/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "PictureRenderer.h" #include "picture_utils.h" #include "SamplePipeControllers.h" #include "SkBitmapHasher.h" #include "SkCanvas.h" #include "SkData.h" #include "SkDevice.h" #include "SkGPipe.h" #if SK_SUPPORT_GPU #include "gl/GrGLDefines.h" #include "SkGpuDevice.h" #endif #include "SkGraphics.h" #include "SkImageEncoder.h" #include "SkMaskFilter.h" #include "SkMatrix.h" #include "SkPicture.h" #include "SkPictureUtils.h" #include "SkPixelRef.h" #include "SkRTree.h" #include "SkScalar.h" #include "SkStream.h" #include "SkString.h" #include "SkTemplates.h" #include "SkTileGridPicture.h" #include "SkTDArray.h" #include "SkThreadUtils.h" #include "SkTypes.h" namespace sk_tools { enum { kDefaultTileWidth = 256, kDefaultTileHeight = 256 }; /* TODO(epoger): These constants are already maintained in 2 other places: * gm/gm_json.py and gm/gm_expectations.cpp. We shouldn't add yet a third place. * Figure out a way to share the definitions instead. */ const static char kJsonKey_ActualResults[] = "actual-results"; const static char kJsonKey_ActualResults_Failed[] = "failed"; const static char kJsonKey_ActualResults_FailureIgnored[]= "failure-ignored"; const static char kJsonKey_ActualResults_NoComparison[] = "no-comparison"; const static char kJsonKey_ActualResults_Succeeded[] = "succeeded"; const static char kJsonKey_ExpectedResults[] = "expected-results"; const static char kJsonKey_ExpectedResults_AllowedDigests[] = "allowed-digests"; const static char kJsonKey_ExpectedResults_IgnoreFailure[] = "ignore-failure"; const static char kJsonKey_Hashtype_Bitmap_64bitMD5[] = "bitmap-64bitMD5"; void ImageResultsSummary::add(const char *testName, const SkBitmap& bitmap) { uint64_t hash; SkAssertResult(SkBitmapHasher::ComputeDigest(bitmap, &hash)); Json::Value jsonTypeValuePair; jsonTypeValuePair.append(Json::Value(kJsonKey_Hashtype_Bitmap_64bitMD5)); jsonTypeValuePair.append(Json::UInt64(hash)); fActualResultsNoComparison[testName] = jsonTypeValuePair; } void ImageResultsSummary::writeToFile(const char *filename) { Json::Value actualResults; actualResults[kJsonKey_ActualResults_NoComparison] = fActualResultsNoComparison; Json::Value root; root[kJsonKey_ActualResults] = actualResults; std::string jsonStdString = root.toStyledString(); SkFILEWStream stream(filename); stream.write(jsonStdString.c_str(), jsonStdString.length()); } void PictureRenderer::init(SkPicture* pict) { SkASSERT(NULL == fPicture); SkASSERT(NULL == fCanvas.get()); if (fPicture != NULL || NULL != fCanvas.get()) { return; } SkASSERT(pict != NULL); if (NULL == pict) { return; } fPicture = pict; fPicture->ref(); fCanvas.reset(this->setupCanvas()); } class FlagsDrawFilter : public SkDrawFilter { public: FlagsDrawFilter(PictureRenderer::DrawFilterFlags* flags) : fFlags(flags) {} virtual bool filter(SkPaint* paint, Type t) { paint->setFlags(paint->getFlags() & ~fFlags[t] & SkPaint::kAllFlags); if (PictureRenderer::kMaskFilter_DrawFilterFlag & fFlags[t]) { SkMaskFilter* maskFilter = paint->getMaskFilter(); if (NULL != maskFilter) { paint->setMaskFilter(NULL); } } if (PictureRenderer::kHinting_DrawFilterFlag & fFlags[t]) { paint->setHinting(SkPaint::kNo_Hinting); } else if (PictureRenderer::kSlightHinting_DrawFilterFlag & fFlags[t]) { paint->setHinting(SkPaint::kSlight_Hinting); } return true; } private: PictureRenderer::DrawFilterFlags* fFlags; }; static void setUpFilter(SkCanvas* canvas, PictureRenderer::DrawFilterFlags* drawFilters) { if (drawFilters && !canvas->getDrawFilter()) { canvas->setDrawFilter(SkNEW_ARGS(FlagsDrawFilter, (drawFilters)))->unref(); if (drawFilters[0] & PictureRenderer::kAAClip_DrawFilterFlag) { canvas->setAllowSoftClip(false); } } } SkCanvas* PictureRenderer::setupCanvas() { const int width = this->getViewWidth(); const int height = this->getViewHeight(); return this->setupCanvas(width, height); } SkCanvas* PictureRenderer::setupCanvas(int