// concat.h // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // // \file // Functions and classes to compute the concat of two FSTs. #ifndef FST_LIB_CONCAT_H__ #define FST_LIB_CONCAT_H__ #include #include "fst/lib/mutable-fst.h" #include "fst/lib/rational.h" namespace fst { // Computes the concatenation (product) of two FSTs; this version // modifies its MutableFst argument. If FST1 transduces string x to y // with weight a and FST2 transduces string w to v with weight b, then // their concatenation transduces string xw to yv with Times(a, b). // // Complexity: // - Time: O(V1 + V2 + E2) // - Space: O(V1 + V2 + E2) // where Vi = # of states and Ei = # of arcs of the ith FST. template void Concat(MutableFst *fst1, const Fst &fst2) { typedef typename Arc::StateId StateId; typedef typename Arc::Label Label; typedef typename Arc::Weight Weight; StateId start1 = fst1->Start(); if (start1 == kNoStateId) return; uint64 props1 = fst1->Properties(kFstProperties, false); uint64 props2 = fst2.Properties(kFstProperties, false); StateId numstates1= fst1->NumStates(); for (StateIterator< Fst > siter2(fst2); !siter2.Done(); siter2.Next()) { StateId s1 = fst1->AddState(); StateId s2 = siter2.Value(); fst1->SetFinal(s1, fst2.Final(s2)); for (ArcIterator< Fst > aiter(fst2, s2); !aiter.Done(); aiter.Next()) { Arc arc = aiter.Value(); arc.nextstate += numstates1; fst1->AddArc(s1, arc); } } StateId start2 = fst2.Start(); for (StateId s1 = 0; s1 < numstates1; ++s1) { Weight final = fst1->Final(s1); if (final != Weight::Zero()) { fst1->SetFinal(s1, Weight::Zero()); if (start2 != kNoStateId) fst1->AddArc(s1, Arc(0, 0, final, start2 + numstates1)); } } if (start2 != kNoStateId) fst1->SetProperties(ConcatProperties(props1, props2), kFstProperties); } // Computes the concatentation of two FSTs. This version modifies its // RationalFst input. template void Concat(RationalFst *fst1, const Fst &fst2) { fst1->Impl()->AddConcat(fst2); } typedef RationalFstOptions ConcatFstOptions; // Computes the concatenation (product) of two FSTs; this version is a // delayed Fst. If FST1 transduces string x to y with weight a and FST2 // transduces string w to v with weight b, then their concatenation // transduces string xw to yv with Times(a, b). // // Complexity: // - Time: O(v1 + e1 + v2 + e2), // - Space: O(v1 + v2) // where vi = # of states visited and ei = # of arcs visited of the // ith FST. Constant time and space to visit an input state or arc is // assumed and exclusive of caching. template class ConcatFst : public RationalFst { public: using RationalFst::Impl; typedef A Arc; typedef typename A::Weight Weight; typedef typename A::StateId StateId; ConcatFst(const Fst &fst1, const Fst &fst2) { Impl()->InitConcat(fst1, fst2); } ConcatFst(const Fst &fst1, const Fst &fst2, const ConcatFstOptions &opts) : RationalFst(opts) { Impl()->InitConcat(fst1, fst2); } ConcatFst(const ConcatFst &fst) : RationalFst(fst) {} virtual ConcatFst *Copy() const { return new ConcatFst(*this); } }; // Specialization for ConcatFst. template class StateIterator< ConcatFst > : public StateIterator< RationalFst > { public: explicit StateIterator(const ConcatFst &fst) : StateIterator< RationalFst >(fst) {} }; // Specialization for ConcatFst. template class ArcIterator< ConcatFst > : public ArcIterator< RationalFst > { public: typedef typename A::StateId StateId; ArcIterator(const ConcatFst &fst, StateId s) : ArcIterator< RationalFst >(fst, s) {} }; // Useful alias when using StdArc. typedef ConcatFst StdConcatFst; } // namespace fst #endif // FST_LIB_CONCAT_H__