 || N == 4 and we are dealing with a quad instruction, Clang // will output a series of v{ld,st}1s, so we have to handle it specially. if ((Count == 3 || Count == 4) && IsQuad) { RegisterSuffix += "{"; for (size_t i = 0; i < Count; i++) { RegisterSuffix += "d{{[0-9]+}}"; if (HasDupPostfix) { RegisterSuffix += "[]"; } if (HasLanePostfix) { RegisterSuffix += "[{{[0-9]+}}]"; } if (i < Count-1) { RegisterSuffix += ", "; } } RegisterSuffix += "}"; } else { // Handle normal loads and stores. RegisterSuffix += "{"; for (size_t i = 0; i < Count; i++) { RegisterSuffix += "d{{[0-9]+}}"; if (HasDupPostfix) { RegisterSuffix += "[]"; } if (HasLanePostfix) { RegisterSuffix += "[{{[0-9]+}}]"; } if (IsQuad && !HasLanePostfix) { RegisterSuffix += ", d{{[0-9]+}}"; if (HasDupPostfix) { RegisterSuffix += "[]"; } } if (i < Count-1) { RegisterSuffix += ", "; } } RegisterSuffix += "}, [r{{[0-9]+}}"; // We only include the alignment hint if we have a vld1.*64 or // a dup/lane instruction. if (IsLDSTOne) { if ((HasLanePostfix || HasDupPostfix) && OutTypeCode != "8") { RegisterSuffix += ":" + OutTypeCode; } } RegisterSuffix += "]"; } } static bool HasNPostfixAndScalarArgs(const StringRef &NameRef, const bool &HasNPostfix) { return (NameRef.count("vmla") || NameRef.count("vmlal") || NameRef.count("vmlsl") || NameRef.count("vmull") || NameRef.count("vqdmlal") || NameRef.count("vqdmlsl") || NameRef.count("vqdmulh") || NameRef.count("vqdmull") || NameRef.count("vqrdmulh")) && HasNPostfix; } static bool IsFiveOperandLaneAccumulator(const StringRef &NameRef, const bool &HasLanePostfix) { return (NameRef.count("vmla") || NameRef.count("vmls") || NameRef.count("vmlal") || NameRef.count("vmlsl") || (NameRef.count("vmul") && NameRef.size() == 3)|| NameRef.count("vqdmlal") || NameRef.count("vqdmlsl") || NameRef.count("vqdmulh") || NameRef.count("vqrdmulh")) && HasLanePostfix; } static bool IsSpecialLaneMultiply(const StringRef &NameRef, const bool &HasLanePostfix, const bool &IsQuad) { const bool IsVMulOrMulh = (NameRef.count("vmul") || NameRef.count("mulh")) && IsQuad; const bool IsVMull = NameRef.count("mull") && !IsQuad; return (IsVMulOrMulh || IsVMull) && HasLanePostfix; } static void NormalizeProtoForRegisterPatternCreation(const std::string &Name, const std::string &Proto, const bool &HasNPostfix, const bool &IsQuad, const bool &HasLanePostfix, const bool &HasDupPostfix, std::string &NormedProto) { // Handle generic case. const StringRef NameRef(Name); for (size_t i = 0, end = Proto.size(); i < end; i++) { switch (Proto[i]) { case 'u': case 'f': case 'd': case 's': case 'x': case 't': case 'n': NormedProto += IsQuad? 'q' : 'd'; break; case 'w': case 'k': NormedProto += 'q'; break; case 'g': case 'h': case 'e': NormedProto += 'd'; break; case 'i': NormedProto += HasLanePostfix? 'a' : 'i'; break; case 'a': if (HasLanePostfix) { NormedProto += 'a'; } else if (HasNPostfixAndScalarArgs(NameRef, HasNPostfix)) { NormedProto += IsQuad? 'q' : 'd'; } else { NormedProto += 'i'; } break; } } // Handle Special Cases. const bool IsNotVExt = !NameRef.count("vext"); const bool IsVPADAL = NameRef.count("vpadal"); const bool Is5OpLaneAccum = IsFiveOperandLaneAccumulator(NameRef, HasLanePostfix); const bool IsSpecialLaneMul = IsSpecialLaneMultiply(NameRef, HasLanePostfix, IsQuad); if (IsSpecialLaneMul) { // If NormedProto[2] = NormedProto[3]; NormedProto.erase(3); } else if (NormedProto.size() == 4 && NormedProto[0] == NormedProto[1] && IsNotVExt) { // If NormedProto.size() == 4 and the first two proto characters are the // same, ignore the first. NormedProto = NormedProto.substr(1, 3); } else if (Is5OpLaneAccum) { // If we have a 5 op lane accumulator operation, we take characters 1,2,4 std::string tmp = NormedProto.substr(1,2); tmp += NormedProto[4]; NormedProto = tmp; } else if (IsVPADAL) { // If we have VPADAL, ignore the first character. NormedProto = NormedProto.substr(0, 2); } else if (NameRef.count("vdup") && NormedProto.size() > 2) { // If our instruction is a dup instruction, keep only the first and // last characters. std::string tmp = ""; tmp += NormedProto[0]; tmp += NormedProto[NormedProto.size()-1]; NormedProto = tmp; } } /// GenerateRegisterCheckPatterns - Given a bunch of data we have /// extracted, generate a FileCheck pattern to check that an /// instruction's arguments are correct. static void GenerateRegisterCheckPattern(const std::string &Name, const std::string &Proto, const std::string &OutTypeCode, const bool &HasNPostfix, const bool &IsQuad, const bool &HasLanePostfix, const bool &HasDupPostfix, const size_t &TBNumber, std::string &RegisterSuffix) { RegisterSuffix = ""; const StringRef NameRef(Name); const StringRef ProtoRef(Proto); if ((NameRef.count("vdup") || NameRef.count("vmov")) && HasNPostfix) { return; } const bool IsLoadStore = NameRef.count("vld") || NameRef.count("vst"); const bool IsTBXOrTBL = NameRef.count("vtbl") || NameRef.count("vtbx"); if (IsLoadStore) { // Grab N value from v{ld,st}N using its ascii representation. const size_t Count = NameRef[3] - 48; GenerateRegisterCheckPatternForLoadStores(NameRef, OutTypeCode, IsQuad, HasDupPostfix, HasLanePostfix, Count, RegisterSuffix); } else if (IsTBXOrTBL) { RegisterSuffix += "d{{[0-9]+}}, {"; for (size_t i = 0; i < TBNumber-1; i++) { RegisterSuffix += "d{{[0-9]+}}, "; } RegisterSuffix += "d{{[0-9]+}}}, d{{[0-9]+}}"; } else { // Handle a normal instruction. if (NameRef.count("vget") || NameRef.count("vset")) return; // We first normalize our proto, since we only need to emit 4 // different types of checks, yet have more than 4 proto types // that map onto those 4 patterns. std::string NormalizedProto(""); NormalizeProtoForRegisterPatternCreation(Name, Proto, HasNPostfix, IsQuad, HasLanePostfix, HasDupPostfix, NormalizedProto); for (size_t i = 0, end = NormalizedProto.size(); i < end; i++) { const char &c = NormalizedProto[i]; switch (c) { case 'q': RegisterSuffix += "q{{[0-9]+}}, "; break; case 'd': RegisterSuffix += "d{{[0-9]+}}, "; break; case 'i': RegisterSuffix += "#{{[0-9]+}}, "; break; case 'a': RegisterSuffix += "d{{[0-9]+}}[{{[0-9]}}], "; break; } } // Remove extra ", ". RegisterSuffix = RegisterSuffix.substr(0, RegisterSuffix.size()-2); } } /// GenerateChecksForIntrinsic - Given a specific instruction name + /// typestr + class kind, generate the proper set of FileCheck /// Patterns