width, int height) { SkCanvas* canvas; switch(fDeviceType) { case kBitmap_DeviceType: { SkBitmap bitmap; sk_tools::setup_bitmap(&bitmap, width, height); canvas = SkNEW_ARGS(SkCanvas, (bitmap)); } break; #if SK_SUPPORT_GPU #if SK_ANGLE case kAngle_DeviceType: // fall through #endif case kGPU_DeviceType: { SkAutoTUnref target; if (fGrContext) { // create a render target to back the device GrTextureDesc desc; desc.fConfig = kSkia8888_GrPixelConfig; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = width; desc.fHeight = height; desc.fSampleCnt = fSampleCount; target.reset(fGrContext->createUncachedTexture(desc, NULL, 0)); } if (NULL == target.get()) { SkASSERT(0); return NULL; } SkAutoTUnref device(SkGpuDevice::Create(target)); canvas = SkNEW_ARGS(SkCanvas, (device.get())); break; } #endif default: SkASSERT(0); return NULL; } setUpFilter(canvas, fDrawFilters); this->scaleToScaleFactor(canvas); return canvas; } void PictureRenderer::scaleToScaleFactor(SkCanvas* canvas) { SkASSERT(canvas != NULL); if (fScaleFactor != SK_Scalar1) { canvas->scale(fScaleFactor, fScaleFactor); } } void PictureRenderer::end() { this->resetState(true); SkSafeUnref(fPicture); fPicture = NULL; fCanvas.reset(NULL); } int PictureRenderer::getViewWidth() { SkASSERT(fPicture != NULL); int width = SkScalarCeilToInt(fPicture->width() * fScaleFactor); if (fViewport.width() > 0) { width = SkMin32(width, fViewport.width()); } return width; } int PictureRenderer::getViewHeight() { SkASSERT(fPicture != NULL); int height = SkScalarCeilToInt(fPicture->height() * fScaleFactor); if (fViewport.height() > 0) { height = SkMin32(height, fViewport.height()); } return height; } /** Converts fPicture to a picture that uses a BBoxHierarchy. * PictureRenderer subclasses that are used to test picture playback * should call this method during init. */ void PictureRenderer::buildBBoxHierarchy() { SkASSERT(NULL != fPicture); if (kNone_BBoxHierarchyType != fBBoxHierarchyType && NULL != fPicture) { SkPicture* newPicture = this->createPicture(); SkCanvas* recorder = newPicture->beginRecording(fPicture->width(), fPicture->height(), this->recordFlags()); fPicture->draw(recorder); newPicture->endRecording(); fPicture->unref(); fPicture = newPicture; } } void PictureRenderer::resetState(bool callFinish) { #if SK_SUPPORT_GPU SkGLContextHelper* glContext = this->getGLContext(); if (NULL == glContext) { SkASSERT(kBitmap_DeviceType == fDeviceType); return; } fGrContext->flush(); if (callFinish) { SK_GL(*glContext, Finish()); } #endif } uint32_t PictureRenderer::recordFlags() { return ((kNone_BBoxHierarchyType == fBBoxHierarchyType) ? 0 : SkPicture::kOptimizeForClippedPlayback_RecordingFlag) | SkPicture::kUsePathBoundsForClip_RecordingFlag; } /** * Write the canvas to the specified path. * @param canvas Must be non-null. Canvas to be written to a file. * @param path Path for the file to be written. Should have no extension; write() will append * an appropriate one. Passed in by value so it can be modified. * @param jsonSummaryPtr If not null, add image results to this summary. * @return bool True if the Canvas is written to a file. * * TODO(epoger): Right now, all canvases must pass through this function in order to be appended * to the ImageResultsSummary. We need some way to add bitmaps to the ImageResultsSummary * even if --writePath has not been specified (and thus this function is not called). * * One fix would be to pass in these path elements separately, and allow this function to be * called even if --writePath was not specified... * const char *outputDir // NULL if we don't want to write image files to disk * const char *filename // name we use within JSON summary, and as the filename within outputDir */ static bool write(SkCanvas* canvas, const SkString* path, ImageResultsSummary *jsonSummaryPtr) { SkASSERT(canvas != NULL); if (NULL == canvas) { return false; } SkASSERT(path != NULL); // TODO(epoger): we want to remove this constraint, as noted above SkString fullPathname(*path); fullPathname.append(".png"); SkBitmap bitmap; SkISize size = canvas->getDeviceSize(); sk_tools::setup_bitmap(&bitmap, size.width(), size.height()); canvas->readPixels(&bitmap, 0, 0); sk_tools::force_all_opaque(bitmap); if (NULL != jsonSummaryPtr) { // EPOGER: This is a hacky way of constructing the filename associated with the // image checksum; we assume that outputDir is not NULL, and we remove outputDir // from fullPathname. // // EPOGER: what about including the config type within hashFilename? That way, // we could combine results of different config types without conflicting filenames. SkString hashFilename; sk_tools::get_basename(&hashFilename, fullPathname); jsonSummaryPtr->add(hashFilename.c_str(), bitmap); } return SkImageEncoder::EncodeFile(fullPathname.c_str(), bitmap, SkImageEncoder::kPNG_Type, 100); } /** * If path is non NULL, append number to it, and call write() to write the * provided canvas to a file. Returns true if path is NULL or if write() succeeds. */ static bool writeAppendNumber(SkCanvas* canvas, const SkString* path, int number, ImageResultsSummary *jsonSummaryPtr) { if (NULL == path) { return true; } SkString pathWithNumber(*path); pathWithNumber.appendf("%i", number); return write(canvas, &pathWithNumber, jsonSummaryPtr); } /////////////////////////////////////////////////////////////////////////////////////////////// SkCanvas* RecordPictureRenderer::setupCanvas(int width, int height) { // defer the canvas setup until the render step return NULL; } static SkData* encode_bitmap_to_data(size_t* offset, const SkBitmap& bm) { SkPixelRef* pr = bm.pixelRef(); if (pr != NULL) { SkData* data = pr->refEncodedData(); if (data != NULL) { *offset = bm.pixelRefOffset(); return data; } } *offset = 0; return SkImageEncoder::EncodeData(bm, SkImageEncoder::kPNG_Type, 100); } bool RecordPictureRenderer::render(const SkString* path, SkBitmap** out) { SkAutoTUnref replayer(this->createPicture()); SkCanvas* recorder = replayer->beginRecording(this->getViewWidth(), this->getViewHeight(), this->recordFlags()); this->scaleToScaleFactor(recorder); fPicture->draw(recorder); replayer->endRecording(); if (path != NULL) { // Record the new picture as a new SKP with PNG encoded bitmaps. SkString skpPath(*path); // ".skp" was removed from 'path' before being passed in here. skpPath.append(".skp"); SkFILEWStream stream(skpPath.c_str()); replayer->serialize(&stream, &encode_bitmap_to_data); return true; } return false; } SkString RecordPictureRenderer::getConfigNameInternal() { return SkString("record"); } /////////////////////////////////////////////////////////////////////////////////////////////// bool PipePictureRenderer::render(const SkString* path, SkBitmap** out) { SkASSERT(fCanvas.get() != NULL); SkASSERT(fPicture != NULL); if (NULL == fCanvas.get() || NULL == fPicture) { return false; } PipeController pipeController(fCanvas.get()); SkGPipeWriter writer; SkCanvas* pipeCanvas = writer.startRecording(&pipeController); pipeCanvas->drawPicture(*fPicture); writer.endRecording(); fCanvas->flush(); if (NULL != path) { return write(fCanvas, path, fJsonSummaryPtr); } if (NULL != out) { *out = SkNEW(SkBitmap); setup_bitmap(*out, fPicture->width(), fPicture->height()); fCanvas->readPixels(*out, 0, 0); } return true; } SkString PipePictureRenderer::getConfigNameInternal() { return SkString("pipe"); } /////////////////////////////////////////////////////////////////////////////////////////////// void SimplePictureRenderer::init(SkPicture* picture) { INHERITED::init(picture); this->buildBBoxHierarchy(); } bool SimplePictureRenderer::render(const SkString* path, SkBitmap** out) { SkASSERT(fCanvas.get() != NULL); SkASSERT(fPicture != NULL); if (NULL == fCanvas.get() || NULL == fPicture) { return false; } fCanvas->drawPicture(*fPicture); fCanvas->flush(); if (NULL != path) { return write(fCanvas, path, fJsonSummaryPtr); } if (NULL != out) { *out = SkNEW(SkBitmap); setup_bitmap(*out, fPicture->width(), fPicture->height()); fCanvas->readPixels(*out, 0, 0); } return true; } SkString SimplePictureRenderer::getConfigNameInternal() { return SkString("simple"); } /////////////////////////////////////////////////////////////////////////////////////////////// TiledPictureRenderer::TiledPictureRenderer() : fTileWidth(kDefaultTileWidth) , fTileHeight(kDefaultTileHeight) , fTileWidthPercentage(0.0) , fTileHeightPercentage(0.0) , fTileMinPowerOf2Width(0) , fCurrentTileOffset(-1) , fTilesX(0) , fTilesY(0) { } void TiledPictureRenderer::init(SkPicture* pict) { SkASSERT(pict != NULL); SkASSERT(0 == fTileRects.count()); if (NULL == pict || fTileRects.count() != 0) { return; } // Do not call INHERITED::init(), which would create a (potentially large) canvas which is not // used by bench_pictures. fPicture = pict; fPicture->ref(); this->buildBBoxHierarchy(); if (fTileWidthPercentage > 0) { fTileWidth = sk_float_ceil2int(float(fTileWidthPercentage * fPicture->width() / 100)); } if (fTileHeightPercentage > 0) { fTileHeight = sk_float_ceil2int(float(fTileHeightPercentage * fPicture->height() / 100)); } if (fTileMinPowerOf2Width > 0) { this->setupPowerOf2Tiles(); } else { this->setupTiles(); } fCanvas.reset(this->setupCanvas(fTileWidth, fTileHeight)); // Initialize to -1 so that the first call to nextTile will set this up to draw tile 0 on the // first call to drawCurrentTile. fCurrentTileOffset = -1; } void TiledPictureRenderer::end() { fTileRects.reset(); this->INHERITED::end(); } void TiledPictureRenderer::setupTiles() { // Only use enough tiles to cover the viewport const int width = this->getViewWidth(); const int height = this->getViewHeight(); fTilesX = fTilesY = 0; for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) { fTilesY++; for (int tile_x_start = 0; tile_x_start < width; tile_x_start += fTileWidth) { if (0 == tile_y_start) { // Only count tiles in the X direction on the first pass. fTilesX++; } *fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start), SkIntToScalar(tile_y_start), SkIntToScalar(fTileWidth), SkIntToScalar(fTileHeight)); } } } bool TiledPictureRenderer::tileDimensions(int &x, int &y) { if (fTileRects.count() == 0 || NULL == fPicture) { return false; } x = fTilesX; y = fTilesY; return true; } // The goal of the powers of two tiles is to minimize the amount of wasted tile // space in the width-wise direction and then minimize the number of tiles. The // constraints are that every tile must have a pixel width that is a power of // two and also be of some minimal width (that is also a power of two). // // This is solved by first taking our picture size and rounding it up to the // multiple of the minimal width. The binary representation of this rounded // value gives us the tiles we need: a bit of value one means we need a tile of // that size. void TiledPictureRenderer::setupPowerOf2Tiles() { // Only use enough tiles to cover the viewport const int width = this->getViewWidth(); const int height = this->getViewHeight(); int rounded_value = width; if (width % fTileMinPowerOf2Width != 0) { rounded_value = width - (width % fTileMinPowerOf2Width) + fTileMinPowerOf2Width; } int num_bits = SkScalarCeilToInt(SkScalarLog2(SkIntToScalar(width))); int largest_possible_tile_size = 1 << num_bits; fTilesX = fTilesY = 0; // The tile height is constant for a particular picture. for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) { fTilesY++; int tile_x_start = 0; int current_width = largest_possible_tile_size; // Set fTileWidth to be the width of the widest tile, so that each canvas is large enough // to draw each tile. fTileWidth = current_width; while (current_width >= fTileMinPowerOf2Width) { // It is very important this is a bitwise AND. if (current_width & rounded_value) { if (0 == tile_y_start) { // Only count tiles in the X direction on the first pass. fTilesX++; } *fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start), SkIntToScalar(tile_y_start), SkIntToScalar(current_width), SkIntToScalar(fTileHeight)); tile_x_start += current_width; } current_width >>= 1; } } } /** * Draw the specified playback to the canvas translated to rectangle provided, so that this mini * canvas represents the rectangle's portion of the overall picture. * Saves and restores so that the initial clip and matrix return to their state before this function * is called. */ template static void DrawTileToCanvas(SkCanvas* canvas, const SkRect& tileRect, T* playback) { int saveCount = canvas->save(); // Translate so that we draw the correct portion of the picture. // Perform a postTranslate so that the scaleFactor does not interfere with the positioning. SkMatrix mat(canvas->getTotalMatrix()); mat.postTranslate(-tileRect.fLeft, -tileRect.fTop); canvas->setMatrix(mat); playback->draw(canvas); canvas->restoreToCount(saveCount); canvas->flush(); } /////////////////////////////////////////////////////////////////////////////////////////////// /** * Copies the entirety of the src bitmap (typically a tile) into a portion of the dst bitmap. * If the src bitmap is too large to fit within the dst bitmap after the x and y * offsets have been applied, any excess will be ignored (so only the top-left portion of the * src bitmap will be copied). * * @param src source bitmap * @param dst destination bitmap * @param xOffset x-offset within destination bitmap * @param yOffset y-offset within destination bitmap */ static void bitmapCopyAtOffset(const SkBitmap& src, SkBitmap* dst, int xOffset, int yOffset) { for (int y = 0; y height() ; y++) { for (int x = 0; x < src.width() && x + xOffset < dst->width() ; x++) { *dst->getAddr32(xOffset + x, yOffset + y) = *src.getAddr32(x, y); } } } bool TiledPictureRenderer::nextTile(int &i, int &j) { if (++fCurrentTileOffset < fTileRects.count()) { i = fCurrentTileOffset % fTilesX; j = fCurrentTileOffset / fTilesX; return true; } return false; } void TiledPictureRenderer::drawCurrentTile() { SkASSERT(fCurrentTileOffset >= 0 && fCurrentTileOffset < fTileRects.count()); DrawTileToCanvas(fCanvas, fTileRects[fCurrentTileOffset], fPicture); } bool TiledPictureRenderer::render(const SkString* path, SkBitmap** out) { SkASSERT(fPicture != NULL); if (NULL == fPicture) { return false; } SkBitmap bitmap; if (out){ *out = SkNEW(SkBitmap); setup_bitmap(*out, fPicture->width(), fPicture->height()); setup_bitmap(&bitmap, fTileWidth, fTileHeight); } bool success = true; for (int i = 0; i < fTileRects.count(); ++i) { DrawTileToCanvas(fCanvas, fTileRects[i], fPicture); if (NULL != path) { success &= writeAppendNumber(fCanvas, path, i, fJsonSummaryPtr); } if (NULL != out) { if (fCanvas->readPixels(&bitmap, 0, 0)) { // Add this tile to the entire bitmap. bitmapCopyAtOffset(bitmap, *out, SkScalarFloorToInt(fTileRects[i].left()), SkScalarFloorToInt(fTileRects[i].top())); } else { success = false; } } } return success; } SkCanvas* TiledPictureRenderer::setupCanvas(int width, int height) { SkCanvas* canvas = this->INHERITED::setupCanvas(width, height); SkASSERT(fPicture != NULL); // Clip the tile to an area that is completely inside both the SkPicture and the viewport. This // is mostly important for tiles on the right and bottom edges as they may go over this area and // the picture may have some commands that draw outside of this area and so should not actually // be written. // Uses a clipRegion so that it will be unaffected by the scale factor, which may have been set // by INHERITED::setupCanvas. SkRegion clipRegion; clipRegion.setRect(0, 0, this->getViewWidth(), this->getViewHeight()); canvas->clipRegion(clipRegion); return canvas; } SkString TiledPictureRenderer::getConfigNameInternal() { SkString name; if (fTileMinPowerOf2Width > 0) { name.append("pow2tile_"); name.appendf("%i", fTileMinPowerOf2Width); } else { name.append("tile_"); if (fTileWidthPercentage > 0) { name.appendf("%.f%%", fTileWidthPercentage); } else { name.appendf("%i", fTileWidth); } } name.append("x"); if (fTileHeightPercentage > 0) { name.appendf("%.f%%", fTileHeightPercentage); } else { name.appendf("%i", fTileHeight); } return name; } /////////////////////////////////////////////////////////////////////////////////////////////// // Holds all of the information needed to draw a set of tiles. class CloneData : public SkRunnable { public: CloneData(SkPicture* clone, SkCanvas* canvas, SkTDArray& rects, int start, int end, SkRunnable* done, ImageResultsSummary* jsonSummaryPtr) : fClone(clone) , fCanvas(canvas) , fPath(NULL) , fRects(rects) , fStart(start) , fEnd(end) , fSuccess(NULL) , fDone(done) , fJsonSummaryPtr(jsonSummaryPtr) { SkASSERT(fDone != NULL); } virtual void run() SK_OVERRIDE { SkGraphics::SetTLSFontCacheLimit(1024 * 1024); SkBitmap bitmap; if (fBitmap != NULL) { // All tiles are the same size. setup_bitmap(&bitmap, SkScalarFloorToInt(fRects[0].width()), SkScalarFloorToInt(fRects[0].height())); } for (int i = fStart; i < fEnd; i++) { DrawTileToCanvas(fCanvas, fRects[i], fClone); if ((fPath != NULL) && !writeAppendNumber(fCanvas, fPath, i, fJsonSummaryPtr) && fSuccess != NULL) { *fSuccess = false; // If one tile fails to write to a file, do not continue drawing the rest. break; } if (fBitmap != NULL) { if (fCanvas->readPixels(&bitmap, 0, 0)) { SkAutoLockPixels alp(*fBitmap); bitmapCopyAtOffset(bitmap, fBitmap, SkScalarFloorToInt(fRects[i].left()), SkScalarFloorToInt(fRects[i].top())); } else { *fSuccess = false; // If one tile fails to read pixels, do not continue drawing the rest. break; } } } fDone->run(); } void setPathAndSuccess(const SkString* path, bool* success) { fPath = path; fSuccess = success; } void setBitmap(SkBitmap* bitmap) { fBitmap = bitmap; } private: // All pointers unowned. SkPicture* fClone; // Picture to draw from. Each CloneData has a unique one which // is threadsafe. SkCanvas* fCanvas; // Canvas to draw to. Reused for each tile. const SkString* fPath; // If non-null, path to write the result to as a PNG. SkTDArray& fRects; // All tiles of the picture. const int fStart; // Range of tiles drawn by this thread. const int fEnd; bool* fSuccess; // Only meaningful if path is non-null. Shared by all threads, // and only set to false upon failure to write to a PNG. SkRunnable* fDone; SkBitmap* fBitmap; ImageResultsSummary* fJsonSummaryPtr; }; MultiCorePictureRenderer::MultiCorePictureRenderer(int threadCount) : fNumThreads(threadCount) , fThreadPool(threadCount) , fCountdown(threadCount) { // Only need to create fNumThreads - 1 clones, since one thread will use the base // picture. fPictureClones = SkNEW_ARRAY(SkPicture, fNumThreads - 1); fCloneData = SkNEW_ARRAY(CloneData*, fNumThreads); } void MultiCorePictureRenderer::init(SkPicture *pict) { // Set fPicture and the tiles. this->INHERITED::init(pict); for (int i = 0; i < fNumThreads; ++i) { *fCanvasPool.append() = this->setupCanvas(this->getTileWidth(), this->getTileHeight()); } // Only need to create fNumThreads - 1 clones, since one thread will use the base picture. fPicture->clone(fPictureClones, fNumThreads - 1); // Populate each thread with the appropriate data. // Group the tiles into nearly equal size chunks, rounding up so we're sure to cover them all. const int chunkSize = (fTileRects.count() + fNumThreads - 1) / fNumThreads; for (int i = 0; i < fNumThreads; i++) { SkPicture* pic; if (i == fNumThreads-1) { // The last set will use the original SkPicture. pic = fPicture; } else { pic = &fPictureClones[i]; } const int start = i * chunkSize; const int end = SkMin32(start + chunkSize, fTileRects.count()); fCloneData[i] = SkNEW_ARGS(CloneData, (pic, fCanvasPool[i], fTileRects, start, end, &fCountdown, fJsonSummaryPtr)); } } bool