to check for. We could just return a string, but instead /// use a vector since it provides us with the extra flexibility of /// emitting multiple checks, which comes in handy for certain cases /// like mla where we want to check for 2 different instructions. static void GenerateChecksForIntrinsic(const std::string &Name, const std::string &Proto, StringRef &OutTypeStr, StringRef &InTypeStr, ClassKind Ck, const std::string &InstName, bool IsHiddenLOp, std::vector& Result) { // If Ck is a ClassNoTest instruction, just return so no test is // emitted. if(Ck == ClassNoTest) return; if (Name == "vcvt_f32_f16") { Result.push_back("vcvt.f32.f16"); return; } // Now we preprocess our instruction given the data we have to get the // data that we need. // Create a StringRef for String Manipulation of our Name. const StringRef NameRef(Name); // Instruction Prefix. std::string Prefix; // The type code for our out type string. std::string OutTypeCode; // To handle our different cases, we need to check for different postfixes. // Is our instruction a quad instruction. bool IsQuad = false; // Our instruction is of the form _n. bool HasNPostfix = false; // Our instruction is of the form _lane. bool HasLanePostfix = false; // Our instruction is of the form _dup. bool HasDupPostfix = false; // Our instruction is a vcvt instruction which requires special handling. bool IsSpecialVCvt = false; // If we have a vtbxN or vtblN instruction, this is set to N. size_t TBNumber = -1; // Register Suffix std::string RegisterSuffix; PreprocessInstruction(NameRef, InstName, Prefix, HasNPostfix, HasLanePostfix, HasDupPostfix, IsSpecialVCvt, TBNumber); InstructionTypeCode(OutTypeStr, Ck, IsQuad, OutTypeCode); GenerateRegisterCheckPattern(Name, Proto, OutTypeCode, HasNPostfix, IsQuad, HasLanePostfix, HasDupPostfix, TBNumber, RegisterSuffix); // In the following section, we handle a bunch of special cases. You can tell // a special case by the fact we are returning early. // If our instruction is a logical instruction without postfix or a // hidden LOp just return the current Prefix. if (Ck == ClassL || IsHiddenLOp) { Result.push_back(Prefix + " " + RegisterSuffix); return; } // If we have a vmov, due to the many different cases, some of which // vary within the different intrinsics generated for a single // instruction type, just output a vmov. (e.g. given an instruction // A, A.u32 might be vmov and A.u8 might be vmov.8). // // FIXME: Maybe something can be done about this. The two cases that we care // about are vmov as an LType and vmov as a WType. if (Prefix == "vmov") { Result.push_back(Prefix + " " + RegisterSuffix); return; } // In the following section, we handle special cases. if (OutTypeCode == "64") { // If we have a 64 bit vdup/vext and are handling an uint64x1_t // type, the intrinsic will be optimized away, so just return // nothing. On the other hand if we are handling an uint64x2_t // (i.e. quad instruction), vdup/vmov instructions should be // emitted. if (Prefix == "vdup" || Prefix == "vext") { if (IsQuad) { Result.push_back("{{vmov|vdup}}"); } return; } // v{st,ld}{2,3,4}_{u,s}64 emit v{st,ld}1.64 instructions with // multiple register operands. bool MultiLoadPrefix = Prefix == "vld2" || Prefix == "vld3" || Prefix == "vld4"; bool MultiStorePrefix = Prefix == "vst2" || Prefix == "vst3" || Prefix == "vst4"; if (MultiLoadPrefix || MultiStorePrefix) { Result.push_back(NameRef.slice(0, 3).str() + "1.64"); return; } // v{st,ld}1_{lane,dup}_{u64,s64} use vldr/vstr/vmov/str instead of // emitting said instructions. So return a check for // vldr/vstr/vmov/str instead. if (HasLanePostfix || HasDupPostfix) { if (Prefix == "vst1") { Result.push_back("{{str|vstr|vmov}}"); return; } else if (Prefix == "vld1") { Result.push_back("{{ldr|vldr|vmov}}"); return; } } } // vzip.32/vuzp.32 are the same instruction as vtrn.32 and are // sometimes disassembled as vtrn.32. We use a regex to handle both // cases. if ((Prefix == "vzip" || Prefix == "vuzp") && OutTypeCode == "32") { Result.push_back("{{vtrn|" + Prefix + "}}.32 " + RegisterSuffix); return; } // Currently on most ARM processors, we do not use vmla/vmls for // quad floating point operations. Instead we output vmul + vadd. So // check if we have one of those instructions and just output a // check for vmul. if (OutTypeCode == "f32") { if (Prefix == "vmls") { Result.push_back("vmul." + OutTypeCode + " " + RegisterSuffix); Result.push_back("vsub." + OutTypeCode); return; } else if (Prefix == "vmla") { Result.push_back("vmul." + OutTypeCode + " " + RegisterSuffix); Result.push_back("vadd." + OutTypeCode); return; } } // If we have vcvt, get the input type from the instruction name // (which should be of the form instname_inputtype) and append it // before the output type. if (Prefix == "vcvt") { const std::string inTypeCode = NameRef.substr(NameRef.find_last_of("_")+1); Prefix += "." + inTypeCode; } // Append output type code to get our final mangled instruction. Prefix += "." + OutTypeCode; Result.push_back(Prefix + " " + RegisterSuffix); } /// UseMacro - Examine the prototype string to determine if the intrinsic /// should be defined as a preprocessor macro instead of an inline function. static bool UseMacro(const std::string &proto) { // If this builtin takes an immediate argument, we need to #define it rather // than use a standard declaration, so that SemaChecking can range check // the immediate passed by the user. if (proto.find('i') != std::string::npos) return true; // Pointer arguments need to use macros to avoid hiding aligned attributes // from the pointer type. if (proto.find('p') != std::string::npos || proto.find('c') != std::string::npos) return true; return false; } /// MacroArgUsedDirectly - Return true if argument i for an intrinsic that is /// defined as a macro should be accessed directly instead of being first /// assigned to a local temporary. static bool MacroArgUsedDirectly(const std::string &proto, unsigned i) { // True for constant ints (i), pointers (p) and const pointers (c). return (proto[i] == 'i' || proto[i] == 'p' || proto[i] == 'c'); } // Generate the string "(argtype a, argtype b, ...)" static std::string GenArgs(const std::string &proto, StringRef typestr) { bool define = UseMacro(proto); char arg = 'a'; std::string s; s += "("; for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { if (define) { // Some macro arguments are used directly instead of being assigned // to local temporaries; prepend an underscore prefix to make their // names consistent with the local temporaries. if (MacroArgUsedDirectly(proto, i)) s += "__"; } else { s += TypeString(proto[i], typestr) + " __"; } s.push_back(arg); if ((i + 1) < e) s += ", "; } s += ")"; return s; } // Macro arguments are not type-checked like inline function arguments, so // assign them to local temporaries to get the right type checking. static std::string GenMacroLocals(const std::string &proto, StringRef typestr) { char arg = 'a'; std::string s; bool generatedLocal = false; for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { // Do not create a temporary for an immediate argument. // That would defeat the whole point of using a macro! if (MacroArgUsedDirectly(proto, i)) continue; generatedLocal = true; s += TypeString(proto[i], typestr) + " __"; s.push_back(arg); s += " = ("; s.push_back(arg); s += "); "; } if (generatedLocal) s += "\\\n "; return s; } // Use the vmovl builtin to sign-extend or zero-extend a vector. static std::string Extend(StringRef typestr, const std::string &a) { std::string s; s = MangleName("vmovl", typestr, ClassS); s += "(" + a + ")"; return s; } static std::string Duplicate(unsigned nElts, StringRef typestr, const std::string &a) { std::string s; s = "(" + TypeString('d', typestr) + "){ "; for (unsigned i = 0; i != nElts; ++i) { s += a; if ((i + 1) < nElts) s += ", "; } s += " }"; return s; } static std::string SplatLane(unsigned nElts, const std::string &vec, const std::string &lane) { std::string s = "__builtin_shufflevector(" + vec + ", " + vec; for (unsigned i = 0; i < nElts; ++i) s += ", " + lane; s += ")"; return s; } static unsigned GetNumElements(StringRef typestr, bool &quad) { quad = false; bool dummy = false; char type = ClassifyType(typestr, quad, dummy, dummy); unsigned nElts = 0; switch (type) { case 'c': nElts = 8; break; case 's': nElts = 4; break; case 'i': nElts = 2; break; case 'l': nElts = 1; break; case 'h': nElts = 4; break; case 'f': nElts = 2; break; case 'd': nElts = 1; break; default: PrintFatalError("unhandled type!"); } if (quad) nElts <<= 1; return nElts; } // Generate the definition for this intrinsic, e.g. "a + b" for OpAdd. static std::string GenOpString(OpKind op, const std::string &proto, StringRef typestr) { bool quad; unsigned nElts = GetNumElements(typestr, quad); bool define = UseMacro(proto); std::string ts = TypeString(proto[0], typestr); std::string s; if (!define) { s = "return "; } switch(op) { case OpAdd: s += "__a + __b;"; break; case OpAddl: s += Extend(typestr, "__a") + " + " + Extend(typestr, "__b") + ";"; break; case OpAddw: s += "__a + " + Extend(typestr, "__b") + ";"; break; case OpSub: s += "__a - __b;"; break; case OpSubl: s += Extend(typestr, "__a") + " - " + Extend(typestr, "__b") + ";"; break; case OpSubw: s += "__a - " + Extend(typestr, "__b") + ";"; break; case OpMulN: s += "__a * " + Duplicate(nElts, typestr, "__b") + ";"; break; case OpMulLane: s += "__a * " + SplatLane(nElts, "__b", "__c") + ";"; break; case OpMul: s += "__a * __b;"; break; case OpMullLane: s += MangleName("vmull", typestr, ClassS) + "(__a, " + SplatLane(nElts, "__b", "__c") + ");"; break; case OpMlaN: s += "__a + (__b * " + Duplicate(nElts, typestr, "__c") + ");"; break; case OpMlaLane: s += "__a + (__b * " + SplatLane(nElts, "__c", "__d") + ");"; break; case OpMla: s += "__a + (__b * __c);"; break; case OpMlalN: s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " + Duplicate(nElts, typestr, "__c") + ");"; break; case OpMlalLane: s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " + SplatLane(nElts, "__c", "__d") + ");"; break; case OpMlal: s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, __c);"; break; case OpMlsN: s += "__a - (__b * " + Duplicate(nElts, typestr, "__c") + ");"; break; case OpMlsLane: s += "__a - (__b * " + SplatLane(nElts, "__c", "__d") + ");"; break; case OpMls: s += "__a - (__b * __c);"; break; case OpMlslN: s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " + Duplicate(nElts, typestr, "__c") + ");"; break; case OpMlslLane: s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " + SplatLane(nElts, "__c", "__d") + ");"; break; case OpMlsl: s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, __c);"; break; case OpQDMullLane: s += MangleName("vqdmull", typestr, ClassS) + "(__a, " + SplatLane(nElts, "__b", "__c") + ");"; break; case OpQDMlalLane: s += MangleName("vqdmlal", typestr, ClassS) + "(__a, __b, " + SplatLane(nElts, "__c", "__d") + ");"; break; case OpQDMlslLane: s += MangleName("vqdmlsl", typestr, ClassS) + "(__a, __b, " + SplatLane(nElts, "__c", "__d") + ");"; break; case OpQDMulhLane: s += MangleName("vqdmulh", typestr, ClassS) + "(__a, " + SplatLane(nElts, "__b", "__c") + ");"; break; case OpQRDMulhLane: s += MangleName("vqrdmulh", typestr, ClassS) + "(__a, " + SplatLane(nElts, "__b", "__c") + ");"; break; case OpEq: s += "(" + ts + ")(__a == __b);"; break; case OpGe: s += "(" + ts + ")(__a >= __b);"; break; case OpLe: s += "(" + ts + ")(__a <= __b);"; break; case OpGt: s += "(" + ts + ")(__a > __b);"; break; case OpLt: s += "(" + ts + ")(__a < __b);"; break; case OpNeg: s += " -__a;"; break; case OpNot: s += " ~__a;"; break; case OpAnd: s += "__a & __b;"; break; case OpOr: s += "__a | __b;"; break; case OpXor: s += "__a ^ __b;"; break; case OpAndNot: s += "__a & ~__b;"; break; case OpOrNot: s += "__a | ~__b;"; break; case OpCast: s += "(" + ts + ")__a;"; break; case OpConcat: s += "(" + ts + ")__builtin_shufflevector((int64x1_t)__a"; s += ", (int64x1_t)__b, 0, 1);"; break; case OpHi: // nElts is for the result vector, so the source is twice that number. s += "__builtin_shufflevector(__a, __a"; for (unsigned i = nElts; i < nElts * 2; ++i) s += ", " + utostr(i); s+= ");"; break; case OpLo: s += "__builtin_shufflevector(__a, __a"; for (unsigned i = 0; i < nElts; ++i) s += ", " + utostr(i); s+= ");"; break; case OpDup: s += Duplicate(nElts, typestr, "__a") + ";"; break; case OpDupLane: s += SplatLane(nElts, "__a", "__b") + ";"; break; case OpSelect: // ((0 & 1) | (~0 & 2)) s += "(" + ts + ")"; ts = TypeString(proto[1], typestr); s += "((__a & (" + ts + ")__b) | "; s += "(~__a & (" + ts + ")__c));"; break; case OpRev16: s += "__builtin_shufflevector(__a, __a"; for (unsigned i = 2; i <= nElts; i += 2) for (unsigned j = 0; j != 2; ++j) s += ", " + utostr(i - j - 1); s += ");"; break; case OpRev32: { unsigned WordElts = nElts >> (1 + (int)quad); s += "__builtin_shufflevector(__a, __a"; for (unsigned i = WordElts; i <= nElts; i += WordElts) for (unsigned j = 0; j != WordElts; ++j) s += ", " + utostr(i - j - 1); s += ");"; break; } case OpRev64: { unsigned DblWordElts = nElts >> (int)quad; s += "__builtin_shufflevector(__a, __a"; for (unsigned i = DblWordElts; i <= nElts; i += DblWordElts) for (unsigned j = 0; j != DblWordElts; ++j) s += ", " + utostr(i - j - 1); s += ");"; break; } case OpAbdl: { std::string abd = MangleName("vabd", typestr, ClassS) + "(__a, __b)"; if (typestr[0] != 'U') { // vabd results are always unsigned and must be zero-extended. std::string utype = "U" + typestr.str(); s += "(" + TypeString(proto[0], typestr) + ")"; abd = "(" + TypeString('d', utype) + ")" + abd; s += Extend(utype, abd) + ";"; } else { s += Extend(typestr, abd) + ";"; } break; } case OpAba: s += "__a + " + MangleName("vabd", typestr, ClassS) + "(__b, __c);"; break; case OpAbal: { s += "__a + "; std::string abd = MangleName("vabd", typestr, ClassS) + "(__b, __c)"; if (typestr[0] != 'U') { // vabd results are always unsigned and must be zero-extended. std::string utype = "U" + typestr.str(); s += "(" + TypeString(proto[0], typestr) + ")"; abd = "(" + TypeString('d', utype) + ")" + abd; s += Extend(utype, abd) + ";"; } else { s += Extend(typestr, abd) + ";"; } break; } case OpDiv: s += "__a / __b;"; break; default: PrintFatalError("unknown OpKind!"); } return s; } static unsigned GetNeonEnum(const std::string &proto, StringRef typestr) { unsigned mod = proto[0]; if (mod == 'v' || mod == 'f') mod = proto[1]; bool quad = false; bool poly = false; bool usgn = false; bool scal = false; bool cnst = false; bool pntr = false; // Base type to get the type string for. char type = ClassifyType(typestr, quad, poly, usgn); // Based on the modifying character, change the type and width if necessary. type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr); NeonTypeFlags::EltType ET; switch (type) { case 'c': ET = poly ? NeonTypeFlags::Poly8 : NeonTypeFlags::Int8; break; case 's': ET = poly ? NeonTypeFlags::Poly16 : NeonTypeFlags::Int16; break; case 'i': ET = NeonTypeFlags::Int32; break; case 'l': ET = NeonTypeFlags::Int64; break; case 'h': ET = NeonTypeFlags::Float16; break; case 'f': ET = NeonTypeFlags::Float32; break; case 'd': ET = NeonTypeFlags::Float64; break; default: PrintFatalError("unhandled type!"); } NeonTypeFlags Flags(ET, usgn, quad && proto[1] != 'g'); return Flags.getFlags(); } // Generate the definition for this intrinsic, e.g. __builtin_neon_cls(a) static std::string GenBuiltin(const std::string &name, const std::string &proto, StringRef typestr, ClassKind ck) { std::string s; // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit // sret-like argument. bool sret = (proto[0] >= '2' && proto[0] <= '4'); bool define = UseMacro(proto); // Check if the prototype has a scalar operand with the type of the vector // elements. If not, bitcasting the args will take care of arg checking. // The actual signedness etc. will be taken care of with special enums. if (proto.find('s') == std::string::npos) ck = ClassB; if (proto[0] != 'v') { std::string ts = TypeString(proto[0], typestr); if (define) { if (sret) s += ts + " r; "; else s += "(" + ts + ")"; } else if (sret) { s += ts + " r; "; } else { s += "return (" + ts + ")"; } } bool splat = proto.find('a') != std::string::npos; s += "__builtin_neon_"; if (splat) { // Call the non-splat builtin: chop off the "_n" suffix from the name. std::string vname(name, 0, name.size()-2); s += MangleName(vname, typestr, ck); } else { s += MangleName(name, typestr, ck); } s += "("; // Pass the address of the return variable as the first argument to sret-like // builtins. if (sret) s += "&r, "; char arg = 'a'; for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { std::string args = std::string(&arg, 1); // Use the local temporaries instead of the macro arguments. args = "__" + args; bool argQuad = false; bool argPoly = false; bool argUsgn = false; bool argScalar = false; bool dummy = false; char argType = ClassifyType(typestr, argQuad, argPoly, argUsgn); argType = ModType(proto[i], argType, argQuad, argPoly, argUsgn, argScalar, dummy, dummy); // Handle multiple-vector values specially, emitting each subvector as an // argument to the __builtin. if (proto[i] >= '2' && proto[i] <= '4') { // Check if an explicit cast is needed. if (argType != 'c' || argPoly || argUsgn) args = (argQuad ? "(int8x16_t)" : "(int8x8_t)") + args; for (unsigned vi = 0, ve = proto[i] - '0'; vi != ve; ++vi) { s += args + ".val[" + utostr(vi) + "]"; if ((vi + 1) < ve) s += ", "; } if ((i + 1) < e) s += ", "; continue; } if (splat && (i + 1) == e) args = Duplicate(GetNumElements(typestr, argQuad), typestr, args); // Check if an explicit cast is needed. if ((splat || !argScalar) && ((ck == ClassB && argType != 'c') || argPoly || argUsgn)) { std::string argTypeStr = "c"; if (ck != ClassB) argTypeStr = argType; if (argQuad) argTypeStr = "Q" + argTypeStr; args = "(" + TypeString('d', argTypeStr) + ")" + args; } s += args; if ((i + 1) < e) s += ", "; } // Extra constant integer to hold type class enum for this function, e.g. s8 if (ck == ClassB) s += ", " + utostr(GetNeonEnum(proto, typestr)); s += ");"; if (proto[0] != 'v' && sret) { if (define) s += " r;"; else s += " return r;"; } return s; } static std::string GenBuiltinDef(const std::string &name, const std::string &proto, StringRef typestr, ClassKind ck) { std::string s("BUILTIN(__builtin_neon_"); // If all types are the same size, bitcasting the args will take care // of arg checking. The actual signedness etc. will be taken care of with // special enums. if (proto.find('s') == std::string::npos) ck = ClassB; s += MangleName(name, typestr, ck); s += ", \""; for (unsigned i = 0, e = proto.size(); i != e; ++i) s += BuiltinTypeString(proto[i], typestr, ck, i == 0); // Extra constant integer to hold type class enum for this function, e.g. s8 if (ck == ClassB) s += "i"; s += "\", \"n\")"; return s; } static std::string GenIntrinsic(const std::string &name, const std::string &proto, StringRef outTypeStr, StringRef