MultiCorePictureRenderer::render(const SkString *path, SkBitmap** out) { bool success = true; if (path != NULL) { for (int i = 0; i < fNumThreads-1; i++) { fCloneData[i]->setPathAndSuccess(path, &success); } } if (NULL != out) { *out = SkNEW(SkBitmap); setup_bitmap(*out, fPicture->width(), fPicture->height()); for (int i = 0; i < fNumThreads; i++) { fCloneData[i]->setBitmap(*out); } } else { for (int i = 0; i < fNumThreads; i++) { fCloneData[i]->setBitmap(NULL); } } fCountdown.reset(fNumThreads); for (int i = 0; i < fNumThreads; i++) { fThreadPool.add(fCloneData[i]); } fCountdown.wait(); return success; } void MultiCorePictureRenderer::end() { for (int i = 0; i < fNumThreads - 1; i++) { SkDELETE(fCloneData[i]); fCloneData[i] = NULL; } fCanvasPool.unrefAll(); this->INHERITED::end(); } MultiCorePictureRenderer::~MultiCorePictureRenderer() { // Each individual CloneData was deleted in end. SkDELETE_ARRAY(fCloneData); SkDELETE_ARRAY(fPictureClones); } SkString MultiCorePictureRenderer::getConfigNameInternal() { SkString name = this->INHERITED::getConfigNameInternal(); name.appendf("_multi_%i_threads", fNumThreads); return name; } /////////////////////////////////////////////////////////////////////////////////////////////// void PlaybackCreationRenderer::setup() { fReplayer.reset(this->createPicture()); SkCanvas* recorder = fReplayer->beginRecording(this->getViewWidth(), this->getViewHeight(), this->recordFlags()); this->scaleToScaleFactor(recorder); fPicture->draw(recorder); } bool PlaybackCreationRenderer::render(const SkString*, SkBitmap** out) { fReplayer->endRecording(); // Since this class does not actually render, return false. return false; } SkString PlaybackCreationRenderer::getConfigNameInternal() { return SkString("playback_creation"); } /////////////////////////////////////////////////////////////////////////////////////////////// // SkPicture variants for each BBoxHierarchy type class RTreePicture : public SkPicture { public: virtual SkBBoxHierarchy* createBBoxHierarchy() const SK_OVERRIDE{ static const int kRTreeMinChildren = 6; static const int kRTreeMaxChildren = 11; SkScalar aspectRatio = SkScalarDiv(SkIntToScalar(fWidth), SkIntToScalar(fHeight)); bool sortDraws = false; return SkRTree::Create(kRTreeMinChildren, kRTreeMaxChildren, aspectRatio, sortDraws); } }; SkPicture* PictureRenderer::createPicture() { switch (fBBoxHierarchyType) { case kNone_BBoxHierarchyType: return SkNEW(SkPicture); case kRTree_BBoxHierarchyType: return SkNEW(RTreePicture); case kTileGrid_BBoxHierarchyType: return SkNEW_ARGS(SkTileGridPicture, (fPicture->width(), fPicture->height(), fGridInfo)); } SkASSERT(0); // invalid bbhType return NULL; } /////////////////////////////////////////////////////////////////////////////// class GatherRenderer : public PictureRenderer { public: virtual bool render(const SkString* path, SkBitmap** out = NULL) SK_OVERRIDE { SkRect bounds = SkRect::MakeWH(SkIntToScalar(fPicture->width()), SkIntToScalar(fPicture->height())); SkData* data = SkPictureUtils::GatherPixelRefs(fPicture, bounds); SkSafeUnref(data); return NULL == path; // we don't have anything to write } private: virtual SkString getConfigNameInternal() SK_OVERRIDE { return SkString("gather_pixelrefs"); } }; PictureRenderer* CreateGatherPixelRefsRenderer() { return SkNEW(GatherRenderer); } /////////////////////////////////////////////////////////////////////////////// class PictureCloneRenderer : public PictureRenderer { public: virtual bool render(const SkString* path, SkBitmap** out = NULL) SK_OVERRIDE { for (int i = 0; i < 100; ++i) { SkPicture* clone = fPicture->clone(); SkSafeUnref(clone); } return NULL == path; // we don't have anything to write } private: virtual SkString getConfigNameInternal() SK_OVERRIDE { return SkString("picture_clone"); } }; PictureRenderer* CreatePictureCloneRenderer() { return SkNEW(PictureCloneRenderer); } } // namespace sk_tools