inTypeStr, OpKind kind, ClassKind classKind) { assert(!proto.empty() && ""); bool define = UseMacro(proto) && kind != OpUnavailable; std::string s; // static always inline + return type if (define) s += "#define "; else s += "__ai " + TypeString(proto[0], outTypeStr) + " "; // Function name with type suffix std::string mangledName = MangleName(name, outTypeStr, ClassS); if (outTypeStr != inTypeStr) { // If the input type is different (e.g., for vreinterpret), append a suffix // for the input type. String off a "Q" (quad) prefix so that MangleName // does not insert another "q" in the name. unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0); StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff); mangledName = MangleName(mangledName, inTypeNoQuad, ClassS); } s += mangledName; // Function arguments s += GenArgs(proto, inTypeStr); // Definition. if (define) { s += " __extension__ ({ \\\n "; s += GenMacroLocals(proto, inTypeStr); } else if (kind == OpUnavailable) { s += " __attribute__((unavailable));\n"; return s; } else s += " {\n "; if (kind != OpNone) s += GenOpString(kind, proto, outTypeStr); else s += GenBuiltin(name, proto, outTypeStr, classKind); if (define) s += " })"; else s += " }"; s += "\n"; return s; } /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h /// is comprised of type definitions and function declarations. void NeonEmitter::run(raw_ostream &OS) { OS << "/*===---- arm_neon.h - ARM Neon intrinsics ------------------------------" "---===\n" " *\n" " * Permission is hereby granted, free of charge, to any person obtaining " "a copy\n" " * of this software and associated documentation files (the \"Software\")," " to deal\n" " * in the Software without restriction, including without limitation the " "rights\n" " * to use, copy, modify, merge, publish, distribute, sublicense, " "and/or sell\n" " * copies of the Software, and to permit persons to whom the Software is\n" " * furnished to do so, subject to the following conditions:\n" " *\n" " * The above copyright notice and this permission notice shall be " "included in\n" " * all copies or substantial portions of the Software.\n" " *\n" " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " "EXPRESS OR\n" " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " "MERCHANTABILITY,\n" " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " "SHALL THE\n" " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " "OTHER\n" " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " "ARISING FROM,\n" " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " "DEALINGS IN\n" " * THE SOFTWARE.\n" " *\n" " *===--------------------------------------------------------------------" "---===\n" " */\n\n"; OS << "#ifndef __ARM_NEON_H\n"; OS << "#define __ARM_NEON_H\n\n"; OS << "#if !defined(__ARM_NEON__) && !defined(__AARCH_FEATURE_ADVSIMD)\n"; OS << "#error \"NEON support not enabled\"\n"; OS << "#endif\n\n"; OS << "#include \n\n"; // Emit NEON-specific scalar typedefs. OS << "typedef float float32_t;\n"; OS << "typedef __fp16 float16_t;\n"; OS << "#ifdef __aarch64__\n"; OS << "typedef double float64_t;\n"; OS << "#endif\n\n"; // For now, signedness of polynomial types depends on target OS << "#ifdef __aarch64__\n"; OS << "typedef uint8_t poly8_t;\n"; OS << "typedef uint16_t poly16_t;\n"; OS << "#else\n"; OS << "typedef int8_t poly8_t;\n"; OS << "typedef int16_t poly16_t;\n"; OS << "#endif\n"; // Emit Neon vector typedefs. std::string TypedefTypes( "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfQdPcQPcPsQPs"); SmallVector TDTypeVec; ParseTypes(0, TypedefTypes, TDTypeVec); // Emit vector typedefs. for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) { bool dummy, quad = false, poly = false; char type = ClassifyType(TDTypeVec[i], quad, poly, dummy); bool isA64 = false; if (type == 'd' && quad) isA64 = true; if (isA64) OS << "#ifdef __aarch64__\n"; if (poly) OS << "typedef __attribute__((neon_polyvector_type("; else OS << "typedef __attribute__((neon_vector_type("; unsigned nElts = GetNumElements(TDTypeVec[i], quad); OS << utostr(nElts) << "))) "; if (nElts < 10) OS << " "; OS << TypeString('s', TDTypeVec[i]); OS << " " << TypeString('d', TDTypeVec[i]) << ";\n"; if (isA64) OS << "#endif\n"; } OS << "\n"; // Emit struct typedefs. for (unsigned vi = 2; vi != 5; ++vi) { for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) { bool dummy, quad = false, poly = false; char type = ClassifyType(TDTypeVec[i], quad, poly, dummy); bool isA64 = false; if (type == 'd' && quad) isA64 = true; if (isA64) OS << "#ifdef __aarch64__\n"; std::string ts = TypeString('d', TDTypeVec[i]); std::string vs = TypeString('0' + vi, TDTypeVec[i]); OS << "typedef struct " << vs << " {\n"; OS << " " << ts << " val"; OS << "[" << utostr(vi) << "]"; OS << ";\n} "; OS << vs << ";\n"; if (isA64) OS << "#endif\n"; OS << "\n"; } } OS<<"#define __ai static inline __attribute__((__always_inline__, __nodebug__))\n\n"; std::vector RV = Records.getAllDerivedDefinitions("Inst"); StringMap EmittedMap; // Emit vmovl, vmull and vabd intrinsics first so they can be used by other // intrinsics. (Some of the saturating multiply instructions are also // used to implement the corresponding "_lane" variants, but tablegen // sorts the records into alphabetical order so that the "_lane" variants // come after the intrinsics they use.) emitIntrinsic(OS, Records.getDef("VMOVL"), EmittedMap); emitIntrinsic(OS, Records.getDef("VMULL"), EmittedMap); emitIntrinsic(OS, Records.getDef("VABD"), EmittedMap); // ARM intrinsics must be emitted before AArch64 intrinsics to ensure // common intrinsics appear only once in the output stream. // The check for uniquiness is done in emitIntrinsic. // Emit ARM intrinsics. for (unsigned i = 0, e = RV.size(); i != e; ++i) { Record *R = RV[i]; // Skip AArch64 intrinsics; they will be emitted at the end. bool isA64 = R->getValueAsBit("isA64"); if (isA64) continue; if (R->getName() != "VMOVL" && R->getName() != "VMULL" && R->getName() != "VABD") emitIntrinsic(OS, R, EmittedMap); } // Emit AArch64-specific intrinsics. OS << "#ifdef __aarch64__\n"; for (unsigned i = 0, e = RV.size(); i != e; ++i) { Record *R = RV[i]; // Skip ARM intrinsics already included above. bool isA64 = R->getValueAsBit("isA64"); if (!isA64) continue; emitIntrinsic(OS, R, EmittedMap); } OS << "#endif\n\n"; OS << "#undef __ai\n\n"; OS << "#endif /* __ARM_NEON_H */\n"; } /// emitIntrinsic - Write out the arm_neon.h header file definitions for the /// intrinsics specified by record R checking for intrinsic uniqueness. void NeonEmitter::emitIntrinsic(raw_ostream &OS, Record *R, StringMap &EmittedMap) { std::string name = R->getValueAsString("Name"); std::string Proto = R->getValueAsString("Prototype"); std::string Types = R->getValueAsString("Types"); SmallVector TypeVec; ParseTypes(R, Types, TypeVec); OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()]; ClassKind classKind = ClassNone; if (R->getSuperClasses().size() >= 2) classKind = ClassMap[R->getSuperClasses()[1]]; if (classKind == ClassNone && kind == OpNone) PrintFatalError(R->getLoc(), "Builtin has no class kind"); for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { if (kind == OpReinterpret) { bool outQuad = false; bool dummy = false; (void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy); for (unsigned srcti = 0, srcte = TypeVec.size(); srcti != srcte; ++srcti) { bool inQuad = false; (void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy); if (srcti == ti || inQuad != outQuad) continue; std::string s = GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[srcti], OpCast, ClassS); if (EmittedMap.count(s)) continue; EmittedMap[s] = ClassS; OS << s; } } else { std::string s = GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[ti], kind, classKind); if (EmittedMap.count(s)) continue; EmittedMap[s] = classKind; OS << s; } } OS << "\n"; } static unsigned RangeFromType(const char mod, StringRef typestr) { // base type to get the type string for. bool quad = false, dummy = false; char type = ClassifyType(typestr, quad, dummy, dummy); type = ModType(mod, type, quad, dummy, dummy, dummy, dummy, dummy); switch (type) { case 'c': return (8 << (int)quad) - 1; case 'h': case 's': return (4 << (int)quad) - 1; case 'f': case 'i': return (2 << (int)quad) - 1; case 'l': return (1 << (int)quad) - 1; default: PrintFatalError("unhandled type!"); } } /// Generate the ARM and AArch64 intrinsic range checking code for /// shift/lane immediates, checking for unique declarations. void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS, StringMap &A64IntrinsicMap, bool isA64RangeCheck) { std::vector RV = Records.getAllDerivedDefinitions("Inst"); StringMap EmittedMap; // Generate the intrinsic range checking code for shift/lane immediates. if (isA64RangeCheck) OS << "#ifdef GET_NEON_AARCH64_IMMEDIATE_CHECK\n"; else OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n"; for (unsigned i = 0, e = RV.size(); i != e; ++i) { Record *R = RV[i]; OpKind k = OpMap[R->getValueAsDef("Operand")->getName()]; if (k != OpNone) continue; std::string name = R->getValueAsString("Name"); std::string Proto = R->getValueAsString("Prototype"); std::string Types = R->getValueAsString("Types"); // Functions with 'a' (the splat code) in the type prototype should not get // their own builtin as they use the non-splat variant. if (Proto.find('a') != std::string::npos) continue; // Functions which do not have an immediate do not need to have range // checking code emitted. size_t immPos = Proto.find('i'); if (immPos == std::string::npos) continue; SmallVector TypeVec; ParseTypes(R, Types, TypeVec); if (R->getSuperClasses().size() < 2) PrintFatalError(R->getLoc(), "Builtin has no class kind"); ClassKind ck = ClassMap[R->getSuperClasses()[1]]; // Do not include AArch64 range checks if not generating code for AArch64. bool isA64 = R->getValueAsBit("isA64"); if (!isA64RangeCheck && isA64) continue; // Include ARM range checks in AArch64 but only if ARM intrinsics are not // redefined by AArch64 to handle new types. if (isA64RangeCheck && !isA64 && A64IntrinsicMap.count(name)) { ClassKind &A64CK = A64IntrinsicMap[name]; if (A64CK == ck && ck != ClassNone) continue; } for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { std::string namestr, shiftstr, rangestr; if (R->getValueAsBit("isVCVT_N")) { // VCVT between floating- and fixed-point values takes an immediate // in the range 1 to 32. ck = ClassB; rangestr = "l = 1; u = 31"; // upper bound = l + u } else if (Proto.find('s') == std::string::npos) { // Builtins which are overloaded by type will need to have their upper // bound computed at Sema time based on the type constant. ck = ClassB; if (R->getValueAsBit("isShift")) { shiftstr = ", true"; // Right shifts have an 'r' in the name, left shifts do not. if (name.find('r') != std::string::npos) rangestr = "l = 1; "; } rangestr += "u = RFT(TV" + shiftstr + ")"; } else { // The immediate generally refers to a lane in the preceding argument. assert(immPos > 0 && "unexpected immediate operand"); rangestr = "u = " + utostr(RangeFromType(Proto[immPos - 1], TypeVec[ti])); } // Make sure cases appear only once by uniquing them in a string map. namestr = MangleName(name, TypeVec[ti], ck); if (EmittedMap.count(namestr)) continue; EmittedMap[namestr] = OpNone; // Calculate the index of the immediate that should be range checked. unsigned immidx = 0; // Builtins that return a struct of multiple vectors have an extra // leading arg for the struct return. if (Proto[0] >= '2' && Proto[0] <= '4') ++immidx; // Add one to the index for each argument until we reach the immediate // to be checked. Structs of vectors are passed as multiple arguments. for (unsigned ii = 1, ie = Proto.size(); ii != ie; ++ii) { switch (Proto[ii]) { default: immidx += 1; break; case '2': immidx += 2; break; case '3': immidx += 3; break; case '4': immidx += 4; break; case 'i': ie = ii + 1; break; } } if (isA64RangeCheck) OS << "case AArch64::BI__builtin_neon_"; else OS << "case ARM::BI__builtin_neon_"; OS << MangleName(name, TypeVec[ti], ck) << ": i = " << immidx << "; " << rangestr << "; break;\n"; } } OS << "#endif\n\n"; } /// Generate the ARM and AArch64 overloaded type checking code for /// SemaChecking.cpp, checking for unique builtin declarations. void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS, StringMap &A64IntrinsicMap, bool isA64TypeCheck) { std::vector RV = Records.getAllDerivedDefinitions("Inst"); StringMap EmittedMap; // Generate the overloaded type checking code for SemaChecking.cpp if (isA64TypeCheck) OS << "#ifdef GET_NEON_AARCH64_OVERLOAD_CHECK\n"; else OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n"; for (unsigned i = 0, e = RV.size(); i != e; ++i) { Record *R = RV[i]; OpKind k = OpMap[R->getValueAsDef("Operand")->getName()]; if (k != OpNone) continue; std::string Proto = R->getValueAsString("Prototype"); std::string Types = R->getValueAsString("Types"); std::string name = R->getValueAsString("Name"); // Functions with 'a' (the splat code) in the type prototype should not get // their own builtin as they use the non-splat variant. if (Proto.find('a') != std::string::npos) continue; // Functions which have a scalar argument cannot be overloaded, no need to // check them if we are emitting the type checking code. if (Proto.find('s') != std::string::npos) continue; SmallVector TypeVec; ParseTypes(R, Types, TypeVec); if (R->getSuperClasses().size() < 2) PrintFatalError(R->getLoc(), "Builtin has no class kind"); // Do not include AArch64 type checks if not generating code for AArch64. bool isA64 = R->getValueAsBit("isA64"); if (!isA64TypeCheck && isA64) continue; // Include ARM type check in AArch64 but only if ARM intrinsics // are not redefined in AArch64 to handle new types, e.g. "vabd" is a SIntr // redefined in AArch64 to handle an additional 2 x f64 type. ClassKind ck = ClassMap[R->getSuperClasses()[1]]; if (isA64TypeCheck && !isA64 && A64IntrinsicMap.count(name)) { ClassKind &A64CK = A64IntrinsicMap[name]; if (A64CK == ck && ck != ClassNone) continue; } int si = -1, qi = -1; uint64_t mask = 0, qmask = 0; for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { // Generate the switch case(s) for this builtin for the type validation. bool quad = false, poly = false, usgn = false; (void) ClassifyType(TypeVec[ti], quad, poly, usgn); if (quad) { qi = ti; qmask |= 1ULL << GetNeonEnum(Proto, TypeVec[ti]); } else { si = ti; mask |= 1ULL << GetNeonEnum(Proto, TypeVec[ti]); } } // Check if the builtin function has a pointer or const pointer argument. int PtrArgNum = -1; bool HasConstPtr = false; for (unsigned arg = 1, arge = Proto.size(); arg != arge; ++arg) { char ArgType = Proto[arg]; if (ArgType == 'c') { HasConstPtr = true; PtrArgNum = arg - 1; break; } if (ArgType == 'p') { PtrArgNum = arg - 1; break; } } // For sret builtins, adjust the pointer argument index. if (PtrArgNum >= 0 && (Proto[0] >= '2' && Proto[0] <= '4')) PtrArgNum += 1; // Omit type checking for the pointer arguments of vld1_lane, vld1_dup, // and vst1_lane intrinsics. Using a pointer to the vector element // type with one of those operations causes codegen to select an aligned // load/store instruction. If you want an unaligned operation, // the pointer argument needs to have less alignment than element type, // so just accept any pointer type. if (name == "vld1_lane" || name == "vld1_dup" || name == "vst1_lane") { PtrArgNum = -1; HasConstPtr = false; } if (mask) { if (isA64TypeCheck) OS << "case AArch64::BI__builtin_neon_"; else OS << "case ARM::BI__builtin_neon_"; OS << MangleName(name, TypeVec[si], ClassB) << ": mask = " << "0x" << utohexstr(mask) << "ULL"; if (PtrArgNum >= 0) OS << "; PtrArgNum = " << PtrArgNum; if (HasConstPtr) OS << "; HasConstPtr = true"; OS << "; break;\n"; } if (qmask) { if (isA64TypeCheck) OS << "case AArch64::BI__builtin_neon_"; else OS << "case ARM::BI__builtin_neon_"; OS << MangleName(name, TypeVec[qi], ClassB) << ": mask = " << "0x" << utohexstr(qmask) << "ULL"; if (PtrArgNum >= 0) OS << "; PtrArgNum = " << PtrArgNum; if (HasConstPtr) OS << "; HasConstPtr = true"; OS << "; break;\n"; } } OS << "#endif\n\n"; } /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def /// declaration of builtins, checking for unique builtin declarations. void NeonEmitter::genBuiltinsDef(raw_ostream &OS, StringMap &A64IntrinsicMap, bool isA64GenBuiltinDef) { std::vector RV = Records.getAllDerivedDefinitions("Inst"); StringMap EmittedMap; // Generate BuiltinsARM.def and BuiltinsAArch64.def if (isA64GenBuiltinDef) OS << "#ifdef GET_NEON_AARCH64_BUILTINS\n"; else OS << "#ifdef GET_NEON_BUILTINS\n"; for (unsigned i = 0, e = RV.size(); i != e; ++i) { Record *R = RV[i]; OpKind k = OpMap[R->getValueAsDef("Operand")->getName()]; if (k != OpNone) continue; std::string Proto = R->getValueAsString("Prototype"); std::string name = R->getValueAsString("Name"); // Functions with 'a' (the splat code) in the type prototype should not get // their own builtin as they use the non-splat variant. if (Proto.find('a') != std::string::npos) continue; std::string Types = R->getValueAsString("Types"); SmallVector TypeVec; ParseTypes(R, Types, TypeVec); if (R->getSuperClasses().size() < 2) PrintFatalError(R->getLoc(), "Builtin has no class kind"); ClassKind ck = ClassMap[R->getSuperClasses()[1]]; // Do not include AArch64 BUILTIN() macros if not generating // code for AArch64 bool isA64 = R->getValueAsBit("isA64"); if (!isA64GenBuiltinDef && isA64) continue; // Include ARM BUILTIN() macros in AArch64 but only if ARM intrinsics // are not redefined in AArch64 to handle new types, e.g. "vabd" is a SIntr // redefined in AArch64 to handle an additional 2 x f64 type. if (isA64GenBuiltinDef && !isA64 && A64IntrinsicMap.count(name)) { ClassKind &A64CK = A64IntrinsicMap[name]; if (A64CK == ck && ck != ClassNone) continue; } for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { // Generate the declaration for this builtin, ensuring // that each unique BUILTIN() macro appears only once in the output // stream. std::string bd = GenBuiltinDef(name, Proto, TypeVec[ti], ck); if (EmittedMap.count(bd)) continue; EmittedMap[bd] = OpNone; OS << bd << "\n"; } } OS << "#endif\n\n"; } /// runHeader - Emit a file with sections defining: /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def. /// 2. the SemaChecking code for the type overload checking. /// 3. the SemaChecking code for validation of intrinsic immediate arguments. void NeonEmitter::runHeader(raw_ostream &OS) { std::vector RV = Records.getAllDerivedDefinitions("Inst"); // build a map of AArch64 intriniscs to be used in uniqueness checks. StringMap A64IntrinsicMap; for (unsigned i = 0, e = RV.size(); i != e; ++i) { Record *R = RV[i]; bool isA64 = R->getValueAsBit("isA64"); if (!isA64) continue; ClassKind CK = ClassNone; if (R->getSuperClasses().size() >= 2) CK = ClassMap[R->getSuperClasses()[1]]; std::string Name = R->getValueAsString("Name"); if (A64IntrinsicMap.count(Name)) continue; A64IntrinsicMap[Name] = CK; } // Generate BuiltinsARM.def for ARM genBuiltinsDef(OS, A64IntrinsicMap, false); // Generate BuiltinsAArch64.def for AArch64 genBuiltinsDef(OS, A64IntrinsicMap, true); // Generate ARM overloaded type checking code for SemaChecking.cpp genOverloadTypeCheckCode(OS, A64IntrinsicMap, false); // Generate AArch64 overloaded type checking code for SemaChecking.cpp genOverloadTypeCheckCode(OS, A64IntrinsicMap, true); // Generate ARM range checking code for shift/lane immediates. genIntrinsicRangeCheckCode(OS, A64IntrinsicMap, false); // Generate the AArch64 range checking code for shift/lane immediates. genIntrinsicRangeCheckCode(OS, A64IntrinsicMap, true); } /// GenTest - Write out a test for the intrinsic specified by the name and /// type strings, including the embedded patterns for FileCheck to match. static std::string GenTest(const std::string &name, const std::string &proto, StringRef outTypeStr, StringRef inTypeStr, bool isShift, bool isHiddenLOp, ClassKind ck, const std::string &InstName, bool isA64, std::string & testFuncProto) { assert(!proto.empty() && ""); std::string s; // Function name with type suffix std::string mangledName = MangleName(name, outTypeStr, ClassS); if (outTypeStr != inTypeStr) { // If the input type is different (e.g., for vreinterpret), append a suffix // for the input type. String off a "Q" (quad) prefix so that MangleName // does not insert another "q" in the name. unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0); StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff); mangledName = MangleName(mangledName, inTypeNoQuad, ClassS); } // todo: GenerateChecksForIntrinsic does not generate CHECK // for aarch64 instructions yet std::vector FileCheckPatterns; if (!isA64) { GenerateChecksForIntrinsic(name, proto, outTypeStr, inTypeStr, ck, InstName, isHiddenLOp, FileCheckPatterns); s+= "// CHECK_ARM: test_" + mangledName + "\n"; } s += "// CHECK_AARCH64: test_" + mangledName + "\n"; // Emit the FileCheck patterns. // If for any reason we do not want to emit a check, mangledInst // will be the empty string. if (FileCheckPatterns.size()) { for (std::vector::const_iterator i = FileCheckPatterns.begin(), e = FileCheckPatterns.end(); i != e; ++i) { s += "// CHECK_ARM: " + *i + "\n"; } } // Emit the start of the test function. testFuncProto = TypeString(proto[0], outTypeStr) + " test_" + mangledName + "("; char arg = 'a'; std::string comma; for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { // Do not create arguments for values that must be immediate constants. if (proto[i] == 'i') continue; testFuncProto += comma + TypeString(proto[i], inTypeStr) + " "; testFuncProto.push_back(arg); comma = ", "; } testFuncProto += ")"; s+= testFuncProto; s+= " {\n "; if (proto[0] != 'v') s += "return "; s += mangledName + "("; arg = 'a'; for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { if (proto[i] == 'i') { // For immediate operands, test the maximum value. if (isShift) s += "1"; // FIXME else // The immediate generally refers to a lane in the preceding argument. s += utostr(RangeFromType(proto[i-1], inTypeStr)); } else { s.push_back(arg); } if ((i + 1) < e) s += ", "; } s += ");\n}\n\n"; return s; } /// Write out all intrinsic tests for the specified target, checking /// for intrinsic test uniqueness. void NeonEmitter::genTargetTest(raw_ostream &OS, StringMap &EmittedMap, bool isA64GenTest) { if (isA64GenTest) OS << "#ifdef __aarch64__\n"; std::vector RV = Records.getAllDerivedDefinitions("Inst"); for (unsigned i = 0, e = RV.size(); i != e; ++i) { Record *R = RV[i]; std::string name = R->getValueAsString("Name"); std::string Proto = R->getValueAsString("Prototype"); std::string Types = R->getValueAsString("Types"); bool isShift = R->getValueAsBit("isShift"); std::string InstName = R->getValueAsString("InstName"); bool isHiddenLOp = R->getValueAsBit("isHiddenLInst"); bool isA64 = R->getValueAsBit("isA64"); // do not include AArch64 intrinsic test if not generating // code for AArch64 if (!isA64GenTest && isA64) continue; SmallVector TypeVec; ParseTypes(R, Types, TypeVec); ClassKind ck = ClassMap[R->getSuperClasses()[1]]; OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()]; if (kind == OpUnavailable) continue; for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { if (kind == OpReinterpret) { bool outQuad = false; bool dummy = false; (void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy); for (unsigned srcti = 0, srcte = TypeVec.size(); srcti != srcte; ++srcti) { bool inQuad = false; (void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy); if (srcti == ti || inQuad != outQuad) continue; std::string testFuncProto; std::string s = GenTest(name, Proto, TypeVec[ti], TypeVec[srcti], isShift, isHiddenLOp, ck, InstName, isA64, testFuncProto); if (EmittedMap.count(testFuncProto)) continue; EmittedMap[testFuncProto] = kind; OS << s << "\n"; } } else { std::string testFuncProto; std::string s = GenTest(name, Proto, TypeVec[ti], TypeVec[ti], isShift, isHiddenLOp, ck, InstName, isA64, testFuncProto); if (EmittedMap.count(testFuncProto)) continue; EmittedMap[testFuncProto] = kind; OS << s << "\n"; } } } if (isA64GenTest) OS << "#endif\n"; } /// runTests - Write out a complete set of tests for all of the Neon /// intrinsics. void NeonEmitter::runTests(raw_ostream &OS) { OS << "// RUN: %clang_cc1 -triple thumbv7s-apple-darwin -target-abi " "apcs-gnu\\\n" "// RUN: -target-cpu swift -ffreestanding -Os -S -o - %s\\\n" "// RUN: | FileCheck %s -check-prefix=CHECK_ARM\n" "\n" "// RUN: %clang_cc1 -triple aarch64-none-linux-gnu \\\n" "// RUN -target-feature +neon -ffreestanding -S -o - %s \\\n" "// RUN: | FileCheck %s -check-prefix=CHECK_AARCH64\n" "\n" "// REQUIRES: long_tests\n" "\n" "#include \n" "\n"; // ARM tests must be emitted before AArch64 tests to ensure // tests for intrinsics that are common to ARM and AArch64 // appear only once in the output stream. // The check for uniqueness is done in genTargetTest. StringMap EmittedMap; genTargetTest(OS, EmittedMap, false); genTargetTest(OS, EmittedMap, true); } namespace clang { void EmitNeon(RecordKeeper &Records, raw_ostream &OS) { NeonEmitter(Records).run(OS); } void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) { NeonEmitter(Records).runHeader(OS); } void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) { NeonEmitter(Records).runTests(OS); } } // End namespace clang